Articles | Volume 16, issue 20
https://doi.org/10.5194/gmd-16-5729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
QES-Plume v1.0: a Lagrangian dispersion model
Fabien Margairaz
CORRESPONDING AUTHOR
Department of Mechanical Engineering, University of Utah, 1495 E 100 S, Salt Lake City, UT, USA
Balwinder Singh
Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, USA
Jeremy A. Gibbs
NOAA/OAR National Severe Storms Laboratory, Norman, OK, USA
Loren Atwood
Department of Mechanical Engineering, University of Utah, 1495 E 100 S, Salt Lake City, UT, USA
Eric R. Pardyjak
Department of Mechanical Engineering, University of Utah, 1495 E 100 S, Salt Lake City, UT, USA
Rob Stoll
Department of Mechanical Engineering, University of Utah, 1495 E 100 S, Salt Lake City, UT, USA
Related authors
No articles found.
Spencer Donovan, Dhiraj K. Singh, Timothy J. Garrett, and Eric R. Pardyjak
EGUsphere, https://doi.org/10.5194/egusphere-2025-3060, https://doi.org/10.5194/egusphere-2025-3060, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Accurate snowfall prediction requires quantifying how snowflakes interact with atmospheric turbulence. Using field-based imaging techniques, we directly measured the mass, size, density, and fall speed of snowflakes in surface-layer turbulence. We found that turbulence and microstructure jointly modulate fall speed, often deviating from the terminal velocity in still air. These results inform new parameterizations for numerical weather and climate models.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Taufiq Hassan, Kai Zhang, Jianfeng Li, Balwinder Singh, Shixuan Zhang, Hailong Wang, and Po-Lun Ma
Geosci. Model Dev., 17, 3507–3532, https://doi.org/10.5194/gmd-17-3507-2024, https://doi.org/10.5194/gmd-17-3507-2024, 2024
Short summary
Short summary
Anthropogenic aerosol emissions are an essential part of global aerosol models. Significant errors can exist from the loss of emission heterogeneity. We introduced an emission treatment that significantly improved aerosol emission heterogeneity in high-resolution model simulations, with improvements in simulated aerosol surface concentrations. The emission treatment will provide a more accurate representation of aerosol emissions and their effects on climate.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
Geosci. Model Dev., 17, 3111–3135, https://doi.org/10.5194/gmd-17-3111-2024, https://doi.org/10.5194/gmd-17-3111-2024, 2024
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of cloud radiative heating and those examining its covariance with circulations. This paper documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud radiative heating impacts circulations and rainfall patterns.
Yu Yao, Po-Lun Ma, Yi Qin, Matthew W. Christensen, Hui Wan, Kai Zhang, Balwinder Singh, Meng Huang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-523, https://doi.org/10.5194/egusphere-2024-523, 2024
Preprint withdrawn
Short summary
Short summary
Giant aerosols have substantial effects on warm rain formation. However, it remains challenging to quantify the impact of giant particles at global scale. In this work, we applied earth system model to investigate its impacts by implementing new giant aerosol treatments to consider its physical process. We found this approach substantially affect liquid cloud and improved model's precipitation response to aerosols. Our findings demonstrate the significant impact of giant aerosols on climate.
Jianfeng Li, Kai Zhang, Taufiq Hassan, Shixuan Zhang, Po-Lun Ma, Balwinder Singh, Qiyang Yan, and Huilin Huang
Geosci. Model Dev., 17, 1327–1347, https://doi.org/10.5194/gmd-17-1327-2024, https://doi.org/10.5194/gmd-17-1327-2024, 2024
Short summary
Short summary
By comparing E3SM simulations with and without regional refinement, we find that model horizontal grid spacing considerably affects the simulated aerosol mass budget, aerosol–cloud interactions, and the effective radiative forcing of anthropogenic aerosols. The study identifies the critical physical processes strongly influenced by model resolution. It also highlights the benefit of applying regional refinement in future modeling studies at higher or even convection-permitting resolutions.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Aishwarya Raman, Thomas Hill, Paul J. DeMott, Balwinder Singh, Kai Zhang, Po-Lun Ma, Mingxuan Wu, Hailong Wang, Simon P. Alexander, and Susannah M. Burrows
Atmos. Chem. Phys., 23, 5735–5762, https://doi.org/10.5194/acp-23-5735-2023, https://doi.org/10.5194/acp-23-5735-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) play an important role in cloud processes and associated precipitation. Yet, INPs are not accurately represented in climate models. This study attempts to uncover these gaps by comparing model-simulated INP concentrations against field campaign measurements in the SO for an entire year, 2017–2018. Differences in INP concentrations and variability between the model and observations have major implications for modeling cloud properties in high latitudes.
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Jonathan D. Labriola, Jeremy A. Gibbs, and Louis J. Wicker
Geosci. Model Dev., 16, 1779–1799, https://doi.org/10.5194/gmd-16-1779-2023, https://doi.org/10.5194/gmd-16-1779-2023, 2023
Short summary
Short summary
Observing system simulation experiments (OSSEs) are simulated case studies used to understand how different assimilated weather observations impact forecast skill. This study introduces the methods used to create an OSSE for a tornadic quasi-linear convective system event. These steps provide an opportunity to simulate a realistic high-impact weather event and can be used to encourage a more diverse set of OSSEs.
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022, https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
Short summary
Here we analyze the effective aerosol forcing simulated by E3SM version 1 using both century-long free-running and short nudged simulations. The aerosol forcing in E3SMv1 is relatively large compared to other models, mainly due to the large indirect aerosol effect. Aerosol-induced changes in liquid and ice cloud properties in E3SMv1 have a strong correlation. The aerosol forcing estimates in E3SMv1 are sensitive to the parameterization changes in both liquid and ice cloud processes.
Susannah M. Burrows, Richard C. Easter, Xiaohong Liu, Po-Lun Ma, Hailong Wang, Scott M. Elliott, Balwinder Singh, Kai Zhang, and Philip J. Rasch
Atmos. Chem. Phys., 22, 5223–5251, https://doi.org/10.5194/acp-22-5223-2022, https://doi.org/10.5194/acp-22-5223-2022, 2022
Short summary
Short summary
Sea spray particles are composed of a mixture of salts and organic substances from oceanic microorganisms. In prior work, our team developed an approach connecting sea spray chemistry to ocean biology, called OCEANFILMS. Here we describe its implementation within an Earth system model, E3SM. We show that simulated sea spray chemistry is consistent with observed seasonal cycles and that sunlight reflected by simulated Southern Ocean clouds increases, consistent with analysis of satellite data.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Karlie N. Rees, Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Chem. Phys., 21, 14235–14250, https://doi.org/10.5194/acp-21-14235-2021, https://doi.org/10.5194/acp-21-14235-2021, 2021
Short summary
Short summary
Accurate predictions of weather and climate require descriptions of the mass and density of snowflakes as a function of their size. Few measurements have been obtained to date because snowflakes are so small and fragile. This article describes results from a new instrument that automatically measures individual snowflake size, mass, and density. Key findings are that small snowflakes have much lower densities than is often assumed and that snowflake density increases with temperature.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021, https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter, but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX SOA concentration changes. The explicit chemistry predicted substantial changes in IEPOX SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physicochemical dependencies in future SOA prediction.
Cited articles
Archambeau, F., Méchitoua, N., and Sakiz, M.: Code Saturne: A Finite Volume Code for the computation of turbulent incompressible flows – Industrial Applications, International Journal on Finite Volumes, 1, https://hal.science/hal-01115371 (last access: 26 September 2023), 2004. a
Aylor, D.: Aerial Dispersal of Pollen and Spores, The American Phytopathological Society, St. Paul, Minnesota, USA, https://doi.org/10.1094/9780890545430, 2017. a
Aylor, D. E.: Spread of plant disease on a continental scale: role of aerial dispersal of pathogens, Ecology, 84, 1989–1997, https://doi.org/10.1890/01-0619, 2003. a
Bahlali, M. L., Dupont, E., and Carissimo, B.: A hybrid CFD RANS/Lagrangian approach to model atmospheric dispersion of pollutants in complex urban geometries, Int. J. Environ. Pollut., 64, 74–89, https://doi.org/10.1504/ijep.2018.099150, 2018. a
Bahlali, M. L., Dupont, E., and Carissimo, B.: Atmospheric dispersion using a Lagrangian stochastic approach: Application to an idealized urban area under neutral and stable meteorological conditions, J. Wind Eng. Ind. Aerod., 193, 103976, https://doi.org/10.1016/j.jweia.2019.103976, 2019. a
Bahlali, M. L., Henry, C., and Carissimo, B.: On the Well-Mixed Condition and Consistency Issues in Hybrid Eulerian/Lagrangian Stochastic Models of Dispersion, Bound.-Lay. Meteorol., 174, 275–296, https://doi.org/10.1007/s10546-019-00486-9, 2020. a, b, c
Bozorgmehr, B., Willemsen, P., Gibbs, J. A., Stoll, R., Kim, J.-J., and Pardyjak, E. R.: Utilizing dynamic parallelism in CUDA to accelerate a 3D red-black successive over relaxation wind-field solver, Environ. Modell. Softw., 137, 104958, https://doi.org/10.1016/j.envsoft.2021.104958, 2021. a, b
Britter, R. E. and Hanna, S. R.: Flow and Dispersion in Urban Areas, Annu. Rev. Fluid Mech., 35, 469–496, https://doi.org/10.1146/annurev.fluid.35.101101.161147, 2003. a, b
Brown, M., Lawson, R., Decroix, D., and Lee, R.: Mean Flow and Turbulence Measurement around a 2-D Array of Buildings in a Wind Tunnel, in: 11th Joint Conference on the Applications of Air Pollution Meteorology with the AWMA, Long Beach, CA, 9–14 January 2000, https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63740&Lab=NERL (last access: 26 September 2023), 2000. a, b
Brown, M. J., Arya, S. P., and Snyder, W. H.: Vertical Dispersion from Surface and Elevated Releases: An Investigation of a Non-Gaussian Plume Model, J. Appl. Meteorol., 32, 490–505, https://doi.org/10.1175/1520-0450(1993)032<0490:vdfsae>2.0.co;2, 1993. a, b
Brown, M. J., Arya, S. P., and Snyder, W. H.: Plume: Descriptors derived from a non-Gaussian concentration model, Atmos. Environ., 31, 183–189, https://doi.org/10.1016/1352-2310(96)00487-6, 1997. a, b
Brown, M. J., Gowardhan, A. A., Nelson, M. A., Williams, M. D., and Pardyjak, E. R.: QUIC transport and dispersion modelling of two releases from the Joint Urban 2003 field experiment, Int. J. Environ. Pollut., 52, 263–287, https://doi.org/10.1504/ijep.2013.058458, 2013. a
Brunet, Y.: Turbulent Flow in Plant Canopies: Historical Perspective and Overview, Bound.-Lay. Meteorol., 177, 315–364, https://doi.org/10.1007/s10546-020-00560-7, 2020. a, b, c
Brzozowska, L.: Validation of a Lagrangian particle model, Atmos. Environ., 70, 218–226, https://doi.org/10.1016/j.atmosenv.2013.01.015, 2013. a, b
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006. a
Carissimo, B., Castelli, S. T., and Tinarelli, G.: JRII special sonic anemometer study: A first comparison of building wakes measurements with different levels of numerical modelling approaches, Atmos. Environ., 244, 117798, https://doi.org/10.1016/j.atmosenv.2020.117798, 2021. a
Castelli, S. T., Ferrero, E., and Anfossi, D.: Turbulence Closures In Neutral Boundary Layer Over Complex Terrain, Bound.-Lay. Meteorol., 100, 405–419, https://doi.org/10.1023/a:1019208518127, 2001. a
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation, Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004. a
Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R., Wilson, R. B., Lee, R. F., Peters, W. D., and Brode, R. W.: AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization, J. Appl. Meteorol., 44, 682–693, https://doi.org/10.1175/jam2227.1, 2005. a
Dreeben, T. D. and Pope, S. B.: Probability density function and Reynolds‐stress modeling of near‐wall turbulent flows, Phys. Fluids, 9, 154–163, https://doi.org/10.1063/1.869157, 1997. a
Du, S.: Universality of the Lagrangian Velocity Structure Function Constant (C0) Across Different Kinds of Turbulence, Bound.-Lay. Meteorol., 83, 207–219, https://doi.org/10.1023/a:1000216809160, 1997. a
Finnigan, J.: Turbulence in Plant Canopies, Annu. Rev. Fluid Mech., 32, 519–571, https://doi.org/10.1146/annurev.fluid.32.1.519, 2000. a, b
Gowardhan, A. A., Brown, M. J., and Pardyjak, E. R.: Evaluation of a fast response pressure solver for flow around an isolated cube, Environ. Fluid Mech., 10, 311–328, https://doi.org/10.1007/s10652-009-9152-5, 2010. a
Gowardhan, A. A., Pardyjak, E. R., Senocak, I., and Brown, M. J.: A CFD-based wind solver for an urban fast response transport and dispersion model, Environ. Fluid Mech., 11, 439–464, https://doi.org/10.1007/s10652-011-9211-6, 2011. a
Gowardhan, A. A., McGuffin, D. L., Lucas, D. D., Neuscamman, S. J., Alvarez, O., and Glascoe, L. G.: Large Eddy Simulations of Turbulent and Buoyant Flows in Urban and Complex Terrain Areas Using the Aeolus Model, Atmosphere, 12, 1107, https://doi.org/10.3390/atmos12091107, 2021. a
Hanna, S. R., Britter, R., and Franzese, P.: A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data, Atmos. Environ., 37, 5069–5082, https://doi.org/10.1016/j.atmosenv.2003.08.014, 2003. a
Hayati, A. N., Stoll, R., Pardyjak, E. R., Harman, T., and Kim, J.: Comparative metrics for computational approaches in non-uniform street-canyon flows, Build. Environ., 158, 16–27, https://doi.org/10.1016/j.buildenv.2019.04.028, 2019. a
Hertwig, D., Soulhac, L., Fuka, V., Auerswald, T., Carpentieri, M., Hayden, P., Robins, A., Xie, Z.-T., and Coceal, O.: Evaluation of fast atmospheric dispersion models in a regular street network, Environ. Fluid Mech., 18, 1007–1044, https://doi.org/10.1007/s10652-018-9587-7, 2018. a, b
Horn, R. A. and Johnson, C. R.: Matrix Analysis, Cambridge University Press, 2 edn., https://doi.org/10.1017/CBO9781139020411, 2012. a
Huang, C.: A theory of dispersion in turbulent shear flow, Atmos. Environ., 13, 453–463, https://doi.org/10.1016/0004-6981(79)90139-2, 1979. a
Kim, J., Moin, P., and Moser, R: Turbulence statistics in fully developed channel flow at low Reynolds number, J. of Fluid Mech., 177, 133–166, https://doi.org/10.1017/S0022112087000892, 1987. a
Langevin, M. P.: Sur la théorie du mouvement brownien, Note de M. P. Langevin, présentée par M. Mascart, Comptes rendus hebdomadaires des séances de l’Académie des sciences, Série physique, Séance du 9 mars 1908, tome 146, 530–533, https://www.biodiversitylibrary.org/item/31405#page/538/mode/1up (last access: 26 September 2023), 1908. a
Legg, B. J.: Movement of plant pathogens in the crop canopy, Philos. T. Roy. Soc. Lon. B, 302, 559–574, https://doi.org/10.1098/rstb.1983.0075, 1983. a
Mahaffee, W. F., Margairaz, F., Ulmer, L., Bailey, B. N., and Stoll, R.: Catching Spores: Linking Epidemiology, Pathogen Biology, and Physics to Ground-Based Airborne Inoculum Monitoring, Plant Disease, 107, 13–33, https://doi.org/10.1094/pdis-11-21-2570-fe, 2023. a
Margairaz, F., Bozorgmehr, B., Gibbs, J., Singh, B., Willemsen, P., Pardyjak, E., and Stoll, R.: UtahEFD/QES-Public: v2.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.7314219, 2022a. a, b, c
Margairaz, F., Eshagh, H., Hayati, A. N., Pardyjak, E. R., and Stoll, R.: Development and evaluation of an isolated-tree flow model for neutral-stability conditions, Urban Climate, 42, 101083, https://doi.org/10.1016/j.uclim.2022.101083, 2022b. a, b
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Miller, N. E., Stoll, R., Mahaffee, W. F., and Neill, T. M.: Heavy particle transport in a trellised agricultural canopy during non-row-aligned winds, Agr. Forest Meteorol., 256, 125–136, https://doi.org/10.1016/j.agrformet.2018.02.032, 2018. a
Oettl, D.: Evaluation of the Revised Lagrangian Particle Model GRAL Against Wind-Tunnel and Field Observations in the Presence of Obstacles, Bound.-Lay. Meteorol., 155, 271–287, https://doi.org/10.1007/s10546-014-9993-4, 2015. a
Pardyjak, E., Speckart, S., Yin, F., and Veranth, J.: Near source deposition of vehicle generated fugitive dust on vegetation and buildings: Model development and theory, Atmos. Environ., 42, 6442–6452, https://doi.org/10.1016/j.atmosenv.2008.04.024, 2008. a, b
Philips, D. A., Rossi, R., and Iaccarino, G.: Large-eddy simulation of passive scalar dispersion in an urban-like canopy, J. Fluid Mech., 723, 404–428, https://doi.org/10.1017/jfm.2013.135, 2013. a
Pirhalla, M., Heist, D., Perry, S., Tang, W., and Brouwer, L.: Simulations of dispersion through an irregular urban building array, Atmos. Environ., 258, 118500, https://doi.org/10.1016/j.atmosenv.2021.118500, 2021. a
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019. a
Pope, S. B.: Consistency conditions for random-walk models of turbulent dispersion, Phys. Fluids, 30, 2374–2379, https://doi.org/10.1063/1.866127, 1987. a
Postma, J. V.: Timestep Buffering to Preserve the Well-Mixed Condition in Lagrangian Stochastic Simulations, Bound.-Lay. Meteorol., 156, 15–36, https://doi.org/10.1007/s10546-015-0013-0, 2015. a
Postma, J. V., Yee, E., and Wilson, J. D.: First-Order Inconsistencies Caused by Rogue Trajectories, Bound.-Lay. Meteorol., 144, 431–439, https://doi.org/10.1007/s10546-012-9732-7, 2012. a
Prussin, A. J., Marr, L. C., Schmale, D. G., Stoll, R., and Ross, S. D.: Experimental validation of a long-distance transport model for plant pathogens: Application to Fusarium graminearum, Agr. Forest Meteorol., 203, 118–130, https://doi.org/10.1016/j.agrformet.2014.12.009, 2015. a
Ramamurthy, P., Pardyjak, E. R., and Klewicki, J. C.: Observations of the Effects of Atmospheric Stability on Turbulence Statistics Deep within an Urban Street Canyon, J. Appl. Meteorol. and Climatology, 46, 2074–2085, https://doi.org/10.1175/2007jamc1296.1, 2007. a
Ramli, Huda Mohd. and Esler, J. G.: Quantitative evaluation of numerical integration schemes for Lagrangian particle dispersion models, Geosci. Model Dev., 9, 2441–2457, https://doi.org/10.5194/gmd-9-2441-2016, 2016. a
Rew, R., Davis, G., Emmerson, S., Cormack, C., Caron, J., Pincus, R., Hartnett, E., Heimbigner, D., Appel, L., and Fisher, W.: Unidata NetCDF, UCAR [code and software], https://doi.org/10.5065/D6H70CW6, 1989. a
Rodean, H. C.: The universal constant for the Lagrangian structure function, Phys. Fluids A-Fluid, 3, 1479–1480, https://doi.org/10.1063/1.857984, 1991. a, b
Rodean, H. C.: Stochastic Lagrangian Models of Turbulent Diffusion, American Meteorological Society, Boston, MA, https://doi.org/10.1007/978-1-935704-11-9, 1996. a, b, c, d
Roth, M.: Review of atmospheric turbulence over cities, Q. J. Roy. Meteor. Soc., 126, 941–990, https://doi.org/10.1002/qj.49712656409, 2000. a, b
Sasaki, Y.: Some Basic Formalisms in Numerical Variational Analysis, Mon. Weather Rev., 98, 875–883, https://doi.org/10.1175/1520-0493(1970)098<0875:sbfinv>2.3.co;2, 1970. a
Sherman, C. A.: A Mass-Consistent Model for Wind Fields over Complex Terrain, J. Appl. Meteorol., 17, 312–319, https://doi.org/10.1175/1520-0450(1978)017<0312:amcmfw>2.0.co;2, 1978. a
Singh, B., Pardyjak, E., Norgren, A., and Willemsen, P.: Accelerating urban fast response Lagrangian dispersion simulations using inexpensive graphics processor parallelism, Environ. Modell. Softw., 26, 739–750, https://doi.org/10.1016/j.envsoft.2010.12.011, 2011. a
Smagorinsky, J.: General circulation experiments with primirive equations, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2, 1963. a
Soulhac, L., Salizzoni, P., Cierco, F.-X., and Perkins, R.: The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model, Atmos. Environ., 45, 7379–7395, https://doi.org/10.1016/j.atmosenv.2011.07.008, 2011. a, b
Stiperski, I. and Calaf, M.: Generalizing Monin-Obukhov Similarity Theory (1954) for Complex Atmospheric Turbulence, Phys. Rev. Lett., 130, 124001, https://doi.org/10.1103/physrevlett.130.124001, 2023. a
Stockie, J. M.: The Mathematics of Atmospheric Dispersion Modeling, SIAM Rev., 53, 349–372, https://doi.org/10.1137/10080991x, 2011. a
Stoll, R. and Porté-Agel, F.: Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain, Water Resour. Res., 42, 2719–2728, https://doi.org/10.1029/2005wr003989, 2006. a
Taylor, G. I.: Diffusion by Continuous Movements, P. Lond. Math. Soc., s2-20, 196–212, https://doi.org/10.1112/plms/s2-20.1.196, 1921. a
Thiessen, L. D., Keune, J. A., Neill, T. M., Turechek, W. W., Grove, G. G., and Mahaffee, W. F.: Development of a grower‐conducted inoculum detection assay for management of grape powdery mildew, Plant Pathol., 65, 238–249, https://doi.org/10.1111/ppa.12421, 2016. a, b
Thomson, D. J.: Random walk modelling of diffusion in inhomogeneous turbulence, Q. J. Roy. Meteor. Soc., 110, 1107–1120, https://doi.org/10.1002/qj.49711046620, 1984. a
Thomson, D. J.: Criteria for the selection of stochastic models of particle trajectories in turbulent flows, J. Fluid Mech., 180, 529–556, https://doi.org/10.1017/s0022112087001940, 1987. a, b, c, d
Thomson, D. J., Physick, W. L., and Maryon, R. H.: Treatment of Interfaces in Random Walk Dispersion Models, J. Appl. Meteorol., 36, 1284–1295, https://doi.org/10.1175/1520-0450(1997)036<1284:toiirw>2.0.co;2, 1997. a
Tinarelli, G., Mortarini, L., Castelli, S. T., Carlino, G., Moussafir, J., Olry, C., Armand, P., and Anfossi, D.: Review and Validation of MicroSpray, a Lagrangian Particle Model of Turbulent Dispersion. In Lagrangian Modeling of the Atmospherem, edited by: Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P., https://doi.org/10.1029/2012GM001242, 2012. a
Ulmer, L., Margairaz, F., Bailey, B. N., Mahaffee, W. F., Pardyjak, E. R., and Stoll, R.: A fast-response, wind angle-sensitive model for predicting mean winds in row-organized canopies, Agr. Forest Meteorol., 329, 109273, https://doi.org/10.1016/j.agrformet.2022.109273, 2023. a
US EPA Office Of Research And Development: CMAQ, Zenodo [software], https://doi.org/10.5281/zenodo.4081737, 2020. a
Vachat, R. D.: Realizability inequalities in turbulent flows, Phys. Fluids, 20, 551–556, https://doi.org/10.1063/1.861911, 1977. a
Wilson, J. D.: “Rogue Velocities” in a Lagrangian Stochastic Model for Idealized Inhomogeneous Turbulence. In Lagrangian Modeling of the Atmosphere, edited by: Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P., https://doi.org/10.1029/2012GM001235, 2012. a
Short summary
The Quick Environmental Simulation (QES) tool is a low-computational-cost fast-response framework. It provides high-resolution wind and concentration information to study complex problems, such as spore or smoke transport, urban pollution, and air quality. This paper presents the particle dispersion model and its validation against analytical solutions and wind-tunnel data for a mock-urban setting. In all cases, the model provides accurate results with competitive computational performance.
The Quick Environmental Simulation (QES) tool is a low-computational-cost fast-response...