Articles | Volume 16, issue 21
https://doi.org/10.5194/gmd-16-6413-2023
https://doi.org/10.5194/gmd-16-6413-2023
Model evaluation paper
 | 
10 Nov 2023
Model evaluation paper |  | 10 Nov 2023

Implementation of a satellite-based tool for the quantification of CH4 emissions over Europe (AUMIA v1.0) – Part 1: forward modelling evaluation against near-surface and satellite data

Angel Liduvino Vara-Vela, Christoffer Karoff, Noelia Rojas Benavente, and Janaina P. Nascimento

Related authors

Monitoring and modeling seasonally varying anthropogenic and biogenic CO2 over a large tropical metropolitan area
Rafaela Cruz Alves Alberti, Thomas Lauvaux, Angel Liduvino Vara-Vela, Ricard Segura Barrero, Christoffer Karoff, Maria de Fátima Andrade, Márcia Talita Amorim Marques, Noelia Rojas Benavente, Osvaldo Machado Rodrigues Cabral, Humberto Ribeiro da Rocha, and Rita Yuri Ynoue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3060,https://doi.org/10.5194/egusphere-2024-3060, 2024
Short summary
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024,https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Decline in Etesian winds after large volcanic eruptions in the last millennium
Stergios Misios, Ioannis Logothetis, Mads F. Knudsen, Christoffer Karoff, Vassilis Amiridis, and Kleareti Tourpali
Weather Clim. Dynam., 3, 811–823, https://doi.org/10.5194/wcd-3-811-2022,https://doi.org/10.5194/wcd-3-811-2022, 2022
Short summary

Related subject area

Atmospheric sciences
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary

Cited articles

Ahmadov, R., Gerbig, C., Kretschmer, R., Koerner, S., Neininger, B., Dolmann, A. J., and Sarat, C.: Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model, J. Geophys. Res., 112, D22107, https://doi.org/10.1029/2007JD008552, 2007. 
Al-Saadi, J., Soja, A. B., Pierce, R. B., Szykman, J. J., Wiedinmyer, C., Emmons, L. K., Kondragunta, S., Zhang, X., Kittaka, C., Schaack, T., and Bowman, K. W.: Intercomparison of near-real-time biomass burning emissions estimates constrained by satellite fire data, J. Appl. Remote Sens., 2, 021504, https://doi.org/10.1117/1.2948785, 2008. 
Atmospheric Chemistry Observations and Modeling Lab of NCAR: WRF-Chem Tools for the Community, https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community (last access: 28 April 2022), 2022. 
Basu, S., Lan, X., Dlugokencky, E., Michel, S., Schwietzke, S., Miller, J. B., Bruhwiler, L., Oh, Y., Tans, P. P., Apadula, F., Gatti, L. V., Jordan, A., Necki, J., Sasakawa, M., Morimoto, S., Di Iorio, T., Lee, H., Arduini, J., and Manca, G.: Estimating emissions of methane consistent with atmospheric measurements of methane and δ13C of methane, Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, 2022. 
Beck, V.: Determination of the methane budget of the Amazon region utilizing airborne methane observations in combination with atmospheric transport and vegetation modeling, Technical Report No. 29, Ph.D dissertation, Max Planck Institute for Biogeochemistry, Jena, Germany, ISSN 1615-7400, 2012. 
Download
Short summary
A 1-year simulation of atmospheric CH4 over Europe is performed and evaluated against observations based on the TROPOspheric Monitoring Instrument (TROPOMI). A good general model–observation agreement is found, with discrepancies reaching their minimum and maximum values during the summer peak season and winter months, respectively. A huge and under-explored potential for CH4 inverse modeling using improved TROPOMI XCH4 data sets in large-scale applications is identified.