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Abstract. Convection-permitting regional climate models
(RCMs) have recently become tractable for applications
at multi-decadal timescales. These types of models have
tremendous utility for water resource studies, but better char-
acterization of precipitation biases is needed, particularly
for water-resource-critical mountain regions, where precipi-
tation is highly variable in space, observations are sparse, and
the societal water need is great. This study examines 34 years
(1987–2020) of RCM precipitation from the Weather Re-
search and Forecasting model (WRF; v3.8.1), using the Cli-
mate Forecast System Reanalysis (CFS; CFSv2) initial and
lateral boundary conditions and a 1 km× 1 km innermost
grid spacing. The RCM is centered over the Upper Colorado
River basin, with a focus on the high-elevation, 750 km2

East River watershed (ERW), where a variety of high-impact
scientific activities are currently ongoing. Precipitation is
compared against point observations (Natural Resources
Conservation Service Snow Telemetry or SNOTEL), grid-
ded climate datasets (Newman, Livneh, and PRISM), and
Bayesian reconstructions of watershed mean precipitation
conditioned on streamflow and high-resolution snow remote-
sensing products. We find that the cool-season precipitation
percent error between WRF and 23 SNOTEL gauges has a
low overall bias (x̂= 0.25 %, s= 13.63 %) and that WRF has
a higher percent error during the warm season (x̂= 10.37 %,
s= 12.79 %). Warm-season bias manifests as a high number
of low-precipitation days, though the low-resolution or SNO-
TEL gauges limit some of the conclusions that can be drawn.
Regional comparisons between WRF precipitation accumu-
lation and three different gridded datasets show differences
on the order of ± 20 %, particularly at the highest elevations
and in keeping with findings from other studies. We find that

WRF agrees slightly better with the Bayesian reconstruction
of precipitation in the ERW compared to the gridded precip-
itation datasets, particularly when changing SNOTEL densi-
ties are taken into account. The conclusions are that the RCM
reasonably captures orographic precipitation in this region
and demonstrates that leveraging additional hydrologic infor-
mation (streamflow and snow remote-sensing data) improves
the ability to characterize biases in RCM precipitation fields.
Error characteristics reported in this study are essential for
leveraging the RCM model outputs for studies of past and fu-
ture climates and water resource applications. The methods
developed in this study can be applied to other watersheds
and model configurations. Hourly 1 km× 1 km precipitation
and other meteorological outputs from this dataset are pub-
licly available and suitable for a wide variety of applications.

1 Introduction

The last decade has demonstrated that non-hydrostatic,
convection-permitting regional climate models (RCMs) are
tools capable of simulating precipitation in complex moun-
tain terrain (Ikeda et al., 2010; Rasmussen et al., 2011; Gut-
mann et al., 2012; Liu et al., 2017) and performing the re-
lated task of modeling mountain snow accumulations (Cur-
rier et al., 2017; Wrzesien et al., 2019), of which precipita-
tion is the first-order control. Over 1.6 billion people directly
rely on water resources flowing from mountain regions (Im-
merzeel et al., 2020), often in the form of seasonal snow-
packs. At the same time, mountains are uniquely sensitive to
climate change (Mountain Research Initiative Edw Working
Group et al., 2015), and snowpacks are forecast to decline

Published by Copernicus Publications on behalf of the European Geosciences Union.



6532 W. Rudisill et al.: Evaluating 3 decades of precipitation in the Upper Colorado River basin

significantly in the coming decades (Siirila-Woodburn et al.,
2021).

However, evaluating biases in precipitation from regional
models is a persistent challenge, as gridded, gauge-based
datasets that are commonly considered to be a gold standard
can disagree substantially in mountain watersheds because of
methodological choices alone and should themselves be con-
sidered to be model products and not treated wholly as ob-
servations (Henn et al., 2018; Lundquist et al., 2019). Grid-
ded gauge-based precipitation datasets use various strate-
gies to map sparse gauge observations across the terrain us-
ing topographic-based regressions (Daly et al., 2008; Thorn-
ton et al., 2016). Remote-sensing-based precipitation prod-
ucts (Ashouri et al., 2015) are not as suitable for stratiform
clouds or those composed of ice-phase hydrometeors, which
are both common cases for precipitation in the mountains of
the western United States (Lettenmaier et al., 2015). Ground-
based radar systems can measure precipitation rates (Lin and
Mitchell, 2005), but radar beam blockage limits the utility
in complex terrain (Maddox et al., 2002). It is fair to say
that more work needs to be done to interrogate precipitation
budgets in mountain watersheds, from RCMs or otherwise,
as completely adequate observation data are not available at
sufficient scales. Lundquist et al. (2019) articulate this point
well and urge the community to consider the syntheses of in-
direct hydrologic information such as, but not limited to, eco-
logical indicators, soil moisture, snowpack, and streamflow
in order to better constrain precipitation inputs into moun-
tainous watersheds. The uncertainties in precipitation data
(rates, phases, and magnitudes) propagate into studies of hy-
drologic systems for water resource applications, snow mod-
eling applications (Raleigh et al., 2015), and aqueous bio-
geochemistry (Maina et al., 2020), so improving the quality
of precipitation data is of critical importance in a variety of
sectors.

To meet this challenge, this study evaluates 34 years
of Weather Research and Forecasting model version 3.8.1
(WRF v3.8.1)-simulated precipitation for a domain encom-
passing the Upper Colorado River basin. Special emphasis is
placed on the East River watershed (ERW), a high-elevation
∼ 750 km2 watershed in the domain’s center, where a vari-
ety of hydrologic and atmospheric field campaigns are be-
ing conducted. The ERW (Fig. 1) is an exemplar of Rocky
Mountain landscapes (Hubbard et al., 2018) and flows from
the Elk Mountains, approximately in the center of the WRF
model domain described in the next section. The elevation
ranges between 2500 and 4200 m above sea level. Subsets
of the WRF data from this study have been made available
publicly (Rudisill et al., 2022) to provide a baseline of high-
resolution climate conditions for scientific activities taking
place in the ERW, which include the U.S. Department of
Energy East River Watershed Function Science Focus Area
(Hubbard et al., 2018), Surface Atmosphere Integrated Field
Laboratory (SAIL) campaign (Feldman et al., 2021), and the
NOAA Study of Precipitation, the Lower Atmosphere and

Surface for Hydrometeorology (SPLASH) field campaign
(https://psl.noaa.gov/splash/, last access: 31 October 2023;
de Boer et al., 2023). The Upper Colorado River basin is cur-
rently undergoing a devastating multi-year drought, and this
study is timely in so far that it seeks to provide insight into
the quantification of precipitation during the last 30 years
across this critical, water-stressed region (Udall and Over-
peck, 2017). The long-term nature of this dataset is also fairly
novel, as many studies are conducted for only a handful of
years (Ikeda et al., 2010; Rasmussen et al., 2011; Gutmann
et al., 2012) or a single decade (Liu et al., 2017).

To begin our model evaluation, we compare our model re-
sults against the Liu et al. (2017) WRF dataset (Rasmussen
and Liu, 2017). This comparison is meant to demonstrate
the fidelity of our model configuration against a well-known
and already-published dataset. We then compare the model
against station observations and gridded products (described
in the following sections). Many aspects of precipitation sim-
ulation can be important, depending on the question (diur-
nal cycles, peak intensity, and phase, for instance), and not
all aspects are considered here, with the focus primarily on
seasonal accumulation (Trenberth et al., 2003). We examine
the biases in annual, cold-season (1 October–31 March) and
warm-season (1 April–30 September) precipitation, in addi-
tion to temporal correlations of accumulation and daily pre-
cipitation rates against observation data. The spatial patterns
and elevation gradients of average precipitation accumula-
tions are also compared against the three gridded precipita-
tion products. We compare each one across the entirety of the
WRF inner-model grid (∼ 100 000 km2), and the differences
with respect to elevation are considered.

After examining regional-scale precipitation, we focus
on evaluating precipitation in the ERW. We examine spa-
tial patterns of precipitation across the ERW and locations
of precipitation enhancement by season. To better evaluate
the differences between WRF and PRISM (Parameter Re-
gression on Independent Slopes Model) in the ERW, we
compare the basin mean precipitation from each dataset
against a Bayesian precipitation methodology. The infer-
ence method estimates the basin mean precipitation, using
a combination of parsimonious snow or soil water account-
ing models, precipitation gauge observations, streamflow
records, and a limited number of Airborne Snow Observatory
(ASO) snow lidar surveys collected during water years 2018–
2019 (Painter et al., 2016). ASO measures snowpack depths
through repeated lidar measurements of snow-covered and
snow-free surfaces to produce highly accurate snow depth
and snow water equivalent maps. This work builds upon prior
precipitation-from-streamflow work, similar to Henn et al.
(2016). The methods developed and reported upon here can
be applied to other watersheds and regions. In addition, the
precipitation characteristics reported in this study are meant
to guide researchers who may use the data for applications
and to bring attention to regions where enhanced hydrologic
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Figure 1. WRF model domains and East River watershed (ERW), with the elevation (left) and satellite imagery (right) displayed. The outer
nest (D01) is 3 km dx/dy, and the inner domain (D02) is 1 km dx/dy. Purple triangles show the locations of the SNOTEL sites examined in
this study, and the orange circle shows the USGS stream gauge at the outlet of the ERW. Major mountain ranges are also labeled.

observations prove to be most beneficial in the Upper Col-
orado River basin.

2 Datasets and methods

2.1 WRF model domain and configuration

We use the Weather Research and Forecasting version 3.8.1
(WRF; Skamarock et al., 2008; Powers et al., 2017) model
with two nested domains. The inner domain has a 1 km reso-
lution and 50 vertical levels, and the outer domain has a 3 km
horizontal resolution. The inner-grid dimensions are 230 by
236 grid cells, the outer nest is 349 by 391 grid cells, and the
integration time step is set to 15 s. We use the Climate Fore-
cast System Reanalysis (CFSR) and Climate Forecast Sys-
tem Version 2 (CFSv2) before and after the 2011 (Saha et al.,
2010) lateral boundary conditions. CFSR has a 0.5◦ horizon-
tal grid resolution. The WRF “namelists” for configuring the
model are provided in the Supplement. The outermost do-
main encompasses the majority of Colorado’s Rocky Moun-
tains, extending east into Kansas and as far west as the Uin-
tas. Due to the time and computational constraints, each wa-
ter year (1 October–30 September) is run independently and
preceded by a 2-week spinup period. Consequently, multi-
year soil–moisture or soil–atmosphere interactions might not
be well represented, as the soil moisture fields (and other land
surface states) are initialized at the beginning of each water
year with the coarse CFSR soil moisture field. In this way,
multiple water years can be run concurrently. The horizontal
grid resolution of both domains is less than the 4 km typi-
cally considered necessary to permit convection (Weisman
et al., 1997), so convective parameterizations are turned off.
Additional WRF parameters are listed in Table 1.

In general, two predominant synoptic regimes control
water inputs to the ERW, namely winter baroclinic waves
(frontal systems) and summertime convective precipitation
events that can sometimes be associated with the North
American monsoon. Upper-level winds and moisture are
predominantly from the west during the winter. The Col-
orado Front Range is also affected by upslope storms typi-
fied by northerly and easterly winds (Rasmussen et al., 1995).
Streamflow hydrographs in the ERW are typified by a large
single peaks during the spring and early summer, with occa-
sional summer spikes, depending on the monsoonal precipi-
tation and antecedent snow conditions, and gradually decay
to baseflows in the late summer and fall (Carroll et al., 2020).
The Colorado River system is undergoing a multi-decadal
drought that is primarily driven by increased temperatures
(Udall and Overpeck, 2017).

2.2 Comparison precipitation datasets

We compare WRF precipitation accumulations against the
Natural Resources Conservation Service (NRCS) Snow
Telemetry (SNOTEL) precipitation observations (Serreze
et al., 1999). Analysis is conducted by water year (WY),
which is from 1 October–30 September. SNOTEL stations
are designed to provide cost-effective climate information
for water-resource-important regions throughout the western
USA and have been used extensively in the study of hydrol-
ogy and climate. SNOTEL stations use both a snow pillow to
measure snow accumulation mass and a separate, co-located
precipitation gauge to measure the precipitation liquid equiv-
alent. Ultimately, 23 SNOTEL sites are compared, ranging
between 2400–3350 m above sea level (purple triangles in
Fig. 1). The CFSR reanalyses used to force WRF do not as-
similate SNOTEL precipitation data (Saha et al., 2010), so
the precipitation recorded at the SNOTEL station is a com-

https://doi.org/10.5194/gmd-16-6531-2023 Geosci. Model Dev., 16, 6531–6552, 2023



6534 W. Rudisill et al.: Evaluating 3 decades of precipitation in the Upper Colorado River basin

Table 1. Weather Research and Forecasting v3.8.1 (WRF) parameters used in this study, including the planetary boundary layer (PBL), long-
and shortwave (LW and SW) radiation, land surface model (LSM), lateral boundary conditions (LBCs), grid spacing in the horizontal and
vertical directions (DX and DY), and grid dimension in the west to east and north to south directions (W–E and N–S).

Grid options Outer/inner nest

WRF version 3.8.1
Vertical levels 50, 50
W–E dimension 340, 349
N–S dimension 290, 328
DX 3 km, 1 km
DY 3 km, 1 km
Time step 15 s

Model physics Option

Convection parameterization None
LBCs (CFSR; CFSv2) Saha et al. (2010)
Microphysics Thompson Thompson et al. (2008)
LSM Noah MP Niu et al. (2011)
Surface layer Monin–Obukhov (option 2) Monin and Obukhov (1954)
PBL Mellor–Yamada–Janjic (Eta/NMM) PBL Janić (2001)
LW radiation Community Atmosphere Model Neale et al. (2010)
SW radiation Community Atmosphere Model Neale et al. (2010)

pletely independent check of the WRF precipitation at that
grid cell. It is worth noting that there is a fundamental and
unavoidable scale mismatch in making such a comparison,
given that WRF grid cells are 1 km and that SNOTEL gauge
orifices are less than a meter in diameter. Nevertheless this
comparison is the best available for quantifying model pre-
cipitation performance and has been used as a benchmark in
many other studies.

We also compare WRF precipitation fields against the Pa-
rameter Regression on Independent Slopes Model (PRISM;
Daly et al., 2008), Livneh (Livneh et al., 2013), and New-
man (Newman et al., 2015) geostatistical products, respec-
tively. There are a number of differences between each model
product, and elucidating the precise nature of the differ-
ences is beyond the scope of this article, but a brief de-
scription is warranted. One key difference is that PRISM and
Newman use data from NRCS SNOTEL networks, whereas
Livneh uses observations from the National Weather Ser-
vice (NWS) Cooperative Observer Program (COOP) stations
that have at least 20 years of data. Livneh precipitation ac-
cumulations are scaled such that the monthly means match
mean PRISM climatology from 1961 to 1990. All three prod-
ucts use the PRISM terrain–precipitation relationships to dis-
tribute precipitation across terrain. PRISM uses a mapping
methodology that regresses precipitation for each individ-
ual grid cell based on nearby station observations and ter-
rain orientation with respect to climatic variables. Livneh
and Newman are available until 2012 and 2013, respectively,
whereas PRISM is available for the entire study period. It is
also important and necessary to note the differences in grid
resolution among the products. PRISM uses a 4 km× 4 km

grid, the Livneh dataset is 0.0625◦ (∼ 6 km), and the New-
man dataset is the coarsest at 0.125◦ (∼ 12 km). To com-
pare the products at the regional scale, we use a bilinear in-
terpolation as implemented in the xESMF Python package
(https://xesmf.readthedocs.io/en/latest/, last access: 31 Octo-
ber 2023). WRF and each respective product are regridded to
a common regular latitudinal and longitudinal grid, match-
ing the coarser product’s resolution with extents matching
the WRF domain. A conservative regridding option was also
tested, but we found that the results were very similar and
had little impact on the overall interpretation.

2.3 Bayesian reconstructions of ERW mean
precipitation from streamflow

Estimating precipitation from streamflow observations, or
“doing hydrology backwards” methods, have been employed
in a number of studies (Kirchner, 2009; Pan and Wood,
2013), including those in snow-dominated alpine watersheds
(Le Moine et al., 2015; Valery et al., 2009) and glaciated wa-
tersheds (Immerzeel et al., 2012), using glacier mass balance
as opposed to streamflow. Henn et al. (2015) used a Bayesian
inference method to evaluate gauge-based precipitation prod-
ucts, with further applications in Henn et al. (2016), Henn
et al. (2018), and Hughes et al. (2020), the latter of which
used such a methodology to evaluate atmospheric model
performance for watersheds in the Sierra Nevada mountain
range. The approach adopted in this study is intended to fol-
low Henn et al. (2015) as closely as possible. In essence, the
method combines a temperature index snow accumulation
or ablation model run in elevation bands, a model account-
ing for soil water and a streamflow-routing bucket, and pre-
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Figure 2. Conceptual diagram illustrating the model used for the Bayesian inference approach. (a) Precipitation or temperature increase
or decrease with elevation and snow accumulates or snowmelt based on temperature in each layer. Rain and snowmelt (Qin) and potential
evapotranspiration (PET) calculated from temperature are fed into the hydrologic bucket model (b), with soil moisture in the top and bottom
bucket, respectively (SM1, SM2), as state variables. Baseflow (Qb) and overland flow (Qd) are convolved with a routing kernel to produce
streamflow (D) that can be compared to observations. Bayesian methods estimate the precipitation-distributing parameters conditioned on
observed streamflow.

cipitation and temperature equations that distribute weather
station observations upwards and downwards across eleva-
tion bands. Precipitation tends to increase with elevation, and
temperature tends to decrease. A Bayesian inverse method
finds the most likely ranges of the parameters, including pa-
rameters in the precipitation or temperature distributing func-
tions that produce streamflow that best matches the observa-
tions. The precipitation in each elevation layer (at height z)
is given by the following equation:

P(z) = 10m · [(Ps+Pbias) · (1+OPG · dz)], (1)

where Ps is the daily observed precipitation at a SNOTEL
location (at height z0); Pbias is a precipitation gauge under-
catch factor; OPG is the orographic precipitation gradient;m
is a multiplicative error term; and dz= zeff− z0, where z0 is
the station elevation. Observations show that the snow wa-
ter equivalent often decreases at high elevations in mountain
watersheds (Kirchner et al., 2014) after increasing fairly lin-
early. This pattern is also seen in the ERW (see Sect. 3) and
may be related to enhanced sublimation near ridges or a de-
crease in precipitation. Regardless of the cause, we introduce
a new but simple model that can account for this using phe-
nomena an effective layer elevation (zeff), which is proposed
as follows:

zeff =

{
z−α(z− ζ ) if z > ζ

z otherwise
, (2)

where z is the height of the elevation layer. In this way, pre-
cipitation begins to decrease after a certain elevation ζ , with
the slope defined by α. This relationship is graphically illus-
trated in Fig. 2. Other non-linear forms of the precipitation–
elevation equation are frequently used (Liston and Elder,
2006), but we chose this novel, linear form for simplicity be-
cause it is found to match ASO data well. We use the SNOW-
17 snow model (Anderson, 1973), which is run in discrete
elevation layers to simulate the accumulation or melting of
snow. In order to provide estimates that are as independent
as possible of WRF, we use NRCS SNOTEL data from the
Butte station located in the ERW to force the model. Peri-
ods of missing or poor-quality temperature data (a small per-
centage) are corrected using adjusted data from the Schofield
station or interpolated between neighboring values. To in-
fer precipitation, a three-part inference process is applied.
In the first step, SNOW-17 parameters are calibrated for the
Butte SNOTEL (380) site, including a precipitation under-
catch term using an error minimization algorithm. Next, the
OPG, ζ , α, and temperature lapse rate parameters are fitted to
the mean Airborne Snow Observatory snow water equivalent
(SWE) for water years 2018 and 2019. ASO produces 3 m
scale estimates of snow water equivalent by taking repeated
lidar observations of snow surfaces and modeling snow den-
sity using energy balance modeling. The spatial accuracy of
ASO snow depths are on the order of centimeters (Deems
et al., 2013). While ASO data present only a single snapshot
in time, the spatial resolution and accuracy are very high and
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thus contain unparalleled information about the spatial distri-
bution of orographic snowfall (Vögeli et al., 2016), while ac-
knowledging that other factors (avalanches, wind redistribu-
tion, and sublimation) also control the snowpack depth prior
to melt. The target ASO dates used are taken at our near-
peak snow accumulation (early spring), so we expect that
prior melt out is fairly minimal. Since we are using data av-
eraged in elevation bands, the wind redistribution effects are
also likely small.

In the second step, SNOW-17 is coupled with a bucket
hydrologic model, based on the FUSE hydrologic model
framework Clark et al. (2008). SNOW-17 provides rain and
snowmelt inputs to the hydrology model. The hydrologic
model also requires a potential evapotranspiration (PET)
forcing, which is computed using the Hamon formula (Ha-
mon W. R., 1961). The model structure used in this study is
the most similar to the VIC/PRMS forms described in Clark
et al. (2008). The structure was chosen for simplicity and
to have as few free parameters as possible. There are two
state variables of soil moisture in the top and bottom buckets
(SM1; SM2), with maximum capacities SMmax

1 and SMmax
2 .

The model flux equations are solved sequentially, and time
integration is performed with a basic forward Euler method,
using a daily time step. The model flux equations are de-
scribed in Table 2 and illustrated in Fig. 2. The evapotranspi-
ration (ET) also depends on the fraction of water held in ten-
sion storage in the top and bottom layers (SMT 1 and SMT 2),
which are simply given by SMT 1 = fracten ·SM. The sum-
mation of the bucket overflow (QBo), baseflow (QB), and di-
rect or overland flow (Qd) is convolved with a routing func-
tion kernel to produce a streamflow that can be compared
against USGS observations at the gauge site at the ERW out-
let (Fig. 1).

The posterior model parameters (θ ), conditioned on the
model structure and observed streamflow data (d), can be
expressed using Bayes’ rule P(θ |d)∝ P(d|θ)P(θ), where θ
is the vector of model parameters, and d is the data. Analyti-
cal expressions for the posterior are not possible, so Markov
chain Monte Carlo (MCMC) sampling methods are used,
specifically the DEMetropolis algorithm implemented in the
Python PyMC3 library (Salvatier et al., 2016). The model
likelihood function P(d|θ) is a log-likelihood error func-
tion. We further employ a heteroscedastic error model, which
states that the model residual is a normally distributed ran-
dom variable with a standard deviation (σt ) that grows lin-
early with discharge, following Henn et al. (2015) and Thyer
et al. (2009). The model is given by σt = a1Qt + b1, where
Qt is the observed discharge at time step t . The coefficients
of the error model are inferred along with model parame-
ters. PyMC3 allows for a number of options for sampling
from the posterior distribution. We found that a large num-
ber of samples (> 15 000) and multiple chains (or indepen-
dent posterior samplings) led to better sampler convergences,
as defined by the well-known Gelman–Rubin statistic imple-
mented in PyMC3 (Gelman and Rubin, 1992). Example trace

plots from the MCMC sampling are provided in the Supple-
ment.

Bayesian parameter inference is performed in two parts.
First, climatological or time-invariant parameters related to
the subsurface hydrologic structure (Table 3) are inferred us-
ing precipitation and temperature that have been tuned to
match ASO and SNOTEL observations. The assumption is
that these conditions represent good approximations of the
climatological behavior of the watershed. In the next step,
the new posteriors of the time-invariant parameters are set as
fixed, and meteorological parameters (Table 3) are inferred
against discharge independently for each year, providing pos-
terior likelihoods of precipitation that are conditioned on the
model structure and streamflow data for that year.

While the details of the inference method are numerous,
it is important to keep in mind the ultimate goal. We seek a
Bayesian estimate of basin mean precipitation, independent
of WRF and gridded precipitation products, that incorpo-
rates available high-quality hydrologic information to serve
as an additional constraint on precipitation. The code for per-
forming the analysis is posted publicly on GitHub (Rudisill,
2023a).

3 Results

3.1 Comparison against Liu et al. (2017)

First, to explore the fidelity of our WRF model configura-
tion, we make a comparison against WRF v3.4.1 data from
the Liu et al. (2017) 4 km dataset for water year 2013. This
regional climate run covers the entirety of the continen-
tal United States and uses ERA-Interim initial and bound-
ary conditions. Data are accessed from the National Cen-
ter for Atmospheric Research (NCAR) data archive (Ras-
mussen and Liu, 2017). We compute the percent differ-
ence between the Liu et al. (2017) dataset and this dataset
((
∑
PLiu−

∑
PRudisill)/

∑
PLiu · 100) and find that there is

generally good agreement between the datasets (Fig. 3). Our
WRF configuration produces less precipitation in the center
of the domain but more on the model boundaries, which is
likely related to nesting effects or more finely resolved ter-
rain in this dataset (1 km vs. 4 km). The average precipita-
tion for the entire domain is ultimately quite similar (563 mm
for this study versus 555 mm in Liu et al., 2017). This lends
confidence to the overall skill of this particular WRF con-
figuration and warrants further evaluation against other data
sources.

3.2 Seasonal precipitation accumulations compared
against SNOTEL

WRF precipitation from the 34-year period is compared
against corresponding SNOTEL grid cells shown in Fig. 4.
Comparing WRF precipitation against SNOTEL observa-
tions demonstrates that WRF captures important features of
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Table 2. Functional forms for bucket hydrologic model fluxes.

Fluxes Description Functional form

Q12 Percolation ku · (SM1/SMmax
1 )c

Qb Baseflow ks · (SM2/SMmax
2 )n

Bo Bucket overflow Qbo,i =MAX[0, (SMi −SMmax
i

)]

Qd Overland flow Qin ·Ac

Ac=MAX
[
0,1− (1−SM1/Smmax

1 )β
]

ET Evapotranspiration ET1 = PET · (MIN[SM1,SMT 1]/SMmax
T 1

ET2 = (PET−ET1) ·MIN
[
(SM2,SMT 2)/SMmax

T 2
]

Q Streamflow Qb+Bo+Qd

Table 3. Model parameter prior values and probability distribution used in the precipitation inference method. Ranges refer to the minimum or
maximum of the uniform distribution or the mean or standard deviation of a normal distribution. Note that OPG is the orographic precipitation
gradient.

Parameter Category Description Prior Range Relevant reference

SMmax
1 Subsurface Unsaturated zone max storage (mm) Fixed 400 Clark et al. (2008)

SMmax
2 Subsurface Saturated zone max storage (mm) Uniform 10–1000 Clark et al. (2008)

ks Subsurface Percolation rate (mmd−1) Uniform 5–200 Clark et al. (2008)
ku Subsurface Baseflow rate (mmd−1) Uniform 5–6000 Clark et al. (2008)
n Subsurface Baseflow exponent (unitless) Uniform 1–10 Clark et al. (2008)
β Subsurface Saturated area exponent (unitless) Uniform 0.001–3 Clark et al. (2008)
c Subsurface Percolation exponent (unitless) Normal 5, 0.1 Clark et al. (2008)
fracten Subsurface Field capacity fraction (unitless) Uniform 0.1–0.95 Clark et al. (2008)
τ Streamflow Routing time delay (days) Uniform 0.01, 3.5 Clark et al. (2008)
a1 Streamflow Error model coefficient Normal 0, 0.15 Thyer et al. (2009)
b1 Streamflow Error model coefficient Half-normal 0, 0.5 Thyer et al. (2009)
OPG Atmospheric Precipitation gradient (m−1) Uniform 0.0005–0.007 Kirchner et al. (2014), Henn et al. (2015)
m Atmospheric Precipitation error multiplier (unitless) Normal 0, 0.1 Henn et al. (2015)
ζ Atmospheric Eq. (2) (m) Uniform 3000–3800 –
α Atmospheric Eq. (2) (unitless) Normal 0.5–1.5 –
t lapse Atmospheric Temperature lapse rate (◦C) Uniform −2.0, 2.0 Oyler et al. (2015)

atmospheric water delivery throughout the region. The analy-
sis is divided into two rough categories, namely the cold sea-
son (October–March) and warm season (April–September),
which are intended to roughly demarcate winter stratiform
and summertime convective precipitation regimes. Analyz-
ing the monthly averages of integrated vapor transport and
500 hPa wind directions shows that wind and moisture over-
whelmingly come from the west during the cold season
(October–April) and from the WSW during the remainder of
the year (not shown). The percent errors in water year total
precipitation, expressed as

%Error=
∑
PWRF−

∑
PSNOTEL∑

PSNOTEL
· 100, (3)

are also examined. There is no immediately apparent trend
in the location of SNOTEL site with respect to elevation or
topography and error characteristics. The worst-performing
site is Brumley (369), located on the lee side of a moun-
tain ridge, where WRF overpredicts precipitation consis-
tently throughout the study period. Interestingly, sites lo-
cated only a few kilometers away on the windward side of

the range are well predicted. While the correlations are simi-
lar between seasons, the errors in precipitation accumulation
are not evenly distributed across the water year. During the
warm season, WRF is wetter than SNOTEL sites for 16 of
the 23 SNOTEL sites, with an average accumulated precipi-
tation percent bias of 10.4 %. The cold-season percent error
averaged across all years and SNOTEL locations is, remark-
ably, 0.264 % but with a 10.1 % standard deviation. Compar-
ing the 1-week rolling mean time series of WRF averaged
across all SNOTEL locations with the average SNOTEL pre-
cipitation shows good correlation (R2 of 0.85 and 0.88 for
the warm and cold-season, respectively). The relationship be-
tween the binning window (daily–monthly) and correlation
was also examined, and we found that correlations were low
at the daily increments but tended to flatten beyond averag-
ing window lengths greater than 3 to 4 d. There is no clear
relationship between elevation and precipitation error.
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Figure 3. Total accumulated model precipitation for water year 2013 from this study compared against data from the Liu et al. (2017) 4 km
CONUS WRF dataset.

Figure 4. Error characteristics of 24 SNOTEL sites compared against the corresponding WRF grid cells for 1987–2020. (a) The 1-week
rolling mean time series of average SNOTEL (orange) precipitation compared against WRF (blue). (b) Annual precipitation percent error
(SNOTEL as reference) for each site. (c) Average timing of water delivery (%) as a function of day of water year for WRF (blue) and
SNOTEL (orange). (d) Correlations between 1-week accumulated precipitation in WRF and SNOTEL for the warm season (bottom) and
cool season (top). (e) Average precipitation percent errors by season.

3.3 Regional comparison of WRF and gridded datasets

Three gridded precipitation datasets, namely the PRISM
(4 km or ∼ 1/25◦), Livneh (1/16◦), and Newman (1/8◦)
products, are compared in Fig. 5 for water years between
1987 and 2012, as this is the time frame for which all
data products are available. WRF is treated as the reference

dataset, and the difference and percent error between each
product are compared at the resolution of the coarsest prod-
uct. For ease of comparison, we also bilinearly interpolate
the curvilinear 1 km regular WRF grid onto a 0.01◦ regular
latitudinal and longitudinal grid. The differences in topogra-
phy between the high-resolution WRF grid and the coarsest
grid (0.125◦) are also shown. The comparison of the water-
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Figure 5. The top row shows the spatial averages of 1987–2011 annual precipitation for the WRF, PRISM, Newman, and Livneh datasets
for the entirety of the inner WRF model domain at each respective data resolution. Topography at WRF and the coarsest product resolution
are also shown (far left column; second and third rows). The difference and percent difference between each product and WRF are shown in
the second and third rows.

year-averaged precipitation (1987–2012) shows significant
differences between WRF and the gridded datasets, which
are on the order of plus or minus 25 % and up to 400 mm in
some regions. The differences among the gridded datasets are
smaller, in particular between PRISM and Livneh. In general,
WRF shows systematically less precipitation in the San Juan
Mountains, Front Range, and Elk Mountains but sometimes
more in the valleys and plateaus between ranges. PRISM
shows a noticeable region of enhanced precipitation in the
middle of the Elk Mountains (not far from the ERW) that is
not as pronounced in the other geostatistical products. The
differences between WRF and Newman are broadly similar
to the other products, though WRF shows more precipitation
in the southwestern corner of the domain around the San-
gre de Cristo Mountains, whereas the opposite is true when
compared against the other products. The mountain range is
narrow and not well captured by the coarse scale of the to-
pography at the 0.125◦ resolution.

Comparing precipitation as a function of terrain elevation
(Fig. 6) shows that WRF typically has less precipitation at the
highest elevations (greater than 3350 m) compared to PRISM
and that the two datasets disagree the most in regions that are
poorly sampled by SNOTEL locations (the SNOTEL max-
imum elevation is 3500 m). Livneh and Newman were also

examined as functions of height but were ultimately very
similar to the PRISM pattern and are not shown. PRISM has
a more skewed distribution at higher elevations in addition to
higher maxima than WRF. Both datasets show a clear rain-
shadowing effect between 2250–2400 m, corresponding with
the region to the east of the San Juan Mountains in the south-
eastern corner of the domain, although PRISM is drier than
WRF (Fig. 5).

3.4 ERW precipitation analysis and reconstruction

To better understand the patterns and processes at the wa-
tershed scale, we examine precipitation estimates across the
ERW. Unlike the regional comparisons, each product has
been bilinearly interpolated to the 1 km× 1 km WRF grid.
Figure 7 shows the clear effect of the resolution on the pre-
cipitation reconstruction in the ERW, as the Newman and
Livneh datasets have much coarser textures than the others
and do not reflect the underlying terrain very well. However,
the ERW mean precipitation between Livneh and Newman
is ultimately quite similar to PRISM, so consequently only
PRISM and WRF are compared subsequently. WRF shows
significantly less precipitation than any other product, partic-
ularly in the mid-1990s to early 2000s.
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Figure 6. Average annual precipitation versus elevation for WRF and PRISM for the entire WRF domain (a, b) and the ERW (c, d). Rolling
means (solid lines) are shown. For comparison, constant OPG lines from Eq. (1), using a starting value of 300 mm at 2500 m of elevation,
are also plotted.

In order to better investigate some of the spatial character-
istics of precipitation and relationships with terrain, we ex-
amine WRF and PRISM reconstructions for the warm and
cold seasons averaged between water years 1987 and 2020.
To do so, we define an enhancement factor for each grid cell,
which is simply each grid cell normalized by the watershed
mean value, as follows:

EFi,j =
Pi,j

P
, (4)

which is simply the ratio of the accumulated precipitation in
each grid cell i,j to the m by n points averaged across the
watershed.

Both datasets show that more precipitation accumulates
during the cold season on average. In many years, the moun-
tain slopes on the windward side (west; left of the figure) re-
ceive more precipitation in WRF relative to PRISM (Fig. 8),
despite having an overall lower precipitation. A two-sided
t test shows that the difference in the mean precipitation be-
tween the two different datasets is statistically significant for
the majority of the grid points, with the exception of a few
small regions.

WRF has a much higher enhancement factor on the wind-
ward east side compared to PRISM, which has a very high

enhancement factor and very high positive bias relative to
WRF in the northwest. There does appear to be a significant
downward shift in the PRISM basin mean precipitation in
the final decade of the simulation, the causes of which are
discussed in the next section. PRISM generally has a higher
precipitation–elevation gradient compared to WRF for both
the ERW and the entire WRF domain (Fig. 6). The averaged
elevation–precipitation relationship is most similar at low to
mid elevations and deviates most strongly at the highest ele-
vations.

Comparisons against Bayesian precipitation
reconstructions

In order to better understand some of the discrepancies be-
tween WRF and the gridded datasets, a Bayesian precipita-
tion inference method adapted from (Henn et al., 2015) is
adapted to examine basin mean precipitation in the ERW.
We analyze water years 1990–2020, as this is the time pe-
riod in which high-quality USGS observations are available.
Again, this method cannot isolate spatial precipitation pat-
terns (which are significant; Fig. 8); only the basin mean pre-
cipitation is isolated. This is nonetheless useful, as the dif-
ferences in the mean are large (∼ 150 mm). A three-part in-
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Figure 7. ERW annual precipitation by water year (1987–2020) for WRF and PRISM, Livneh, and Newman precipitation products.

ference process is applied. First, SNOW-17 parameters are
calibrated for the Butte SNOTEL (381; Fig. 1) site, includ-
ing a precipitation undercatch term using a standard (non-
Bayesian) error minimization algorithm (Pbias), as seen in
Eq. (1). Given the relatively short number of model years, we
choose to use the entire time series for calibration as opposed
to splitting into calibration and validation periods, which is
common but not always optimal in hydrologic contexts (Ar-
senault et al., 2018). Ad hoc splitting tests were performed,

and there was not much impact on the final calibrated val-
ues. After calibration, SNOW-17 can capture the dynamics
of snow accumulation and melt at the Butte SNOTEL site
very well (see the Supplement). Next, the orographic precip-
itation gradient (OPG), temperature lapse rates, and precip-
itation gradient cutoff terms are calibrated against 2 years
of Airborne Snow Observatory SWE products. The aver-
age ASO SWE from each elevation band is computed and
compared against SNOW-17 run in elevation bands with the
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Figure 8. Average cold season (October–April), warm season (April–October), and average annual precipitation in addition to the enhance-
ment factor (precipitation normalized by the ERW mean precipitation) for WRF and PRISM across the ERW. Gray dots indicate regions with
a difference that is statistically significant at the 95 % confidence level using a two-sided t test.

Figure 9. (a, b) The Airborne Snow Observatory (ASO) SWE maps over the ERW employed in this study. (c) Basin-averaged elevation
versus the average SWE for ASO and calibrated SNOW-17 at ASO flight dates. (d) Time series of calibrated SNOW-17 by elevation band
(n= 100).

updated precipitation and temperature inputs. Water years
2018 and 2019 are low- and high-precipitation years, re-
spectively, with approximately peak SWE values of greater
than 2000 mm in 2019 and approximately 1000 mm in 2018
(Fig. 9). This is fortuitous, as these years represent high and

low extremes and are thus good for bracketing the long-term
average behavior. Aggregating SWE with respect to elevation
bins shows a remarkably consistent increase in SWE with el-
evation, after which SWE values tend to decline. A similar
pattern is found in the Tuolumne River basin in California
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(Henn et al., 2016; Fig. 4). Tuning the OPG gradient slope
break (ζ ) and decrease rate (α) in Eq. (2) allows for the fitting
of the observed ASO SWE curves quite well. It is worth not-
ing that the precipitation reduction term ultimately represents
a small fraction of the total watershed area (less than 10 %).
The calibrated OPG parameter is ultimately close to the ini-
tial guess of 0.002 m−1. This guess happens to be very close
to the PRISM precipitation–terrain relationship (Fig. 6). The
temporal evolution of SWE in the corresponding elevation
bin also closely matches that of the SNOTEL site (Fig. 9c),
demonstrating that this simple model can still capture key
features of snow accumulation and ablation well.

Following the calibration of the SNOW-17 model param-
eters, the time-invariant subsurface and error model param-
eters are inferred using the Bayesian MCMC method from
1990—2020. The specific parameters are the subsurface pa-
rameters listed in Table 3. These parameters are related to
geomorphic features of the watershed (soil depth, hydraulic
conductivity, etc.) and are hypothesized to be largely un-
changing during the study period. Extensive testing of the
Bayesian inference approach found that sampler convergence
criteria were satisfactorily met after treating the unsaturated
zone maximum soil moisture storage as fixed. A value of
400 mm was chosen, reflecting approximately 1 m on aver-
age of sandy loam soil. The inference was performed with
different fixed values of soil water storage, and we found
there was ultimately little difference in the inferred values
of other parameters. The baseline model skill is high at this
stage, with an average root mean squared error of 0.65 mm
prior to inferring precipitation forcing errors, suggesting that
the model structure is a good approximation of the water-
shed dynamics. The MCMC trace plots and the prior and
posterior time-invariant model parameters are shown in the
Supplement.

After inferring the time-invariant subsurface model param-
eters, the meteorologic adjustment parameters are inferred on
an annual basis against streamflow, with the mean posterior
time-invariant subsurface model parameters inserted in the
model and treated as fixed. This includes the precipitation
error multipliers (m), OPG, OPG gradient slope break (ζ )
elevation, and sensor temperature bias (atmospheric param-
eters in Table 3). The convergence of the posterior sampling
for each case is evaluated using the Gelman–Rubin (Gelman
and Rubin, 1992) statistic.

Figure 10 shows the priors and posterior parameter dis-
tributions for each water year. Interestingly, there are 1 or
2 years, where the inferred temperature lapse rate is positive.
This is not completely nonphysical, as cold-air pools are very
common in this watershed, particularly in the winter. We can
now examine both the posterior model solutions for stream-
flow and the posterior probabilities of the basin mean pre-
cipitation for each year. A Gaussian kernel density estimate
with a bandwidth of 2 mm is used to sample the posterior
from each year and produce the plots in Fig. 11, showing the
comparison with the inferred, WRF, and PRISM basin mean

precipitation. There is considerable year-to-year variability
in the relationship between the three estimates, but in gen-
eral, the inference approach value lies in between the WRF
and PRISM estimates.

Averaged across all years, the Bayesian inference method
estimates 761 mm of precipitation, while WRF and PRISM
estimate 725 mm and 862 mm, respectively. Consequently,
WRF is slightly closer to the Bayesian inference reconstruc-
tion. For comparison, the average runoff from the ERW at
the gauge outlet is 370 mm, so all estimates have a reason-
able ratio of runoff to precipitation. The timing and magni-
tudes of the modeled streamflow compare well against the
observed streamflow, lending confidence to the appropriate-
ness of the model structure and parameter ranges (Fig. 12).
Averaged across all years, the precipitation error multiplier
has a mean close to 1, and OPG parameters are again close
to the initial guess of 0.002 m−1 (not shown). The poste-
rior solution model skill scores are high, indicating that the
model captures the relevant watershed functions well. The
entire discharge record has Kling–Gupta efficiencies (Gupta
et al., 2009) greater than 0.9 (with 1 being a perfect match)
and a root mean square difference (RMSD) of 0.524 mmd−1,
which is an improvement from before.

Further inspection of the data shows that the three esti-
mates (WRF, PRISM, and inferred) tend to become approxi-
mately more alike after water year 2010. This change in be-
havior is almost certainly due to the addition of the Upper
Taylor SNOTEL in water year 2010, immediately to the east
of the ERW (Fig. 1), as PRISM uses this data source. Of the
three SNOTEL sites closest to the ERW, Butte receives the
least precipitation, Schofield the most (almost twice that of
Butte), and Taylor typically receives a value in between the
two. This relationship is illustrated in Fig. 13. The PRISM
basin mean precipitation is a fairly constant +200 mm (stan-
dard deviation∼ 60 mm) relative to the precipitation received
at the Butte SNOTEL site, and the difference between the two
values is significantly reduced after water year 2010 with the
addition of the Upper Taylor site.

4 Discussion

4.1 Comparisons against other regional climate
reconstructions

Many other studies have evaluated WRF against SNOTEL
and gridded precipitation datasets for the Colorado Rockies,
though few have presented analyses for simulations span-
ning 3 decades. Rasmussen et al. (2011) report similar per-
formance metrics between SNOTEL stations and WRF for
a limited number of winter seasons. Jing et al. (2017) like-
wise found that wintertime precipitation accumulations com-
pared against a number of SNOTEL sites was less than 15 %,
using a 2 km WRF configuration with the North Ameri-
can Regional Reanalysis (NARR) boundary conditions. The
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.

Figure 10. Posterior and prior (blue dashed line) meteorological parameters inferred for each water year during 1990—2020. Each colored
line is an independent posterior parameter distribution for each year.

absolute biases and percent differences between WRF and
PRISM from this study are similar to both the Jing et al.
(2017) 2 km WRF and 4 km WRF results from Liu et al.
(2017), which are both presented in Fig. 7 found in Jing et al.
(2017). Similar performance against SNOTEL is also re-
ported in Gutmann et al. (2012), who examined winter-only
precipitation, using a 2 km WRF configuration and again us-
ing the NARR boundary conditions. The similarity of results
is interesting, since there are differences in resolutions, nest-
ing configurations, model code versions, boundary condi-
tions, microphysical schemes, and other options among all of
these models. It is generally recognized that RCM precipita-
tion is sensitive to parameterization options, which we do not
explicitly test here. However, Xu et al. (2023) performed sen-
sitivity analyses using the same physics options and bound-
ary conditions as those used in this study (called BSU-WRF
in their paper) and found that this configuration performed
better for simulating near-surface climate than several other
configurations for water year 2019 across the ERW and that
the choice of lateral boundary conditions (LBCs) was less
important than physics options for simulating meteorology
across the ERW.

Differences in error behavior between cold and warm
seasons can likely be attributed to precipitation generating
regimes. WRF has a lower weekly correlation with SNO-
TEL stations (lower R2 value) and higher percent errors.
Additional analysis shows that the warm season bias is re-

lated to an excessive number of wet days relative to SNO-
TEL during the warm season. Jing et al. (2017) likewise
found that the WRF skill decreased in April, which is con-
current with an increase in convective available potential en-
ergy in the atmosphere. Surface heating tends to increase
during the warmer months, leading to convective instabili-
ties and localized precipitation, when compared to more uni-
form stratiform precipitation during the winter (Dai, 2006).
At the same time, the nature of errors at the gauge locations
can depend on the phase of falling hydrometeors (rain ver-
sus snow), as snowflakes have slower fall speeds and are
more subject to undercatch during stronger winds (Goodi-
son et al., 1998; Harpold et al., 2017). It is even more in-
teresting that cold-season errors are lower than warm-season
errors, as the gauge errors are expected to be higher in the
cold season when more precipitation falls as snow. Some
studies have attempted to account for gauge undercatch at
SNOTEL sites using the co-located snow pillow SWE mea-
surements and wind observations, but these methods are not
employed here for the precipitation evaluation (Livneh et al.,
2013; Sun et al., 2019). However, an undercatch term (Pbias)
for the Butte SNOTEL was used in the precipitation infer-
ence method, but the value was small (< 1 mm), and only 2
out of the 30 years examined appeared to show snow wa-
ter equivalent values greater than the co-located accumulated
precipitation. The overestimation of the number of wet days
is well known in both regional and global climate model-

Geosci. Model Dev., 16, 6531–6552, 2023 https://doi.org/10.5194/gmd-16-6531-2023



W. Rudisill et al.: Evaluating 3 decades of precipitation in the Upper Colorado River basin 6545

Figure 11. ERW basin mean precipitation for water years between 1990 and 2020 from three different estimates. WRF, PRISM, and the
posterior probability distribution from the Bayesian MCMC inference method are shown. The widths of the PRISM and WRF bars are the
standard error for the respective mean.

ing (Maraun et al., 2010; Chen et al., 2021). However, it is
difficult to determine the extent of the potential drizzle bias,
given the relatively low resolution (daily; 2.54 mm) of SNO-
TEL gauges. The NRCS provides recent data with sub-daily
frequency but not for the entirety of the analysis period. Ad-
ditional comparisons with other high-resolution gauge data
may shed light on some of these questions. Additional exper-
iments may consider indirect data sources (soil moisture and
remote sensing) to better understand modeling drizzle days in
regions covered by SNOTEL, which account for ∼ 10 % of
annual WRF precipitation. Users of regional climate model
precipitation may consider performing bias correction by re-
moving low-precipitation days (Maraun et al., 2010).

4.2 Timescales and data non-stationarity

This study illustrates some of the challenges of multi-decadal
model evaluations and highlights the utility of using stream-
flow observations as additional long-term water balance in-
dicators. The WRF dataset covered 1987–2020, whereas the
Livneh and Newman datasets were only compared up until
2012 because of data coverage. Moreover, only 14 of the 23
regionally relevant SNOTEL sites existed for the entire data
period. Streamflow, on the other hand, can often have much
longer records (Tillman et al., 2022). This study demon-
strates that streamflow can be a useful data point for eval-
uating precipitation budgets, given that comparisons of grid-
ded precipitation datasets are imperfect. This might be par-
ticularly true for data-poor regions, where there are not as
many high-elevation precipitation measurements, and glob-
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Figure 12. Observed streamflow compared against posterior model solutions of streamflow. The shaded region shows the 75 % model
confidence intervals. Example water years are plotted on top to highlight details in the simulated hydrographs. The right panel shows the
daily correlation between model and observed streamflow.

Figure 13. ERW annual mean PRISM mean precipitation compared
to the three closest SNOTEL sites, namely Schofield (737; north of
ERW), Upper Taylor (1141; east of ERW), and Butte (381; within
ERW). The pre- or post-2010 mean differences between the Butte
and PRISM east mean are plotted with standard errors.

ally spanning datasets, such as WorldClim (Fick and Hij-
mans, 2017) or other globally spanning products (Araghi et
al., 2021), are likely subject to greater uncertainties. The step
change in the PRISM basin mean precipitation after approx-
imately water year 2010 (Fig. 13) underscores the fact that
caution must be taken when analyzing precipitation trends
from gridded datasets, as the inclusion of different stations
can induce spurious trends. For instance, the annual ERW
mean precipitation from PRISM from 1987–2020 shows a
negative trend with p= 0.06 and R2

= 0.33, which likely re-
flects the addition of the Taylor SNOTEL site. The fact that
PRISM more closely matches the WRF and inferred precipi-
tation data (two independent estimates) in the last decade, af-
ter the addition of a nearby gauge, lends more confidence to
the WRF-modeled precipitation in the early parts of the sim-
ulation. A similar conclusion was also reached in Gutmann
et al. (2012). That being said, WRF still typically under-
estimates precipitation at the Schofield SNOTEL site (737;

Fig. 4), so the low bias may carry over to adjacent regions
within ERW. Moreover, the LBC conditions change from
the CFSR (Saha et al., 2010) to the CFSv2 analysis (Saha
et al., 2014) after 2011. Regional climate models are ulti-
mately dependent on the boundary conditions (Goergen and
Kollet, 2021), so changes in data assimilation and reanalyses
methodologies likely influence the character of the boundary
conditions and the results. The quality and quantity of data
assimilation greatly increases during the late 1990s and early
2000s (Saha et al., 2010), in addition to there being model
structural changes between data products. It is possible that
this is the reason that the WRF precipitation tends to transi-
tion from low biased to high biased when evaluated against
SNOTEL during the late 2000s.

4.3 Interpreting Bayesian precipitation reconstructions

Combining snow remote sensing, streamflow observations,
and parsimonious hydrologic models in a Bayesian frame-
work allows for creating novel constraints on watershed av-
erage precipitation that leverage both the high spatial resolu-
tion of ASO snow data and long records of streamflow. Henn
et al. (2016) likewise used ASO data in a joint-inference
method in the Tuolumne River watershed and found that do-
ing so reduced the dependence of inferred precipitation on
hydrologic model structure, when compared with inferring
precipitation from streamflow alone. That being said, uncer-
tainties in soil parameters, PET forcing, and water limitation
relationships in the PET–ET relationships do limit the con-
clusions drawn from the precipitation inference approach. ET
is directly related to inferred precipitation by the hydrologic
mass budget equation, Q= P −ET− dS

dt , so holding Q and
dS
dt constant implies that higher annual inferred precipitation
requires higher annual ET. During the long-term hydrologic
parameter inference, the parameter determining soil moisture
held in tension (fracten) consistently converged towards the
limit of 1 (a lower-ET solution). Additional sensitivity exper-
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iments show that higher-ET solutions (lower fracten) tended
to smooth spring and early summer streamflow peaks ex-
cessively when compared to observations, suggesting some
confidence in the ET solution. For these reasons, it is also
unlikely that a PET forcing parameterization has significant
impact on the overall water budgeting, as the soil moisture
availability term also has a significant impact on actual ET.

Observations and independent modeling studies shed
some light on the question of basin-wide ET. Ryken et al.
(2021) reported 450–550 mmyr1 of ET, which is interpreted
as being an upper limit of the basin-wide ET, as the ob-
servations were located in a well-watered riparian corri-
dor. Carroll et al. (2019) estimated the ET for a high-
elevation sub-watershed of the upper ERW as being over
623± 50 mmyr1, and Tran et al. (2019) found ET values
between 431 and 624 mmyr1 for the same watershed ex-
tent as in this study. This is closer to, but still higher than,
the average of 388± 50 mm that is found from the inference
method presented here. However, the Tran et al. (2019) study
used PRISM precipitation input, and a different precipitation
dataset (such as WRF) may produce a different result, as ET
depends on the antecedent precipitation.

Another major assumption is that parameters in the pre-
cipitation distribution functions are constant for each season.
Future efforts could consider inferring precipitation error pa-
rameters for individual storm events, such as in Le Moine
et al. (2015) and Koskela et al. (2012). Moreover, while this
study demonstrated that airborne snow lidar products can be
incorporated into a Bayesian inference strategy to evaluate
orographic precipitation, the potential applications are vast.
This study only used one-dimensional SWE versus elevation
information as part of the Bayesian inference framework to
calibrate the climatological OPG parameter in Eq. (2.3). A
cursory analysis shows that the patterns of SWE from the
ASO data (Fig. 9a) are very similar to the relative precipi-
tation enhancement from WRF, where the largest values of
precipitation or snow are on the windward (western) ridge
the watershed. This region also happens to generally be the
furthest from observations, so ASO provides a very unique
window into the spatial water budgets of this region and sup-
ports the precipitation enhancement shape that is modeled
by WRF. This study only used the Bayesian inference ap-
proach for the ERW, but similar methods could be applied
to all headwaters basins in the domain without significant
anthropogenic disturbances. Modern software packages such
as PyMC3 (Salvatier et al., 2016) are well developed infras-
tructures that make implementing MCMC calculations sig-
nificantly easier than ad hoc approaches.

5 Summary and conclusions

This study examined 34 years of precipitation from a
high-resolution (1 km× 1 km) regional climate model (WRF
v3.8.1). The precipitation is compared against the infor-

mation in the Liu et al. (2017) dataset, SNOTEL observa-
tions, three different precipitation products (PRISM, Livneh,
and Newman), and basin mean precipitation inferred from a
Bayesian inference method that uses streamflow and high-
resolution snow lidar remote-sensing data (Painter et al.,
2016). The primary goal is to better characterize precipita-
tion biases and error characteristics from this regional cli-
mate model simulation, while acknowledging that gridded
precipitation estimates are models themselves and subject to
large uncertainties. We showed the following:

– WRF has an average of 0.246 % bias (s= 13.63 %)
during the cold season and an average of 10.37 %
(s= 12.79 %) bias during the warm season when aver-
aged across 24 SNOTEL stations, suggesting that cold-
season precipitation is better predicted, despite being
more difficult to accurately observe due to undercatch
effects.

– PRISM, Livneh, and Newman show generally similar
patterns and disagree with WRF (on the order of± 20 %
per year). The largest disagreements are at the highest
elevations above the SNOTEL measurement network el-
evation.

– WRF is slightly closer to a Bayesian reconstruction
of basin mean precipitation than the PRISM estimate.
Combining multiple sources of hydrologic information
in a Bayesian framework proves to be a useful data point
for model evaluation.

– WRF shows a spatial pattern of precipitation enhance-
ment in the ERW that more closely matches pat-
terns found in high-resolution snow remote-sensing data
(ASO) compared to that of PRISM.

– Some geostatistical, grid-based products are influenced
by the change in the spatial density of gauges over time
and should be treated with care for long-term model
evaluations.

Many of the insights about the uncertainties in mountain pre-
cipitation have been made in other studies (Lundquist et al.,
2019; Henn et al., 2018; Daly et al., 2008). While they serve
a clear purpose for model development, the limitations of
gridded precipitation data in mountain terrain should be care-
fully considered, particularly when high-resolution modeling
strategies (enhanced parameterizations, fine-scale grid spac-
ings, etc.) are employed. Using high-quality, non-traditional
hydrologic indicators (such as snow remote sensing) should
be a priority for regional climate simulation development.

Code and data availability. The codes for performing the analysis,
Bayesian reconstruction and hydrologic bucket model, and creating
the figures are publicly available on GitHub (Rudisill, 2023a). The
authors developed a Python wrapper for running the WRF model on
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high-performance computing (HPC) systems for this project, which
is available from https://doi.org/10.5281/zenodo.10058594 (Rudis-
ill, 2023b).

A subset of the WRF RCM dataset covering the ERW
is available on the Environmental System Science Data In-
frastructure for a Virtual Ecosystem (ESS-DIVE) repository
(https://doi.org/10.15485/1845448, Rudisill et al., 2022). We are
working on making the entire WRF dataset publicly available, and
researchers are encouraged to reach out to the corresponding au-
thor about data availability. USGS streamflow data were down-
loaded from the package at https://doi.org/10.5066/P9X4L3GE
(DeCicco et al., 2023). NRCS SNOTEL data were down-
loaded from https://doi.org/10.5281/zenodo.8045105 (Rudisill,
2023c). Livneh precipitation data are available from https://
psl.noaa.gov/data/gridded/data.livneh.html (NOAA Physical Sci-
ences Laboratory, 2021). Newman data are available from
https://doi.org/10.5065/D6TH8JR2 (Climate Data Gateway at
NCAR, 2018). PRISM data are available from https://prism.
oregonstate.edu/ (PRISM Climate Group, 2021). ASO data were
downloaded from the National Snow and Ice Data center at
https://doi.org/10.5067/STOT5I0U1WVI (Painter, 2018). CFSR
and CFSv2 were downloaded from https://www.ncei.noaa.gov/
thredds/catalog.html (last access: 31 October 2023; Saha et al.,
2010, 2014).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-6531-2023-supplement.
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nault, K., Grubišić, V., Thompson, G., and Gutmann, E.: High-
Resolution Coupled Climate Runoff Simulations of Seasonal
Snowfall over Colorado: A Process Study of Current and Warmer
Climate, J. Climate, 24, 3015–3048, 2011.

Rasmussen, R. M., Bernstein, B. C., Murakami, M., Stossmeister,
G., Reisner, J., and Stankov, B.: The 1990 Valentine’s Day Arctic
Outbreak. Part I: Mesoscale and Microscale Structure and Evolu-
tion of a Colorado Front Range Shallow Upslope Cloud, J. Appl.
Meteorol. Clim., 34, 1481–1511, 1995.

Rudisill, W.: bsu-wrudisill/precipitation_inference_publish:
pre-release, Zenodo [data set],
https://doi.org/10.5281/zenodo.7702749, 2023a.

Rudisill, W.: bsu-wrudisill/WRF-Run: first release pt 2 (v.0.1), Zen-
odo [code], https://doi.org/10.5281/zenodo.10058594, 2023b.

Rudisill, W.: bsu-wrudisill/NRCSSnotel-Downloader:
1st Release (v1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.8045105, 2023c.

Rudisill, W., Vincent, A., Nash, C., and Flores, A.: Dynamically
Downscaled (WRF) 1 km, Hourly Meteorological Conditions
1987–2020. East/Taylor Watersheds. Science Area 1: Standard
Award: Model-Data Fusion to Examine Multiscale Dynamical
Controls on Snow Cover and Critical Zone Moisture Inputs, ESS-
DIVE repository [data set], https://doi.org/10.15485/1845448,
2022.

Ryken, A., Gochis, D., and Maxwell, R. M.: Unraveling ground-
water contributions to evapotranspiration and constraining water
fluxes in a high-elevation catchment, Hydrol. Process., e14449,
https://doi.org/10.1002/hyp.14449, 2021.

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes,
D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-
Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist,
D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei,
H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang,
W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W.,
Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds,
R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Fore-
cast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058,
2010.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M.,

Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q.,
Wang, W., Chen, M., and Becker, E.: The NCEP Climate Fore-
cast System Version 2, J. Climate, 27, 2185–2208, 2014.

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.: Probabilistic pro-
gramming in Python using PyMC3, PeerJ Comput. Sci., 2, e55,
https://doi.org/10.7717/peerj-cs.55, 2016.

Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A.,
and Pulwarty, R. S.: Characteristics of the western United States
snowpack from snowpack telemetry (SNOTEL) data, Water Re-
sour. Res., 35, 2145–2160, 1999.

Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning,
L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones,
A. D., Collins, W. D., and Kaatz, L.: A low-to-no snow future
and its impacts on water resources in the western United States,
Nature Reviews Earth & Environment, 2, 800–819, 2021.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.:
G.: A description of the Advanced Research WRF version 3, in:
NCAR Tech. Note NCAR/TN-475+STR, National Center for At-
mospheric Research; Boulder, Colorado, USA, 2008.

Sun, N., Yan, H., Wigmosta, M. S., Leung, L. R., Skaggs, R., and
Hou, Z.: Regional snow parameters estimation for large-domain
hydrological applications in the western United States, J. Geo-
phys. Res., 124, 5296–5313, 2019.

Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Ex-
plicit Forecasts of Winter Precipitation Using an Improved Bulk
Microphysics Scheme. Part II: Implementation of a New Snow
Parameterization, Mon. Weather Rev., 136, 5095–5115, 2008.

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., De-
varakonda, R., Vose, R. S., and Cook, R. B.: Daymet: daily sur-
face weather data on a 1-km grid for North America, version 3.
ORNL DAAC, Oak Ridge, Tennessee, USA, in: USDA-NASS,
2019. 2017 Census of Agriculture, Summary and State Data,
Geographic Area Series, Part 51, AC-17-A-51, ORNL DAAC,
Oak Ridge, Tennessee, USA, https://daac.ornl.gov (last access:
31 October 2023), 2016.

Thyer, M., Renard, B., Kavetski, D., Kuczera, G., Franks, S. W., and
Srikanthan, S.: Critical evaluation of parameter consistency and
predictive uncertainty in hydrological modeling: A case study
using Bayesian total error analysis, Water Resour. Res., 45, 22,
https://doi.org/10.1029/2008WR006825, 2009.

Tillman, F. D., Day, N. K., Miller, M. P., Miller, O. L., Rum-
sey, C. A., Wise, D. R., Longley, P. C., and McDonnell, M. C.:
A Review of Current Capabilities and Science Gaps in Water
Supply Data, Modeling, and Trends for Water Availability As-
sessments in the Upper Colorado River Basin, Water, 14, 3813,
https://doi.org/10.3390/w14233813, 022.

Tran, A. P., Rungee, J., Faybishenko, B., Dafflon, B., and Hubbard,
S. S.: Assessment of Spatiotemporal Variability of Evapotranspi-
ration and Its Governing Factors in a Mountainous Watershed,
Water, 11, 243, https://doi.org/10.3390/w11020243, 2019.

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.:
The Changing Character of Precipitation, B. Am. Meteorol. Soc.,
84, 1205–1218, 2003.

Udall, B. and Overpeck, J.: The twenty-first century Colorado River
hot drought and implications for the future, Water Resour. Res.,
53, 2404–2418, 2017.

Valery, A., Andréassian, V., and Perrin, C.: Inverting the hydrologi-
cal cycle: when streamflow measurements help assess altitudinal

https://doi.org/10.5194/gmd-16-6531-2023 Geosci. Model Dev., 16, 6531–6552, 2023

https://prism.oregonstate.edu
https://prism.oregonstate.edu
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.5065/D6V40SXP
https://doi.org/10.5281/zenodo.7702749
https://doi.org/10.5281/zenodo.10058594
https://doi.org/10.5281/zenodo.8045105
https://doi.org/10.15485/1845448
https://doi.org/10.1002/hyp.14449
https://doi.org/10.7717/peerj-cs.55
https://daac.ornl.gov
https://doi.org/10.1029/2008WR006825
https://doi.org/10.3390/w14233813
https://doi.org/10.3390/w11020243


6552 W. Rudisill et al.: Evaluating 3 decades of precipitation in the Upper Colorado River basin

precipitation gradients in mountain areas, IAHS Publishing. Lo-
cation: Wallingford, Oxfordshire, UK, https://iahs.info/uploads/
dms/14842.41-281-286-333-28-3967--VALERY-Corr.pdf, last
access: 2021-4-20, 2009.

Vögeli, C., Lehning, M., Wever, N., and Bavay, M.: Scaling Pre-
cipitation Input to Spatially Distributed Hydrological Models
by Measured Snow Distribution, Front Earth Sci. Chin., 4, 108,
https://doi.org/10.3389/feart.2016.00108, 2016.

Weisman, M. L., Skamarock, W. C., and Klemp, J. B.: The Reso-
lution Dependence of Explicitly Modeled Convective Systems,
Mon. Weather Rev., 125, 527–548, 1997.

Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J., and
Lundquist, J. D.: Characterizing biases in mountain snow accu-
mulation from global data sets, Water Resour. Res., 55, 9873–
9891, 2019.

Xu, Z., Siirila-Woodburn, E. R., Rhoades, A. M., and Feldman,
D.: Sensitivities of subgrid-scale physics schemes, meteorolog-
ical forcing, and topographic radiation in atmosphere-through-
bedrock integrated process models: a case study in the Upper
Colorado River basin, Hydrol. Earth Syst. Sci., 27, 1771–1789,
https://doi.org/10.5194/hess-27-1771-2023, 2023.

Geosci. Model Dev., 16, 6531–6552, 2023 https://doi.org/10.5194/gmd-16-6531-2023

https://iahs.info/uploads/dms/14842.41-281-286-333-28-3967--VALERY-Corr.pdf
https://iahs.info/uploads/dms/14842.41-281-286-333-28-3967--VALERY-Corr.pdf
https://doi.org/10.3389/feart.2016.00108
https://doi.org/10.5194/hess-27-1771-2023

	Abstract
	Introduction
	Datasets and methods
	WRF model domain and configuration
	Comparison precipitation datasets
	Bayesian reconstructions of ERW mean precipitation from streamflow

	Results
	Comparison against Liu2017-of
	Seasonal precipitation accumulations compared against SNOTEL
	Regional comparison of WRF and gridded datasets
	ERW precipitation analysis and reconstruction

	Discussion
	Comparisons against other regional climate reconstructions
	Timescales and data non-stationarity
	Interpreting Bayesian precipitation reconstructions

	Summary and conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

