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Abstract. Methane is the second-most important greenhouse
gas after carbon dioxide and accounts for around 10 % of to-
tal European Union greenhouse gas emissions. Given that the
atmospheric methane budget over a region depends on its ter-
restrial and aquatic methane sources, inverse modelling tech-
niques appear as powerful tools for identifying critical areas
that can later be submitted to emission mitigation strategies.
In this regard, an inverse modelling system of methane emis-
sions for Europe is being implemented based on the Weather
Research and Forecasting (WRF) model: the Aarhus Uni-
versity Methane Inversion Algorithm (AUMIA) v1.0. The
forward modelling component of AUMIA consists of the
WRF model coupled to a multipurpose global database of
methane anthropogenic emissions. To assure transport con-
sistency during the inversion process, the backward mod-
elling component will be based on the WRF model coupled
to a Lagrangian particle dispersion module. A description
of the modelling tools, input data sets, and 1-year forward
modelling evaluation from 1 April 2018 to 31 March 2019
is provided in this paper. The a posteriori methane emission
estimates, including a more focused inverse modelling for
Denmark, will be provided in a second paper. A good gen-
eral agreement is found between the modelling results and
observations based on the TROPOspheric Monitoring Instru-
ment (TROPOMI) onboard the Sentinel-5 Precursor satel-

lite. Model–observation discrepancies for the summer peak
season are in line with previous studies conducted over ur-
ban areas in central Europe, with relative differences be-
tween simulated concentrations and observational data in
this study ranging from 1 % to 2 %. Domain-wide corre-
lation coefficients and root-mean-square errors for summer
months ranged from 0.4 to 0.5 and from 27 to 30 ppb, re-
spectively. On the other hand, model–observation discrep-
ancies for winter months show a significant overestimation
of anthropogenic emissions over the study region, with rel-
ative differences ranging from 2 % to 3 %. Domain-wide
correlation coefficients and root-mean-square errors in this
case ranged from 0.1 to 0.4 and from 33 to 50 ppb, respec-
tively, indicating that a more refined inverse analysis assess-
ment will be required for this season. According to mod-
elling results, the methane enhancement above the back-
ground concentrations came almost entirely from anthro-
pogenic sources; however, these sources contributed with
only up to 2 % to the methane total-column concentration.
Contributions from natural sources (wetlands and termites)
and biomass burning were not relevant during the study pe-
riod. The results found in this study contribute with a new
model evaluation of methane concentrations over Europe and
demonstrate a huge potential for methane inverse modelling
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using improved TROPOMI products in large-scale applica-
tions.

1 Introduction

Atmospheric methane (CH4) has more than doubled since
the pre-industrial era (Meinshausen et al., 2017). Although
it remains in the atmosphere for a relatively short period of
time (∼ 10 years) compared to carbon dioxide (centuries to
millennia), its constant emission all over the world makes it
a well-mixed greenhouse gas (IPCC, 2021). CH4 concentra-
tions have a direct influence on the climate but also have a
number of indirect effects on human health and vegetation,
including crop production (Mar et al., 2022). After decades
of steady growth, even reaching a growth rate of approxi-
mately zero from 2000 to 2006, the atmospheric CH4 has
returned to values observed in the second half of the twen-
tieth century, and in recent years it has increased at a faster
rate (Rigby et al., 2008; Nisbet et al., 2016; Palmer et al.,
2021). According to Van Dingenen et al. (2018), if unabated,
the global anthropogenic CH4 emissions could increase up to
100 % by 2050, thus leading to a general situation in which
ozone-related premature mortality and crop damage events
linked to CH4 emissions would be more frequent. In the Eu-
ropean Union (EU), 53 % of anthropogenic CH4 emissions
come from agriculture, 26 % from waste, and 19 % from en-
ergy, with these sectors accounting for up to 95 % of CH4
emissions associated with human activity worldwide (Eu-
ropean Commission, 2020). Improving the quality of CH4
emissions data for these concerned key sectors in the EU
inventory has been mandatory in recent years (EEA, 2022),
with the implementation of emissions monitoring technolo-
gies, including satellite missions such as the TROPOspheric
Monitoring Instrument (TROPOMI) onboard the Sentinel-5
Precursor satellite. In addition, some major initiatives involv-
ing the use of atmospheric inverse modelling at the global
scale, with emphasis given to greenhouse gases that have
large anthropogenic sources, have been implemented in order
to respond to an identified demand from the climate commu-
nity at large (Bergamaschi et al., 2018).

Prior to an inverse analysis as such, a robust evaluation
using chemical transport models and satellite observations
is usually performed to identify and quantify deficiencies in
the CH4 emission model. Such comparative studies have fo-
cused mostly on CH4 column-averaged dry air mole frac-
tions (hereafter referred to as XCH4 concentrations) from
the SCanning Imaging Absorption spectroMeter for Atmo-
spheric ChartographY (SCIAMACHY), Thermal And Near-
infrared Sensor for carbon Observation (TANSO), and In-
frared Atmospheric Sounding Interferometer (IASI) instru-
ments onboard the Environmental Satellite (EnviSat), Green-
house gases Observing SATellite (GOSAT), and Meteorolog-
ical Operational (Metop-A, Metop-B, and Metop-C) satel-

lites, respectively. However, since it was made publicly avail-
able to the community in April 2018, TROPOMI XCH4 data
have been exploited in numerous studies not only for vali-
dation purposes (e.g. Zhao et al., 2019, 2022; Callewaert et
al., 2022) but mainly to optimize emission estimates (e.g.
Varon et al., 2022; Chen et al., 2022). TANSO and IASI
provide more mature but sparser XCH4 concentrations than
TROPOMI and, together with TROPOMI, are the only three
satellite instruments that have remained operational since
they were launched in 2009, 2012 (Metop-B), and 2017, re-
spectively. Qu et al. (2021), in a 1-year global validation of
TROPOMI and TANSO XCH4 retrievals with Total Carbon
Column Observing Network (TCCON) CH4 total-column
measurements, have shown larger biases with TROPOMI in
some regions of the world. Nevertheless, with further im-
provements in the retrieval algorithms, such as those imple-
mented by Lorente et al. (2021) to correct systematic biases
in low- and high-albedo regions, TROPOMI high observa-
tion density and resolution will likely improve forward mod-
elling evaluation and inversion results (Hu et al., 2018; Jacob
et al., 2022).

In addition to a chemical transport model to relate emis-
sions to satellite observations, Bayesian inversion techniques
require a cost function to fit the satellite observations to
the model predictions and a priori estimates of emissions to
regularize the solution where the observations provide in-
sufficient information (Brasseur and Jacob, 2017). Inverse
modelling studies of CH4 emissions available for Europe
have been mostly performed at a global scale and based on
TANSO observations (e.g. Tsuruta et al., 2017; Segers et al.,
2020), with just a few based on TROPOMI such as the Inte-
grated Methane Inversion (IMI) v1.0, a cloud-based facility
developed to support a growing demand for tools to infer re-
gional CH4 emissions (Varon et al., 2022). IMI v1.0 exploits
the GEOS-Chem chemical transport model and its nested ca-
pability to simulate CH4 concentrations over inversion do-
mains at 0.25◦× 0.3125◦ resolution, with dynamic bound-
ary conditions from a global archive of smoothed TROPOMI
data. In 2014, the EU’s Earth Observation Programme im-
plemented the Copernicus Atmosphere Monitoring Service
(CAMS) for developing information services based on en-
vironmental monitoring satellites. CAMS global inversion-
optimized CH4 fluxes are constrained based on TANSO mea-
surements and are available for the period 1990–2020 at a
2◦× 3◦ resolution (Segers et al., 2020). Inverse modelling
studies using in situ (e.g. Bergamaschi et al., 2018) and
ground-based total-column (e.g. Wunch et al., 2019) mea-
surements instead of satellite observations have also been
conducted – depending on the European region, inversions
yielded higher/lower CH4 emissions with regard to the Emis-
sions Database for Global Atmospheric Research (EDGAR)-
based a priori emission estimates. A review of the global CH4
budget by Saunois et al. (2020) found significant discrepan-
cies between CH4 emission estimates using bottom–up and
top–down approaches, with most of the discrepancies being
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attributed to uncertainties in natural sources. Recent inverse
modelling studies combining CH4 concentrations with iso-
topic signature of CH4 (δ13C-CH4) attribute roughly 85 %
of the post-2006 growth in atmospheric CH4 to microbial
sources, with about 50 % coming from the tropics (Basu et
al., 2022).

A few studies have combined model simulations with
satellite observations to characterize CH4 concentrations
over Europe. Hence, this study aims to evaluate recent im-
provements to atmospheric modelling tools and satellite
measurements made by the atmospheric modelling commu-
nity. This is the first in a series of two papers that aim to
implement an inversion system of CH4 emissions for Eu-
rope based on the next-generation TROPOMI XCH4 mea-
surements: the Aarhus University Methane Inversion Algo-
rithm (AUMIA) v1.0. Here, we evaluate XCH4 concentra-
tions derived from the AUMIA forward modelling compo-
nent coupled to a multipurpose global database of CH4 an-
thropogenic emissions against the Netherlands Institute for
Space Research (SRON) S5P-RemoTeC XCH4 product ver-
sion 17. This is a new scientific TROPOMI XCH4 product
that presents substantial improvements in relation to the op-
erational product. Several 2-week periods in 2018 and 2019
were carefully selected for model sensitivity tests. Then, a 1-
year simulation period from 1 April 2018 to 31 March 2019
was performed for model validation. In addition, simulated
CH4 concentrations have been compared to near-surface ob-
servations from the Integrated Carbon Observation System
(ICOS) network. In the second part of this work, we will pro-
vide a posteriori CH4 emission estimates based on the WRF
model coupled to a Lagrangian particle dispersion module
which is currently under development. Model evaluation and
inverse modelling of CH4 emissions for Denmark will also
be provided. The paper is arranged as follows. In Sect. 2,
the CH4 observations and modelling tools, including a de-
scription of the experimental design, are introduced. Next, in
Sect. 3, the forward modelling performance is evaluated by
comparing the model results against near-surface and total-
column observations. Section 4 will discuss the contributions
of anthropogenic sources to the XCH4 concentration. Finally,
a summary and concluding remarks are given in Sect. 5.

2 Data and methods

2.1 WRF-GHG model

The core component of AUMIA v1.0 is the Weather Re-
search and Forecasting (WRF) model (Skamarock et al.,
2021). WRF is a fully compressible, non-hydrostatic model
supported by the National Center for Atmospheric Research
(NCAR) for a worldwide community of users. Due to its ro-
bustness and versatility, WRF has been widely used for oper-
ational forecasts and research related to severe weather and
air pollution (e.g. Vara-Vela et al., 2021), the latter through

the use of its chemistry extension, the WRF-Chem model
(Grell et al., 2005). The WRF Greenhouse Gas model (Beck
et al., 2011), hereafter referred to as WRF-GHG, is selected
as the forward modelling component of AUMIA. WRF-GHG
is an extension of the WRF-VPRM model (Ahmadov et al.,
2007), which couples the WRF model to the Vegetation Pho-
tosynthesis and Respiration Model (VPRM) (Mahadevan et
al., 2008).

WRF-GHG simulates CH4 concentration based on emis-
sion estimates from external data sets as well as from on-
line calculations driven by model parameters such as soil
moisture, soil temperature, and vegetation type. CH4 fluxes
from external data sets, specifically for anthropogenic (ex-
cept for biomass burning) and biomass burning sources, are
converted into atmospheric concentrations based on an incre-
mental approach. The CH4 concentration changes are calcu-
lated as the CH4 emission multiplied by a conversion fac-
tor that depends on the air density and thickness of the first
model layer. On the other hand, CH4 fluxes from wetlands
and termites, as well as CH4 uptake by soil, are all calculated
online in the simulations (see Sect. 2.2.2 for further details).
CH4 contributions from anthropogenic, biogenic (wetlands,
termites, and soil uptake), and biomass burning sources as
well as those from background concentrations are separately
determined using tagged tracers. WRF-GHG allows for pas-
sive transport (i.e. without any chemical loss or production)
of not only CH4 but also of carbon dioxide and carbon
monoxide, which undergo advection and convective mixing
as any other chemical species. WRF-GHG was incorporated
into the WRF-Chem model for the first time at its version 3.4
and since then has been one of the many available chemistry
options in this model. A detailed description of the WRF-
GHG model, its emission preprocessors, and related mod-
ules can be found in Beck et al. (2011) and Beck (2012). In
this work, WRF-GHG was run as a chemistry option in the
WRF-Chem model version 4.3. Implementing the AUMIA
v1.0 will enable us to extend its application to other green-
house gases such as carbon dioxide, e.g. by incorporating
new satellite missions such as the Copernicus Anthropogenic
Carbon Dioxide Monitoring (CO2M).

2.1.1 Grid configuration

The experimental setup consisted of two nested domains con-
figured in a Lambert conformal projection at horizontal res-
olutions of 30 and 10 km. The parent domain has 120× 120
grid points and is defined to cover most of Europe, whereas
the nested domain (D02) has 67× 61 grid points and focuses
on Denmark (see Fig. 1). The 10 km grid spacing domain
covering Denmark is motivated by improving the country
greenhouse gas quantification. WRF-GHG uses an Arakawa
C-grid staggering and a hybrid vertical coordinate, which is
a coordinate that is terrain-following near the ground and be-
comes isobaric higher up. The vertical resolution includes
45 layers extending from the surface up to 1 hPa, with more
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Figure 1. Modelling domains. The parent domain covers most of
Europe, whereas the nested domain (D02) focuses on Denmark.
The red markers, numbered from 1 to 14, indicate the location of
the ICOS stations considered for model evaluation. ICOS station
features are presented in detail in Table 3.

closely spaced layers at lower altitudes. Static geographical
data (e.g. topography, land use) and masked surface fields
are derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) and U.S. Geological Survey (USGS)
products. Table 1 lists the main grid configuration features
used in the simulations.

2.2 Input emissions

2.2.1 Anthropogenic fluxes

Anthropogenic fluxes of CH4 (not including biomass burn-
ing sources) are externally prepared based on the Emissions
Database for Global Atmospheric Research (EDGAR) ver-
sion 6 Greenhouse Gas Emissions (Ferrario et al., 2021).
EDGAR has been widely used in support of policy design
for greenhouse gas emissions verification, using international
statistics and a consistent Intergovernmental Panel on Cli-
mate Change (IPCC) methodology. Statistical information
compiled by the IPCC Guidelines for National Greenhouse
Gas Inventories (IPCC, 2006) is adopted by EDGAR for
most sources and countries, complemented with informa-
tion from scientific literature and other references for specific
processes and/or countries. A detailed description of data
providers and technical procedures for the greenhouse gas
emissions of EDGAR can be found in Janssens-Maenhout
et al. (2019). EDGARv6.0 includes a set of key novelties
such as country/region- and sector-specific yearly profiles
for all sources and country-specific weekly and daily pro-
files to represent hourly emissions. EDGARv6.0 CH4 fluxes

Figure 2. Spatial distribution of EDGARv6.0 CH4 emission rates
for the concerned key sectors for May 2018 in the 30 km modelling
domain. Each grid point in panel (d) represents the sum of emission
rates from all different sectors (except biomass burning) based on
country-specific temporal profiles.

in this work include activity data from 24 different sectors
that can be grouped into the following broad sectors: en-
ergy, industry, aviation, ground transport, shipping, agricul-
ture, and waste. Biomass burning fluxes from human activ-
ities were prepared separately using a satellite-based emis-
sions preprocessor (Wiedinmyer et al., 2023). EDGARv6.0
CH4 fluxes are provided as monthly grid maps spatially dis-
tributed on a common grid at 0.1◦× 0.1◦ resolution and can
be freely downloaded at http://jeodpp.jrc.ec.europa.eu/ftp/
jrc-opendata/EDGAR/datasets/v60_GHG/ (last access: 13
July 2022). Figure 2 shows the spatial distributions of CH4
emission rates for different sectors for May 2018 in the 30 km
modelling domain.

2.2.2 Biogenic fluxes

Anaerobic microbial production of CH4 in wetlands repre-
sents the dominant source of CH4 emissions from nature,
followed by CH4 emissions from termites. Uptake of atmo-
spheric CH4 by soil is the only terrestrial sink. CH4 fluxes
from natural source and sink processes are all calculated on-
line in the model simulations. CH4 fluxes from wetlands are
based on the wetland model developed by Kaplan (2002).
This model is based on a diagnostic approach that deter-
mines CH4 emissions from wetlands as a percentage of the
heterotrophic respiration following the approach of Chris-
tensen et al. (1996). The heterotrophic respiration is previ-
ously calculated based on a carbon decomposition rate and
WRF-GHG variable soil moisture and soil temperature fol-
lowing the approach of Sitch et al. (2003). CH4 fluxes from
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Table 1. WRF-GHG grid configuration.

Attributes Model parameter/coverage

Domains 120× 120 (latitude× longitude) grid points over Europe, 67× 61 (latitude× longitude) grid
points over Denmark

Centre point of the parent domain 51.98◦ N, 5.66◦ E
Map projection Lambert conformal
Horizontal and vertical resolution 30 and 10 km – 45σ -type levels
Model top 1 hPa (∼ 44 km)
Time step 180 and 60 s
Static data Topography: USGS, 30 s resolution

Land use: MODIS, 21 land use categories
Grid relaxation zone Five points

termites are calculated, based on the global database for ter-
mite emissions described in Sanderson (1996), as the product
of the biomass of a population of termites and the flux of CH4
emitted from that termite population. A mapping of the veg-
etation types used by Sanderson (1996) to the WRF-GHG
vegetation type is previously performed for the quantifica-
tion of the termite’s biomass per grid cell. Based on WRF-
GHG driving variables such as soil moisture, soil tempera-
ture, CH4 concentration, and precipitation, soil uptake fluxes
are calculated following the approach devised by Ridgwell et
al. (1999). For wetland grid cells (i.e. grid cells dominated by
wetlands), the calculation of soil uptake is suppressed as this
process does not take place over flooded areas. It was veri-
fied that no significant natural wetlands were found over the
modelling domain, with termites and soil uptake being the
primary sources and sinks of CH4 emissions in the region.
Figure S1 in the Supplement shows the temporal mean spa-
tial distribution of CH4 emission rate for natural sources and
sinks, averaged over the period from 1 to 31 May 2018.

2.2.3 Biomass burning fluxes

Biomass burning fluxes of CH4 are externally prepared based
on the Fire INventory from NCAR version 2.5 (FINNv2.5)
(Wiedinmyer et al., 2023). FINNv2.5 uses satellite observa-
tions of active fires and land cover, together with emission
factors and fuel loadings to provide daily, highly resolved
(1 km) open burning emissions estimates for use in chemical
transport models. Active fire products from both MODIS in-
struments onboard the Terra and Aqua satellites are applied,
and to avoid double counting of the same fire on a single day,
multiple detections of the fire in question are identified glob-
ally and then removed as described by Al-Saadi et al. (2008).
While CH4 fluxes from anthropogenic and biogenic sources
are added at the first model level, a plume rise algorithm is
applied to determine the injection height of biomass burn-
ing plumes. The plume rise algorithm, implemented in the
WRF-Chem by Grell et al. (2011), is based on the 1-D time-
dependent cloud model developed by Freitas et al. (2007).
The algorithm is used for numerical integration for grid cells

that contain fire spots, with the lower and upper limits of the
injection height being calculated based on the fire category
(biome burned) provided by the FINNv2.5, as well as heat
flux fields inferred from WRF-GHG.

2.3 Experiment design

Initially, a model sensitivity analysis for evaluating physics
schemes, such as planetary boundary layer and cumulus
clouds and global forcings for meteorological fields and
CH4 concentration, was carried out over several 2-week
periods in 2018 and 2019. Each of these 2-week periods
were previously examined to have at least 75 % of days
with TROPOMI XCH4 data covering large portions of Eu-
rope. As a result, the physics schemes Yonsei University
(YSU) for the planetary boundary layer and Kain–Fritsch for
cumulus clouds, together with initial and boundary condi-
tions from the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5) model (Hers-
bach et al., 2022) for meteorological processes and from
the NCAR Community Atmosphere Model with Chem-
istry (CAM-chem) (Lamarque et al., 2012; Emmons et al.,
2020) for background concentrations of CH4, were selected
and then used to perform a 1-year simulation period from
1 April 2018 to 31 March 2019. This period was defined
based on the following criteria: (i) availability of TROPOMI
XCH4 data, (ii) latest available year data of EDGARv6.0
emissions for CH4, and (iii) no occurrence of sustained
and irregular scenarios in terms of emissions (e.g. large-
scale fire outbreaks and emission reductions associated with
COVID-19 lockdowns). Table 2 lists the physics and emis-
sions schemes used in the simulations, with physics schemes
other than planetary boundary layer and cumulus clouds be-
ing selected based on Beck et al. (2011). A schematic of the
model running process is depicted in Appendix A. Off-line
initial and boundary conditions derived from the simulations
at 30 km are used as input to feed the simulations at 10 km.
Model results and discussion for the nested domain are under
development and will be described in a forthcoming paper.
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2.3.1 Postprocessing

In order to compare the simulated XCH4 concentrations with
the observations, a set of model data postprocessing steps in-
volving the satellite retrievals were carried out as follows.
(i) The a priori profiles and averaging kernels for each orbit
were regridded to the WRF-GHG discretization using a bilin-
ear interpolation. (ii) The simulated concentrations were re-
sampled to the SRON S5P-RemoTeC standard 12-level pres-
sure grid. (iii) The smoothed concentrations corresponding
to the resampled profiles were calculated according to the
following linear transformation:

CH4,smooth =K ·CH4,tot+ (I−K) ·A, (1)

where CH4,smooth represents the smoothed CH4 concentra-
tion; A and K are the a priori profile and averaging kernel of
the retrieval, respectively; I is the identity matrix; and CH4,tot
is the total CH4 concentration. CH4,tot is obtained by adding
up the tracer contributions from the emission sources, and
background concentrations are

CH4,tot = CH4,ant+CH4,bio+CH4,bbu+CH4,bgd, (2)

where CH4,ant, CH4,bio, CH4,bbu, and CH4,bgd represent
the CH4 concentrations from anthropogenic sources, bio-
genic sources, biomass burning, and background concentra-
tions. (iv) The XCH4 concentration was finally calculated
as the pressure-weighted concentration following Zhao et
al. (2019):

XCH4 =
∑

i

[
Pbottom−Ptop

Psfc−Ptop

]
×CH4,smooth, (3)

where Pbottom and Ptop represent the pressures at the bot-
tom and at the top of the ith vertical grid cell, and Ptop and
Psfc represent the hydrostatic pressures at the top and at the
surface of the model domain, respectively. Simulated total-
column concentrations, without taking into account the a pri-
ori information and averaging kernels, were also computed
to evaluate smoothing effects. In this case, Eqs. (2) and (3)
are directly applied to the model outputs without any previ-
ous smoothing. Model evaluation against in situ CH4 mea-
surements is performed on the basis of the closest model
grid points to the ICOS stations. Three groups of eight, six,
and five ICOS stations, with sampling heights between 8.0–
16.8, 40–50, and 100 m, respectively, were selected for com-
parison with simulated CH4 concentrations interpolated to
roughly 10, 50, and 100 m above ground level.

2.4 Observational data

2.4.1 TROPOMI

The TROPOspheric Monitoring Instrument (TROPOMI) on-
board the Copernicus Sentinel-5 Precursor (S5P) satellite
is a spectrometer that provides global coverage of total-
column concentrations for different gases at an unprecedent

resolution of 5.5× 7 km2 utilizing a push-broom configu-
ration. The TROPOMI-based XCH4 concentrations in this
study are taken from the Netherlands Institute for Space Re-
search (SRON) S5P-RemoTeC XCH4 product version 17
(Lorente et al., 2022a, b), available at https://ftp.sron.nl/
open-access-data-2/TROPOMI/tropomi/ch4/ (last access: 10
October 2022). In relation to the operational data products
(Hu et al., 2016), the SRON S5P-RemoTeC XCH4 product
v17 provides updates regarding the regularization scheme,
the selection of the spectroscopic database, the implemen-
tation of a higher-resolution digital elevation map for sur-
face altitude, and a more sophisticated a posteriori correction
for the albedo dependence. The main update with respect to
the previous version, the SRON S5P-RemoTeC XCH4 v14
(Lorente et al., 2021), includes XCH4 retrievals over the
ocean for observations made under sun-glint geometries. A
quality data assessment was performed using TCCON and
TANSO measurements. The TROPOMI XCH4 data of inter-
est to this work correspond to the recommended high-quality
retrievals, with quality assurance value of 1 and for S5P or-
bits over Europe, i.e. with crossing times between 09:00 and
13:00 UTC.

2.4.2 ICOS

The Integrated Carbon Observation System (ICOS) is a pan-
European Research Infrastructure that provides harmonized,
high-precision, and long-term monitoring of atmospheric
greenhouse gases. It sustains a network of stations that is
spread out over different ecosystems across 12 European
countries (Heiskanen et al., 2022). Greenhouse gas concen-
trations and meteorological parameters are usually taken at
different heights of measurement towers set up in mountain-
ous terrain or in remote environments. ICOS CH4 concen-
trations in this study correspond to the fully quality-checked
Level 2 data (ICOS RI, 2022), available for download at the
ICOS Carbon Portal (https://data.icos-cp.eu, last access: 7
November 2022). For users interested in using ICOS data, we
strongly recommend using the ICOS Carbon Portal pylib, a
Python library that provides easy access to data hosted at the
ICOS Carbon Portal. The ICOS stations used in this study are
compiled in Table 3, and their locations are shown in Fig. 1.

2.5 Evaluation metrics

There are a number of statistical parameters that can be used
to evaluate the performance of atmospheric models, includ-
ing the correlation coefficient (r), mean bias error (MBE),
and root-mean-square error (RMSE). r is a measure of the
strength and direction of the linear relationship between sim-
ulation and observation, MBE measures the mean difference
between simulation and observation, and RMSE is the square
root of the mean squared error between simulation and obser-
vation. All three are appropriate over multiple timescales and
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Table 2. WRF-GHG simulation design.

Atmospheric process Scheme/model

Cloud microphysics WSM5 (Hong et al., 2004)
Longwave radiation RRTM (Mlawer et al., 1997)
Shortwave radiation MM5 (Dudhia, 1989)
Boundary layer YSU (Hong et al., 2006)
Land surface Unified Noah land-surface model (Chen and Dudhia, 2001)
Surface layer Revised MM5 Monin–Obukhov (Jimenez et al., 2012)
Cumulus clouds Kain–Fritsch (new eta) (Kain, 2004)
Anthropogenic emissions1 EDGARv6.0 (Ferrario et al., 2021)
Wetland emissions Kaplan (2002)
Termite emissions Sanderson (1996)
Soil uptake fluxes Ridgwell et al. (1999)
Biomass burning emissions1 FINNv2.5 (Wiedinmyer et al., 2023) coupled to a plume rise module
Initial and boundary conditions2 ERA5 (0.25◦, 37 pressure levels) for meteorology and CAM-chem (0.9◦× 1.25◦, 56 vertical

levels) for CH4 concentrations, both called for input every 6 h
Simulation period 1 April 2018 to 31 March 2019

1 The emission files for anthropogenic and biomass burning sources were processed for model input using the NCAR utilities anthro_emis and fire_emis, respectively. 2 The
initial and boundary conditions for CH4 concentrations were prepared using the NCAR utility mozbc.

Table 3. ICOS stations and atmospheric parameters considered for model evaluation.

Station name Country Latitude Longitude Altitude Sampling height Parameters

(1) Hohenpeissenberg Germany 47.80◦ N 11.02◦ E 934 m 50 m CH4
(2) Hyytiälä Finland 61.84◦ N 24.29◦ E 181 m 16.8 m CH4
(3) Ispra Italy 45.81◦ N 8.63◦ E 210 m 40 and 100 m CH4
(4) Jungfraujoch Switzerland 46.54◦ N 7.98◦ E 3580 m 10 m WS and WD
(5) Karlsruhe Germany 49.09◦ N 8.42◦ E 110 m 100 m CH4
(6) Křešín u Pacova Czech Republic 49.57◦ N 15.08◦ E 534 m 10 and 50 m CH4, T , WS, and WD
(7) Lindenberg Germany 52.16◦ N 14.12◦ E 73 m 10 and 40 m CH4, T , and WS
(8) Monte Cimone Italy 44.19◦ N 10.69◦ E 2165 m 8 m CH4
(9) Norunda Sweden 60.08◦ N 17.47◦ E 46 m 100 m CH4
(10) Observatoire pérenne de l’environnement France 48.56◦ N 5.50◦ E 390 m 10 and 50 m CH4, T , WS, and WD
(11) Puy de Dôme France 45.77◦ N 2.96◦ E 1465 m 10 m CH4, T , WS, and WD
(12) Saclay France 48.72◦ N 2.14◦ E 160 m 10, 15 and 100 m CH4, T , WS, and WD
(13) Torfhaus Germany 51.80◦ N 10.53◦ E 801 m 10 m CH4, T , WS, and WD
(14) Trainou France 47.96◦ N 2.11◦ E 131 m 50 and 100 m CH4

T : air temperature; WS: wind speed; WD: wind direction. CH4 and T were interpolated to roughly 10, 50, and 100 m above ground level, while the simulated WS and WD were calculated based on
the model parameters U10 and V 10.

space scales and can be calculated as follows:

r =

∑[(
Pj − P̄

)
x
(
Oj − Ō]

)]√∑(
Pj − P̄

)2
x
∑(

Oj − Ō
)2 , (4)

MBE=
1
n

∑(
Pj −Oj

)
, (5)

RMSE=

√
1
n

∑(
Pj −Oj

)2
. (6)

Here, j represents the pairing of observations (O) and pre-
dictions (P ) by site and time. Overbars signify means over
site and/or time. n is the number of pairs of observation–
prediction values.

In conjunction with the statistics previously mentioned,
graphical methods such as time series, scatter plots, and

Taylor diagrams (Taylor, 2001) were also included to better
understand the model behaviour over entire ranges of con-
centrations and gauge performance more fully. To facilitate
the statistical evaluation of the model–satellite comparison,
both the satellite and model data were transformed into one-
dimensional arrays. Subsequently, Eqs. (4), (5), and (6) were
applied to compute domain-wide statistics. Overall, as de-
scribed in Sect. 3, the simulated CH4 concentrations were
in good agreement with the satellite information and near-
surface measurements reported at different ICOS sites across
Europe. However, several limitations and uncertainties were
identified and will help to improve the model’s forecast ca-
pability in future implementations.
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3 Model evaluation

3.1 Near-surface CH4 concentration

Given that the distances between the model grid points and
ICOS sites can be several kilometres, it is important to high-
light that the model evaluation in this section focuses more
on the model’s ability to reproduce the broad spatial and
temporal variability in CH4 over the modelling domain. As
mentioned in Sect. 2.2.2, three sets of eight, six, and five
ICOS stations, with sampling heights between 8.0–16.8, 40–
50, and 100 m, respectively, were selected for comparison
with simulated CH4 concentrations interpolated to roughly
10, 50, and 100 m above ground level. Figures 3, 4, and 5
show the monthly mean spatial distributions of observed and
simulated CH4 concentrations for the first, second, and third
vertical levels, respectively, with both data sets averaged over
the period from 1 April 2018 to 31 March 2019. Figure S2
in the Supplement shows the monthly mean time series of
CH4 concentrations averaged over all ICOS stations and cor-
responding model grid points for the three levels.

Overall, CH4 concentrations for the first level were overes-
timated, mainly during wintertime when model–observation
mismatches reached their highest values, between 200 and
300 ppb (see Fig. S2 in the Supplement). According to mod-
elling results in this study, the simulated CH4 concentrations
depended largely on the background concentrations, fol-
lowed by a small contribution from anthropogenic sources. A
small month-to-month variation is observed in the CH4 con-
centrations from ICOS measurements, whereas strong sea-
sonal changes are, by contrast, observed in the CH4 concen-
trations derived from model simulations – seasonal changes
in the simulated concentrations are modulated by the an-
thropogenic sources. Using EDGARv6.0 CH4 fluxes as the
a priori emission estimates and two sets of TROPOMI-based
XCH4 observations, the global inversion approach conducted
by Tsuruta et al. (2023) showed that over central Europe
the anthropogenic CH4 emissions would be slightly overes-
timated, mainly during spring and autumn. However, higher
emission estimates are otherwise found when ground-based
data are used to drive the inversions. The inversion approach
for CH4 emissions over China conducted by Hu et al. (2023)
showed that the a posteriori emissions (excluding agricul-
tural soil) decreased by 36 % compared to the EDGARv6.0
a priori emission estimates. They also found a 47.1 % re-
duction when it came to CH4 emissions from waste alone.
Waste emissions in EDGARv6.0 for 2018 do not have a sig-
nificant daily and weekly patterns over the year, although
emission peaks can be observed in February. Under real con-
ditions, however, the production of CH4 from waste sources
depends not only on the amount of degradable organic matter
but also on seasonal weather conditions (Kissas et al., 2022).
Uncertainties in EDGAR emissions from other key sectors
such as agriculture and energy can also contribute signifi-
cantly to the overall model–observation discrepancies. For

the EU27+UK (the 27 European countries and the UK), So-
lazzo et al. (2021) reported that while CH4 has the best level
of accuracy among the three EDGAR greenhouse gases, with
only a roughly 10 % uncertainty share, the structural uncer-
tainties in the three key sectors in terms of CH4 (agriculture,
waste, and energy) account for nearly 90 %.

Comparatively, model–observation discrepancies in CH4
concentration at upper levels (50 and 100 m) were notice-
ably reduced with increasing height (see Fig. S2 in the Sup-
plement). The bias reductions in this case are attributed to
a diminishing influence of surface emissions on both mag-
nitude and variability in CH4 concentrations. The top-left
panel in Fig. S4 in the Supplement shows the reductions
in variability as a function of standard deviation, based on
a site-specific comparison. The higher the sampling height
(or vertical level), the smaller the model–observation dis-
crepancies in terms of standard deviations are. Despite im-
provements in terms of variability, correlation coefficients
remained quite similar between the three levels, ranging
from 0.2 to 0.4 in most cases. Model evaluation of the
global CAMS chemical modelling system against ICOS
measurements, for the sites here selected and for a period
2.5 years from now (https://global-evaluation.atmosphere.
copernicus.eu/ch4/ghg/insitu-icos, last access: 8 November
2022), shows structural correlation coefficients similar to
those found here with WRF-GHG. However, unlike the
large positive bias found in this work for the sampling
height of 10 m, CAMS does underpredict the observations
with model–observation discrepancies ranging from−100 to
−200 ppb most of the time. In addition, no bias reduction
with increasing height can be noticed in this CH4 product.
Input emissions from anthropogenic sources in CAMS sim-
ulations are built based on various existing data sets, includ-
ing nationally reported emissions as well as global estimates
(e.g. EDGAR; Evaluating the Climate and Air Quality Im-
pacts of Short-Lived Pollutants, ECLIPSE; and CEDS, Com-
munity Emissions Data System). As pointed out by Solazzo
et al. (2021), the fact that EDGAR has adopted the IPCC rec-
ommendations assures consistency in time and comparability
across countries, but conversely, it can facilitate the propaga-
tion of uncertainties when similar emission sources are in-
corporated.

Besides errors in the CH4 emission estimates, inaccura-
cies in background concentrations and meteorological condi-
tions may have also partly contributed to model–observation
discrepancies. With regard to the contribution from back-
ground concentrations, boundary conditions in the lowest
model layer in CAM-chem are set to the fields specified for
Climate Model Intercomparison Project – Phase 6 (CMIP6)
historical conditions and future scenarios provided by Mein-
shausen et al. (2017). These prescribed CH4 concentrations
are then used in the model to overwrite, at each time step, the
corresponding model mixing ratios (Lamarque et al., 2012).
Thus, the combined effect of using uniform and projected
CH4 concentrations as lower boundary conditions in WRF-
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Figure 3. Monthly mean spatial distributions of simulated CH4 concentration interpolated to roughly 10 m (shaded), together with monthly
mean CH4 concentrations from the ICOS sites with sampling heights between 8 and 16.8 m (circles), with both data sets averaged over the
period from 1 April 2018 to 31 March 2019. The concentrations are in parts per billion and were computed based on quality-controlled ICOS
CH4 data for all stations simultaneously.

Figure 4. Monthly mean spatial distributions of simulated CH4 concentration interpolated to roughly 50 m (shaded), together with monthly
mean CH4 concentrations from the ICOS sites with sampling heights between 40 and 50 m (circles), with both data sets averaged over the
period from 1 April 2018 to 31 March 2019. The concentrations are in parts per billion and were computed based on quality-controlled ICOS
CH4 data for all stations simultaneously.
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Figure 5. Monthly mean spatial distributions of simulated CH4 concentration interpolated to roughly 100 m (shaded), together with monthly
mean CH4 concentrations from the ICOS sites with sampling heights of 100 m (circles), with both data sets averaged over the period from
1 April 2018 to 31 March 2019. The concentrations are in parts per billion and were computed based on quality-controlled ICOS CH4 data
for all stations simultaneously.

GHG simulations represents a source of uncertainty and con-
tributes to the model–observation discrepancies. Regarding
the meteorological conditions, unprecedented warmer than
normal weather conditions were observed throughout the
study period (Hari et al., 2020), mainly during the 2018–2019
winter season. In fact, model simulations for the period from
21 December 2018 to 14 January 2019 were not included in
the model evaluation due to persistent instabilities in vertical
winds over central Europe, where a sequence of heavy snow-
fall events has been observed (e.g. Yessimbet et al., 2022).
As can be seen in Fig. S3 in the Supplement, the model
overpredicted the temperature at 10 m throughout the entire
winter, with overpredictions for December (averaged over 1–
20 December 2018) and January (averaged over 15–31 Jan-
uary 2019) being much larger compared to the other win-
ter months. Wind shifts were fairly well represented by the
model, but at the same time, it did overpredict wind speed.
A site-specific model evaluation in terms of correlation co-
efficient and standard deviation is provided in Fig. S4 in the
Supplement.

3.2 XCH4 concentration

Figure 6 shows the temporal mean spatial distributions of
XCH4 concentration from SRON RemoTeC-S5P estimates
and WRF-GHG simulations, along with their relative dif-
ferences, averaged over the period from 1 May to 31 Au-

gust 2018. Temporal mean spatial distributions by month are
shown in Figs. S5 to S16 in the Supplement. Differences
between simulated XCH4 concentrations with and without
smoothing are noticeable. While relative differences between
simulated concentrations without smoothing and observa-
tional data usually range from −1 % to 1 % (Fig. 6g), those
between smoothed concentrations and observational data
usually range from 1 % to 2 % (Fig. 6c). Model–observation
discrepancies in the latter case reached their minimum val-
ues during the summer peak season (Figs. S7 to S9 in the
Supplement) but otherwise reached their maximum values
during winter months (Figs. S14 to S16 in the Supplement).
Model performance for different seasons can be also ob-
served in Fig. 7 which shows the monthly variability in ob-
served and simulated XCH4 concentrations over the study
region. The lower differences between the satellite measure-
ments and model results without smoothing were related to
a CH4 offset (against the anthropogenic emissions contribu-
tion), as the atmospheric layer above the model top (1 hPa)
was not vertically integrated in Eq. (3). Simulated CH4 con-
centrations and atmospheric pressures in this case did not ex-
perience any smoothing before vertical integration. Regard-
ing the smoothed profiles, despite the fact that it was veri-
fied that the averaging kernels from satellite retrievals fluctu-
ate slightly up and down around 1 in the troposphere (where
much of atmospheric CH4 resides), the smoothing effects in
the upper levels usually lead to a XCH4 reduction. This re-
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duction often happens because the a priori profile (second
term on the right-hand side of Eq. 1) does not influence the
retrieval accuracy significantly (Hu et al., 2016). Since there
is no CH4 compensation in this case, then the bigger differ-
ences in the XCH4 concentrations can be attributed mainly
to an overestimation of anthropogenic emissions, although a
systematic bias related to background signals should also be
considered. At an urban scale, analysis of downwind and up-
wind concentrations such as the differential column method-
ology devised by Chen et al. (2016) can be applied to min-
imize the influence of background signals (e.g. Zhao et al.,
2022); however, its application at a continental scale would
require a high-resolution modelling configuration as well as
a dense network of spectrometers. Data gaps such as those
observed in central and southern Europe (Fig. 6a or e) are of-
ten produced as a consequence of applying regridding tech-
niques to sparse data sets.

Zhao et al. (2019) applied the WRF-GHG model to anal-
yse XCH4 observations over Berlin for a period during
summertime and found a bias in the simulated XCH4 con-
centration of around 2.7 %. In this case, they updated the
boundary conditions with information from CAMS instead
of CAM-chem, used EDGARv4.1 emission estimates for an-
thropogenic sources, and compared the model results against
total-column measurements from a network of five spectrom-
eters. Based on the smoothed concentrations in this work,
relative differences between 1 % and 2 % were often found
for the summer peak season, when the anthropogenic sources
had their minimum contributions to the XCH4 concentration.
For winter months, the differences were found to range from
2 % to 3 %, similar to those found by Zhao et al. (2019)
for summertime. Despite the fact that a model overesti-
mation of near-surface CH4 concentrations on the order
of 200–300 ppb is observed during wintertime, the model–
observation discrepancies in XCH4 concentration ranged
roughly from 40 to 60 ppb. The higher model–observation
discrepancies during winter months suggest that a more re-
fined inverse analysis assessment will be required for this
season. A recent joint inversion of CH4 and δ13C-CH4 con-
ducted by Basu et al. (2022) for periods of relatively stability
(2000–2006) and growth (2008–2014) in atmospheric CH4
suggests a significant reduction in the a priori CH4 emission
estimates from fossil and microbial sources over northern
extra-tropic regions. Bias in simulated XCH4 concentrations
over waterbodies, namely the Mediterranean Sea, the Bay of
Biscay, and small portions of the Atlantic Ocean adjacent to
Spain and Portugal, is of similar magnitude as that found over
land. Thanks to the TROPOMI’s wide swath, the SRON S5P-
RemoTeC XCH4 product v17 provides new opportunities to
look into the sensitivity of CH4 signals to surface emissions
in the Mediterranean Sea (e.g. CH4 emissions from oil and
gas platforms).

With regard to temporal variability, a clear annual cycle
of the XCH4 interquartile range can be noticed regardless of
its smooth month-to-month variation throughout the year (or-

ange boxes in Fig. 7). Both sets of simulated XCH4 concen-
trations, i.e. the simulated profiles with and without smooth-
ing, represented this cycle fairly well although with less dis-
persion (length of the box). The simulated XCH4 concen-
trations without smoothing show an even less dispersed in-
terquartile range (blue boxes in Fig. 7) compared to that
of the smoothed concentrations (green boxes in Fig. 7). In
addition, the minimum concentrations in the simulated in-
terquartile ranges are delayed (May) compared to observa-
tions (April), with the same happening in terms of medians.
Based on the smoothed concentrations, model–observation
discrepancies reached their maximum values during winter
months (differences in median concentrations between 40–
50 ppb), while they reached their minimum values during the
summer peak season (differences in median concentrations
between 20–30 ppb). As discussed in Sect. 3.2, the improved
XCH4 representation (with the simulated profiles without
smoothing) responded to a CH4 compensation, as the atmo-
spheric layer above the model top (1 hPa) was not vertically
integrated in Eq. (3). Since there is no a CH4 compensation
with the smoothed profiles, then the bigger differences in the
XCH4 concentrations can be attributed mainly to an overes-
timation of anthropogenic emissions. A systematic bias re-
lated to the background concentrations, however, should be
also embedded in the model bias in both cases. Modelling
studies using CAMS suggest that an offset between model
concentrations and observations needs to be taken into ac-
count previously in the boundary conditions (Zhao et al.,
2019; Gałkowsky et al., 2021). Looking at the other 50 %
of data, including outliers, a similar behaviour can also be
observed, with observations spread out further than simu-
lated concentrations. A number of outliers with concentra-
tions below 1750 ppb have been observed in April and May
of 2018, although the reason why they occur in the months
with the lowest CH4 concentrations needs to be further inves-
tigated. Statistical metrics of the model–observation compar-
ison indicate, overall, a better model performance for sum-
mer months, with correlation coefficients and root-mean-
square errors ranging from 0.4–0.5 and from 27–30 ppb, re-
spectively (see Table 4).

4 XCH4 concentration from anthropogenic sources

The contribution of anthropogenic emissions to the XCH4
concentration is calculated based on the months with the best
model performance between May and August of 2018 (see
Fig. 4). Figure 8 shows the temporal mean spatial distribu-
tions with and without smoothing of simulated XCH4 con-
centrations, XCH4 enhancement above background (EAB)
concentrations, XCH4 enhancement from human activi-
ties (EHAs) concentrations, and the contribution of anthro-
pogenic sources to the XCH4 concentration. Model results
suggest that XCH4 EHA concentrations as high as (or even
higher than) those found over high-CH4-emitting countries in
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Figure 6. Temporal mean spatial distributions of XCH4 concentration from SRON RemoTeC-S5P (a, e) and WRF-GHG estimates with
and without smoothing ((b) and (f), respectively), along with their relative differences (c, g), averaged over the period from 1 May to
31 August 2018. The simulated mean XCH4 concentrations are calculated on the basis of the closest model times to the S5P crossing times.
Panels (d) and (h) show the scatter plots of observed and simulated XCH4 concentrations, together with the number of pairs of observation–
model values and the domain-wide correlation coefficient.

Figure 7. Monthly boxplots of observed and simulated XCH4 concentrations with and without smoothing for the period from 1 April 2018 to
31 March 2019. The months from May to August of 2018 (between dashed lines) were selected for the model evaluation of the contribution
of anthropogenic sources to the XCH4 concentration, discussed ahead in Sect. 4.

western Europe can accumulate over countries in central and
southern parts of Europe during summer months (see Fig. 8c
and g). The XCH4 EAB concentrations (Fig. 8b and f) de-
pended almost entirely on the CH4 contribution from human
activities (Fig. 8c and g), a result that is in line with pre-
vious studies conducted over urban areas in central Europe
(e.g. Zhao et al., 2019, 2022). However, the anthropogenic
sources contribute only up to 2 % to the XCH4 concentration
(Fig. 8d and h), with the largest part of XCH4 coming from
background signals.

XCH4 signals from natural sources (wetlands and ter-
mites) and biomass burning were not relevant during the
study period. The inversion estimates for 2018 conducted by
Tsuruta et al. (2023) showed that, compared to the anthro-
pogenic emissions, the wetland emissions over central Eu-
rope were small, mainly during summer months when bio-
genic fluxes reached their minimum values. Among the fac-
tors that could have negatively influenced the accumulation
of biospheric CH4 in the atmosphere over the study region
are less CH4 formation tied to the extremely dry season in
summer 2018 over central and northern Europe (Rousi et
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Table 4. Overall WRF-GHG performance against space-based XCH4 observations. Sth.: smoothed.

Month WRF-GHG/SRON S5P Sth. WRF-GHG/SRON S5P

n RMSE MBE r n RMSE MBE r

January 2019 869 17.32 6.86 0.43 869 50.42 46.36 0.15
February 2019 9893 16.05 5.34 0.35 9893 48.44 45.09 0.29
March 2019 8691 15.95 1.80 0.31 8691 44.22 40.23 0.24
April 2018 15 430 16.35 2.77 0.32 15 430 35.88 31.76 0.39
May 2018 16 817 17.38 −8.28 0.25 16 817 28.63 24.13 0.31
June 2018 8590 12.08 −4.76 0.54 8590 27.77 24.39 0.53
July 2018 9546 15.49 −9.47 0.52 9546 28.84 24.93 0.44
August 2018 10 732 13.81 −6.77 0.47 10 732 29.96 26.64 0.40
September 2018 10 114 12.02 −0.98 0.44 10 114 36.97 34.27 0.36
October 2018 10 707 13.21 −2.09 0.34 10 707 33.40 29.72 0.20
November 2018 2917 14.93 3.01 0.46 2917 37.95 33.41 0.23
December 2018 951 16.90 1.25 0.51 951 39.97 34.86 0.37

n: number of pairs of observation–model values; RMSE: root-mean-square error (in ppb); MBE: mean bias error (in
ppb); r: correlation coefficient.

al., 2023), CH4 compensation by soil uptake processes as
the fluxes are dominated by mineral soils which are mostly
net sinks of CH4 (Tsuruta et al., 2023), and transport mecha-
nisms. According to the Kaplan wetland map, potential nat-
ural wetlands in Europe concentrate over western regions of
Russia. Yu et al. (2023) suggest that northern temperate wet-
land emissions in Russia show strong sensitivity to both hy-
drology and temperature. On the other hand, winds may dis-
perse CH4 concentrations out of the study region, thus re-
ducing drastically the XCH4 concentrations over specific re-
gions. Both the observed and simulated wind patterns over
central Europe show that, between May and August of 2018,
air masses flowed mostly southeast–southwest (see Fig. S3
in the Supplement), thus deflecting most of the air coming
from wetland areas. A recent study conducted by Karoff and
Vara-Vela (2023) found that the XCH4 concentrations over
wetlands in Europe are lower than the average XCH4 levels
for all the land cover types analysed. They recommend, how-
ever, that before this result is verified with observations from
other satellite instruments, the TROPOMI XCH4 measure-
ments over wetlands need to be handled with caution.

5 Summary and conclusions

A new CH4 inversion system for Europe is being imple-
mented in order to evaluate CH4 emission estimates from
different sources, with a focus on anthropogenic activi-
ties. In this first part, the forward modelling component
of the system is introduced and evaluated against CH4
column-averaged dry air mole fractions (XCH4) and near-
surface CH4 observations. To that end, sets of 97 h simula-
tions for a 1-year simulation period from 1 April 2018 to
31 March 2019, were run using the WRF greenhouse gases
model coupled to a multipurpose global database of CH4 an-

thropogenic emissions. CH4 fluxes from biogenic sources
were calculated online in the simulations, whereas fluxes
from biomass burning were externally prepared based on a
satellite-based emissions preprocessor. Model results were
evaluated against Netherlands Institute for Space Research
(SRON) S5P-RemoTeC XCH4 (v17) concentrations as well
as against CH4 Level 2 data from Integrated Carbon Ob-
servation System (ICOS) stations. Simulated XCH4 concen-
trations without taking into account the a priori information
and averaging kernels from satellite retrievals were also com-
puted to evaluate smoothing effects.

Model–observation discrepancies on near-surface CH4
concentration (10 m) indicate a significant overestimation on
the order of 200–300 ppb during winter months. Compar-
atively, model–observation discrepancies on CH4 concen-
tration at upper levels (50 and 100 m) were noticeably re-
duced with increasing height. The bias reductions in this
case are attributed to a diminishing influence of surface
emissions on both magnitude and variability in CH4 con-
centrations. In terms of XCH4, a better representation was
found with the simulated profiles without smoothing – it
was related to a CH4 offset (against the anthropogenic
emissions contribution) as the atmospheric layer above the
model top was not vertically integrated in Eq (3). Based on
the smoothed concentrations, model–observation discrepan-
cies reached their maximum values during winter months
(differences in median concentrations between 40–50 ppb),
while they reached their minimum values during the sum-
mer peak season (differences in median concentrations be-
tween 20–30 ppb). Domain-wide correlation coefficients and
root-mean-square errors ranged from 0.4 to 0.5 and from 27
to 30 ppb, respectively, for summer months, and from 0.1 to
0.4 and from 33 to 50 ppb, respectively, for winter months.
The higher model–observation discrepancies on XCH4 con-
centration found during winter months are largely related
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Figure 8. Temporal mean spatial distributions with and without smoothing of simulated XCH4 concentration (a, e), XCH4 enhancement
above background (EAB) (b, f), XCH4 enhancement from human activities (EHA) (c, g), and the contribution of anthropogenic sources to
the XCH4 concentration (d, h). Concentrations were averaged for grid points with satellite measurements during the period from 1 May to
31 August 2018, the period with the best model performance for smoothed concentrations (see Fig. 4).

to a significant overestimation of anthropogenic emissions;
however, a systematic bias related to background signals
should be also embedded in the model bias, in both sce-
narios with and without smoothing. The XCH4 enhance-
ment above background concentrations depended almost en-
tirely on the CH4 contribution from anthropogenic sources;
however, these sources contributed with only up to 2 % to
the XCH4 concentration. XCH4 signals from natural sources
(wetlands and termites) and biomass burning were not rele-
vant during the study period.

The results found in this study are in line with previous
studies conducted over urban areas in central Europe and,
thus, demonstrate a huge potential for CH4 inverse mod-
elling using updated TROPOMI XCH4 data sets in large-
scale applications. As discussed in Sect. 3, the model results
suggest a significant overestimation of anthropogenic emis-
sions during winter months. Therefore, for a better constraint
of monthly country-scale fluxes of CH4, an inverse analysis
method taking full advantage of all satellite data available for
a given month might provide much more accurate emission
estimates. Ongoing work is being conducted in this direction
and will be published in a second part.

Appendix A: Model running process

As a detailed description on how to run WRF-GHG can be
found in Beck et al. (2011), only the initialization process,
which can vary depending on specific requirements, is sum-
marized here. Firstly, moving simulations of 97 h were per-

formed automatically for each month so that the number of
97 h simulations in a given month constitutes a cycle in our
automated bash routines. Each cycle begins, through its first
moving simulation, with initial and boundary conditions pre-
viously prepared from a 7 d simulation which ends at the ini-
tialization time of the cycle at YYYY-MM-DD 00:00:00 (ac-
cording to WRF-GHG date and time format). Most of this
7 d simulation is discarded as spin-up time, and only the last
hour is saved to be used as initial conditions in the first mov-
ing simulation. Then, when the first moving simulation ends,
the second one begins right after it with initial conditions
prepared from the first moving simulation at YYYY-MM-
D+1 00:00:00 and goes ahead to complete a 97 h simula-
tion length at YYYY-MM-D+5 00:00:00. The third moving
simulation will begin right after the second one ends, with
initial conditions prepared from the second moving simula-
tion at YYYY-MM-D+2 00:00:00, and will go ahead to com-
plete a 97 h simulation length at YYYY-MM-D+6 00:00:00.
This process will continue to complete the cycle, with the
same procedures being applied to the other 11 remaining cy-
cles. The boundary conditions are prepared from CAM-chem
data during the preprocessing part in each moving simula-
tion. With this methodology, all satellite data available for a
given month could potentially be ingested in sets of simu-
lations going up to 73 h backward in time. As the first day
of each moving simulation is used as spin-up time, it is dis-
carded and only the second day is used for model evalua-
tion. The simulations were executed on LUMI (Large Uni-
fied Modern Infrastructure), which is a pan-European pre-
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exascale supercomputer able to provide a computing power
of up to 552 petaflops.

Code and data availability. The WRF-Chem model code version
4.3 is freely distributed by NCAR at https://www2.mmm.ucar.edu/
wrf/users/download/get_source.html (Skamarock et al., 2021). The
WRF-Chem preprocessor tools anthro_emis, fire_emis, and mozbc
are provided by NCAR at https://www2.acom.ucar.edu/wrf-chem/
wrf-chem-tools-community (Atmospheric Chemistry Observations
and Modeling Lab of NCAR, 2022). Run control files, pre-
processing and postprocessing scripts, and relevant primary in-
put/output data sets needed to replicate the modelling results
in this work can be found in the following Zenodo repository:
https://doi.org/10.5281/zenodo.7899895 (Vara-Vela et al., 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-6413-2023-supplement.
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