Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5237-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5237-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
J-GAIN v1.1: a flexible tool to incorporate aerosol formation rates obtained by molecular models into large-scale models
Swedish Meteorological and Hydrological Institute (SMHI), 60176 Norrköping, Sweden
Tinja Olenius
CORRESPONDING AUTHOR
Swedish Meteorological and Hydrological Institute (SMHI), 60176 Norrköping, Sweden
Related authors
Carl Svenhag, Pontus Roldin, Tinja Olenius, Robin Wollesen de Jonge, Sara M. Blichner, Daniel Yazgi, and Moa K. Sporre
Atmos. Chem. Phys., 25, 11483–11504, https://doi.org/10.5194/acp-25-11483-2025, https://doi.org/10.5194/acp-25-11483-2025, 2025
Short summary
Short summary
This study is an investigation of the model representation of how particles are formed and grow in the atmosphere. Using modelled and observed data from two boreal forest stations in 2018, we identify key factors for new particle formation to improve particle climate predictions in the global EC-Earth3 model. Comparisons with the detailed ADCHEM model show that adding ammonia improves particle growth predictions, though EC-Earth3 still greatly underestimates the number of particles during warmer months.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Shoma Yamanouchi, Shayamilla Mahagammulla Gamage, Sara Torbatian, Jad Zalzal, Laura Minet, Audrey Smargiassi, Ying Liu, Ling Liu, Forood Azargoshasbi, Jinwoong Kim, Youngseob Kim, Daniel Yazgi, and Marianne Hatzopoulou
Geosci. Model Dev., 17, 3579–3597, https://doi.org/10.5194/gmd-17-3579-2024, https://doi.org/10.5194/gmd-17-3579-2024, 2024
Short summary
Short summary
Air pollution is a major health hazard, and chemical transport models (CTMs) are valuable tools that aid in our understanding of the risks of air pollution at both local and regional scales. In this study, the Polair3D CTM of the Polyphemus air quality modeling platform was set up over Quebec, Canada, to assess the model’s capability in predicting key air pollutant species over the region, at seasonal temporal scales and at regional spatial scales.
Carl Svenhag, Pontus Roldin, Tinja Olenius, Robin Wollesen de Jonge, Sara M. Blichner, Daniel Yazgi, and Moa K. Sporre
Atmos. Chem. Phys., 25, 11483–11504, https://doi.org/10.5194/acp-25-11483-2025, https://doi.org/10.5194/acp-25-11483-2025, 2025
Short summary
Short summary
This study is an investigation of the model representation of how particles are formed and grow in the atmosphere. Using modelled and observed data from two boreal forest stations in 2018, we identify key factors for new particle formation to improve particle climate predictions in the global EC-Earth3 model. Comparisons with the detailed ADCHEM model show that adding ammonia improves particle growth predictions, though EC-Earth3 still greatly underestimates the number of particles during warmer months.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Shoma Yamanouchi, Shayamilla Mahagammulla Gamage, Sara Torbatian, Jad Zalzal, Laura Minet, Audrey Smargiassi, Ying Liu, Ling Liu, Forood Azargoshasbi, Jinwoong Kim, Youngseob Kim, Daniel Yazgi, and Marianne Hatzopoulou
Geosci. Model Dev., 17, 3579–3597, https://doi.org/10.5194/gmd-17-3579-2024, https://doi.org/10.5194/gmd-17-3579-2024, 2024
Short summary
Short summary
Air pollution is a major health hazard, and chemical transport models (CTMs) are valuable tools that aid in our understanding of the risks of air pollution at both local and regional scales. In this study, the Polair3D CTM of the Polyphemus air quality modeling platform was set up over Quebec, Canada, to assess the model’s capability in predicting key air pollutant species over the region, at seasonal temporal scales and at regional spatial scales.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Putian Zhou, Tinja Olenius, Pontus Roldin, and Michael Boy
Geosci. Model Dev., 15, 7257–7286, https://doi.org/10.5194/gmd-15-7257-2022, https://doi.org/10.5194/gmd-15-7257-2022, 2022
Short summary
Short summary
Atmospheric chemistry and aerosol processes form a dynamic and sensitively balanced system, and solving problems regarding air quality or climate requires detailed modelling and coupling of the processes. The models involved are often very complex to use. We have addressed this problem with the new ARCA box model. It puts much of the current knowledge of the nano- and microscale aerosol dynamics and chemistry into usable software and has the potential to become a valuable tool in the community.
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020, https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Cited articles
Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F.,
Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A.,
Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R.,
Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen,
H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin,
A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V.,
Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela,
A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L.,
Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R.,
Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé,
A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen,
A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C.,
Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J.,
Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular
understanding of sulphuric acid–amine particle nucleation in the
atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. a, b, c
Baranizadeh, E., Murphy, B. N., Julin, J., Falahat, S., Reddington, C. L., Arola, A., Ahlm, L., Mikkonen, S., Fountoukis, C., Patoulias, D., Minikin, A., Hamburger, T., Laaksonen, A., Pandis, S. N., Vehkamäki, H., Lehtinen, K. E. J., and Riipinen, I.: Implementation of state-of-the-art ternary new-particle formation scheme to the regional chemical transport model PMCAMx-UF in Europe, Geosci. Model Dev., 9, 2741–2754, https://doi.org/10.5194/gmd-9-2741-2016, 2016. a
Bergman, T., Laaksonen, A., Korhonen, H., Malila, J., Dunne, E. M., Mielonen,
T., Lehtinen, K. E. J., Kühn, T., Arola, A., and Kokkola, H.: Geographical
and diurnal features of amine-enhanced boundary layer nucleation, J. Geophys.
Res.-Atmos., 120, 9606–9624, https://doi.org/10.1002/2015JD023181, 2015. a, b
Besel, V., Kubečka, J., Kurtén, T., and Vehkamäki, H.: Impact of Quantum
Chemistry Parameter Choices and Cluster Distribution Model
Settings on Modeled Atmospheric Particle Formation Rates, J.
Phys. Chem. A, 124, 5931–5943, https://doi.org/10.1021/acs.jpca.0c03984, 2020. a
Blichner, S. M., Sporre, M. K., Makkonen, R., and Berntsen, T. K.: Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2: comparison to observations and climate impacts, Geosci. Model Dev., 14, 3335–3359, https://doi.org/10.5194/gmd-14-3335-2021, 2021. a
Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson,
C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P.,
Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J.,
Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida,
R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J.,
Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov,
V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela,
A., Rap, A., Reddington, C. L. S., Riccobono, F., Richards, N. A. D.,
Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K.,
Simon, M., Sipilä, M., Smith, J. N., Stozkhov, Y., Tomé, A., Tröstl, J.,
Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw,
K. S.: Global atmospheric particle formation from CERN CLOUD
measurements, Science, 354, 1119–1124, https://doi.org/10.1126/science.aaf2649, 2016. a, b
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a
Ehrhart, S., Dunne, E. M., Manninen, H. E., Nieminen, T., Lelieveld, J., and Pozzer, A.: Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0, Geosci. Model Dev., 11, 4987–5001, https://doi.org/10.5194/gmd-11-4987-2018, 2018. a
Elm, J.: An Atmospheric Cluster Database Consisting of Sulfuric
Acid, Bases, Organics, and Water, ACS Omega, 4, 10965–10974,
https://doi.org/10.1021/acsomega.9b00860, 2019a. a
Elm, J.: Unexpected Growth Coordinate in Large Clusters Consisting of
Sulfuric Acid and C8H12O6 Tricarboxylic Acid, J. Phys. Chem. A,
123, 3170–3175, https://doi.org/10.1021/acs.jpca.9b00428, 2019b. a
Elm, J., Kubečka, J., Besel, V., Jääskeläinen, M. J., Halonen, R., Kurtén,
T., and Vehkamäki, H.: Modeling the formation and growth of atmospheric
molecular clusters: A review, J. Aerosol Sci., 149, 105621,
https://doi.org/10.1016/j.jaerosci.2020.105621, 2020. a, b, c
Fountoukis, C., Riipinen, I., Denier van der Gon, H. A. C., Charalampidis, P. E., Pilinis, C., Wiedensohler, A., O'Dowd, C., Putaud, J. P., Moerman, M., and Pandis, S. N.: Simulating ultrafine particle formation in Europe using a regional CTM: contribution of primary emissions versus secondary formation to aerosol number concentrations, Atmos. Chem. Phys., 12, 8663–8677, https://doi.org/10.5194/acp-12-8663-2012, 2012. a
Glasoe, W. A., Volz, K., Panta, B., Freshour, N., Bachman, R., Hanson, D. R.,
McMurry, P. H., and Jen, C.: Sulfuric acid nucleation: An experimental
study of the effect of seven bases, J. Geophys. Res.-Atmos., 120, 1933–1950,
https://doi.org/10.1002/2014JD022730, 2015. a
Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M.,
Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy,
J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle,
C. R., Kulmala, M., Kürten, A., Lehtipalo, K., Makhmutov, V., Molteni, U.,
Rissanen, M. P., Stozkhov, Y., Tröstl, J., Tsagkogeorgas, G., Wagner, R.,
Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.:
Causes and importance of new particle formation in the present-day and
preindustrial atmospheres, J. Geophys. Res.-Atmos., 122, 8739–8760,
https://doi.org/10.1002/2017JD026844, 2017. a, b, c
Henschel, H., Kurtén, T., and Vehkamäki, H.: Computational Study on the
Effect of Hydration on New Particle Formation in the Sulfuric
Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems, J. Phys.
Chem. A, 120, 1886–1896, https://doi.org/10.1021/acs.jpca.5b11366, 2016. a
Jen, C. N., McMurry, P. H., and Hanson, D. R.: Stabilization of sulfuric acid
dimers by ammonia, methylamine, dimethylamine, and trimethylamine, J.
Geophys. Res.-Atmos., 119, 7502–7514,
https://doi.org/10.1002/2014JD021592, 2014. a, b
Jen, C. N., Bachman, R., Zhao, J., McMurry, P. H., and Hanson, D. R.:
Diamine-sulfuric acid reactions are a potent source of new particle
formation, Geophys. Res. Lett., 43, 867–873, https://doi.org/10.1002/2015GL066958,
2016. a
Julin, J., Murphy, B. N., Patoulias, D., Fountoukis, C., Olenius, T., Pandis,
S. N., and Riipinen, I.: Impacts of Future European Emission
Reductions on Aerosol Particle Number Concentrations Accounting
for Effects of Ammonia, Amines, and Organic Species, Environ. Sci.
Technol., 52, 692–700, https://doi.org/10.1021/acs.est.7b05122, 2018. a
Kazil, J., Stier, P., Zhang, K., Quaas, J., Kinne, S., O'Donnell, D., Rast, S., Esch, M., Ferrachat, S., Lohmann, U., and Feichter, J.: Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 10, 10733–10752, https://doi.org/10.5194/acp-10-10733-2010, 2010. a
Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and Bianchi,
F.: Atmospheric new particle formation and growth: review of field
observations, Environ. Res. Lett., 13, 103003,
https://doi.org/10.1088/1748-9326/aadf3c, 2018. a
Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C.,
Heinritzi, M., Simon, M., Yan, C., Almeida, J., Tröstl, J., Nieminen, T.,
Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A.-K.,
Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A.,
Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J.,
Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M.,
Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,
Molteni, U., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T., Praplan,
A. P., Pringle, K., Rap, A., Richards, N. A. D., Riipinen, I., Rissanen,
M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld,
J. H., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tomé, A.,
Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E.,
Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J.,
Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw,
K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic particles,
Nature, 533, 521–526, https://doi.org/10.1038/nature17953, 2016. a, b
Kontkanen, J., Lehtipalo, K., Ahonen, L., Kangasluoma, J., Manninen, H. E., Hakala, J., Rose, C., Sellegri, K., Xiao, S., Wang, L., Qi, X., Nie, W., Ding, A., Yu, H., Lee, S., Kerminen, V.-M., Petäjä, T., and Kulmala, M.: Measurements of sub-3 nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities, Atmos. Chem. Phys., 17, 2163–2187, https://doi.org/10.5194/acp-17-2163-2017, 2017. a
Kürten, A., Bianchi, F., Almeida, J., Kupiainen-Määttä, O., Dunne, E. M.,
Duplissy, J., Williamson, C., Barmet, P., Breitenlechner, M., Dommen, J.,
Donahue, N. M., Flagan, R. C., Franchin, A., Gordon, H., Hakala, J., Hansel,
A., Heinritzi, M., Ickes, L., Jokinen, T., Kangasluoma, J., Kim, J., Kirkby,
J., Kupc, A., Lehtipalo, K., Leiminger, M., Makhmutov, V., Onnela, A.,
Ortega, I. K., Petäjä, T., Praplan, A. P., Riccobono, F., Rissanen, M. P.,
Rondo, L., Schnitzhofer, R., Schobesberger, S., Smith, J. N., Steiner, G.,
Stozhkov, Y., Tomé, A., Tröstl, J., Tsagkogeorgas, G., Wagner, P. E.,
Wimmer, D., Ye, P., Baltensperger, U., Carslaw, K., Kulmala, M., and Curtius,
J.: Experimental particle formation rates spanning tropospheric sulfuric acid
and ammonia abundances, ion production rates, and temperatures, J. Geophys.
Res.-Atmos., 121, 12377–12400, https://doi.org/10.1002/2015JD023908, 2016. a, b
Kürten, A., Li, C., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy, J., Flagan, R. C., Hakala, J., Jokinen, T., Kirkby, J., Kulmala, M., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M. P., Simon, M., Sipilä, M., Stozhkov, Y., Tröstl, J., Ye, P., and McMurry, P. H.: New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model, Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, 2018. a
Lee, Y. H., Pierce, J. R., and Adams, P. J.: Representation of nucleation mode microphysics in a global aerosol model with sectional microphysics, Geosci. Model Dev., 6, 1221–1232, https://doi.org/10.5194/gmd-6-1221-2013, 2013. a
Lehtinen, K. E. J., Dal Maso, M., Kulmala, M., and Kerminen, V.-M.: Estimating
nucleation rates from apparent particle formation rates and vice versa:
Revised formulation of the Kerminen–Kulmala equation, J. Aerosol
Sci., 38, 988–994, https://doi.org/10.1016/j.jaerosci.2007.06.009, 2007. a
Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R.,
Stolzenburg, D., Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S.,
Baumgartner, B., Bergen, A., Bernhammer, A.-K., Breitenlechner, M., Brilke,
S., Buchholz, A., Mazon, S. B., Chen, D., Chen, X., Dias, A., Dommen, J.,
Draper, D. C., Duplissy, J., Ehn, M., Finkenzeller, H., Fischer, L., Frege,
C., Fuchs, C., Garmash, O., Gordon, H., Hakala, J., He, X., Heikkinen, L.,
Heinritzi, M., Helm, J. C., Hofbauer, V., Hoyle, C. R., Jokinen, T.,
Kangasluoma, J., Kerminen, V.-M., Kim, C., Kirkby, J., Kontkanen, J.,
Kürten, A., Lawler, M. J., Mai, H., Mathot, S., Mauldin, R. L., Molteni, U.,
Nichman, L., Nie, W., Nieminen, T., Ojdanic, A., Onnela, A., Passananti, M.,
Petäjä, T., Piel, F., Pospisilova, V., Quéléver, L. L. J., Rissanen,
M. P., Rose, C., Sarnela, N., Schallhart, S., Schuchmann, S., Sengupta, K.,
Simon, M., Sipilä, M., Tauber, C., Tomé, A., Tröstl, J., Väisänen, O.,
Vogel, A. L., Volkamer, R., Wagner, A. C., Wang, M., Weitz, L., Wimmer, D.,
Ye, P., Ylisirniö, A., Zha, Q., Carslaw, K. S., Curtius, J., Donahue, N. M.,
Flagan, R. C., Hansel, A., Riipinen, I., Virtanen, A., Winkler, P. M.,
Baltensperger, U., Kulmala, M., and Worsnop, D. R.: Multicomponent new
particle formation from sulfuric acid, ammonia, and biogenic vapors, Sci.
Adv., 4, eaau5363, https://doi.org/10.1126/sciadv.aau5363, 2018. a
Li, C. and Signorell, R.: Understanding vapor nucleation on the molecular
level: A review, J. Aerosol Sci., 153, 105676,
https://doi.org/10.1016/j.jaerosci.2020.105676, 2021. a
Makkonen, R., Asmi, A., Kerminen, V.-M., Boy, M., Arneth, A., Guenther, A., and Kulmala, M.: BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2, Atmos. Chem. Phys., 12, 10077–10096, https://doi.org/10.5194/acp-12-10077-2012, 2012. a
Myllys, N., Kubečka, J., Besel, V., Alfaouri, D., Olenius, T., Smith, J. N., and Passananti, M.: Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation, Atmos. Chem. Phys., 19, 9753–9768, https://doi.org/10.5194/acp-19-9753-2019, 2019. a
Olenius, T. and Riipinen, I.: Molecular-resolution simulations of new particle
formation: Evaluation of common assumptions made in describing nucleation
in aerosol dynamics models, Aerosol Sci. Tech., 51, 397–408,
https://doi.org/10.1080/02786826.2016.1262530, 2017. a
Olenius, T. and Roldin, P.: Role of gas–molecular cluster–aerosol dynamics
in atmospheric new-particle formation, Sci. Rep., 12, 10135,
https://doi.org/10.1038/s41598-022-14525-y, 2022. a, b
Olenius, T., Kupiainen-Määttä, O., Ortega, I. K., Kurtén, T., and
Vehkamäki, H.: Free energy barrier in the growth of sulfuric acid–ammonia
and sulfuric acid–dimethylamine clusters, J. Chem. Phys., 139, 084312,
https://doi.org/10.1063/1.4819024, 2013. a, b
Olenius, T., Halonen, R., Kurtén, T., Henschel, H., Kupiainen-Määttä, O.,
Ortega, I. K., Jen, C. N., Vehkamäki, H., and Riipinen, I.: New particle
formation from sulfuric acid and amines: Comparison of monomethylamine,
dimethylamine, and trimethylamine, J. Geophys. Res.-Atmos., 122, 7103–7118,
https://doi.org/10.1002/2017JD026501, 2017. a, b
Patoulias, D. and Pandis, S. N.: Simulation of the effects of low-volatility organic compounds on aerosol number concentrations in Europe, Atmos. Chem. Phys., 22, 1689–1706, https://doi.org/10.5194/acp-22-1689-2022, 2022. a
Schade, G. W. and Crutzen, P. J.: Emission of aliphatic amines from animal
husbandry and their reactions: Potential source of N2O and HCN, J.
Atmos. Chem., 22, 319–346, https://doi.org/10.1007/BF00696641, 1995. a
Schervish, M. and Donahue, N. M.: Peroxy radical kinetics and new particle
formation, Environ. Sci. Atmos., 1, 79–92, https://doi.org/10.1039/D0EA00017E, 2021. a
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W.D., Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger, N., and Zanis, P.: Short-Lived Climate Forcers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 817–922, https://doi.org/10.1017/9781009157896.008, 2021. a
van Noije, T. P. C., Le Sager, P., Segers, A. J., van Velthoven, P. F. J., Krol, M. C., Hazeleger, W., Williams, A. G., and Chambers, S. D.: Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth, Geosci. Model Dev., 7, 2435–2475, https://doi.org/10.5194/gmd-7-2435-2014, 2014.
a
Xiao, M., Hoyle, C. R., Dada, L., Stolzenburg, D., Kürten, A., Wang, M., Lamkaddam, H., Garmash, O., Mentler, B., Molteni, U., Baccarini, A., Simon, M., He, X.-C., Lehtipalo, K., Ahonen, L. R., Baalbaki, R., Bauer, P. S., Beck, L., Bell, D., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A., Duplissy, J., Finkenzeller, H., Gordon, H., Hofbauer, V., Kim, C., Koenig, T. K., Lampilahti, J., Lee, C. P., Li, Z., Mai, H., Makhmutov, V., Manninen, H. E., Marten, R., Mathot, S., Mauldin, R. L., Nie, W., Onnela, A., Partoll, E., Petäjä, T., Pfeifer, J., Pospisilova, V., Quéléver, L. L. J., Rissanen, M., Schobesberger, S., Schuchmann, S., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A., Vazquez-Pufleau, M., Wagner, A. C., Wagner, R., Wang, Y., Weitz, L., Wimmer, D., Wu, Y., Yan, C., Ye, P., Ye, Q., Zha, Q., Zhou, X., Amorim, A., Carslaw, K., Curtius, J., Hansel, A., Volkamer, R., Winkler, P. M., Flagan, R. C., Kulmala, M., Worsnop, D. R., Kirkby, J., Donahue, N. M., Baltensperger, U., El Haddad, I., and Dommen, J.: The driving factors of new particle formation and growth in the polluted boundary layer, Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, 2021. a
Yazgi, D. and Olenius, T.: J-GAIN v1.1: Aerosol particle formation rate
look-up table generator and interpolator, Zenodo [code],
https://doi.org/10.5281/zenodo.8220223, 2023b. a, b
Yu, F.: Nucleation rate of particles in the lower atmosphere: Estimated time
needed to reach pseudo-steady state and sensitivity to H2SO4 gas
concentration, Geophys. Res. Lett., 30, 1526, https://doi.org/10.1029/2003GL017084, 2003. a
Yu, F., Nadykto, A. B., Luo, G., and Herb, J.: H2SO4–H2O binary and H2SO4–H2O–NH3 ternary homogeneous and ion-mediated nucleation: lookup tables version 1.0 for 3-D modeling application, Geosci. Model Dev., 13, 2663–2670, https://doi.org/10.5194/gmd-13-2663-2020, 2020. a
Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina,
L. T., and Molina, M. J.: Atmospheric New Particle Formation Enhanced
by Organic Acids, Science, 304, 1487–1490,
https://doi.org/10.1126/science.1095139, 2004. a
Short summary
We present flexible tools to implement aerosol formation rate predictions in climate and chemical transport models. New-particle formation is a significant but uncertain factor affecting aerosol numbers and an active field within molecular modeling which provides data for assessing formation rates for different chemical species. We introduce tools to generate and interpolate formation rate lookup tables for user-defined data, thus enabling the easy inclusion and testing of formation schemes.
We present flexible tools to implement aerosol formation rate predictions in climate and...