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Abstract. New-particle formation from condensable gases is
a common atmospheric process that has significant but un-
certain effects on aerosol particle number concentrations and
aerosol–cloud–climate interactions. Assessing the formation
rates of nanometer-sized particles from different vapors is
an active field of research within atmospheric sciences, with
new data being constantly produced by molecular modeling
and experimental studies. Such data can be used in large-
scale climate and air quality models through parameteriza-
tions or lookup tables. Molecular cluster dynamics model-
ing, ideally benchmarked against measurements when avail-
able for the given precursor vapors, provides a straightfor-
ward means to calculate high-resolution formation rate data
over wide ranges of atmospheric conditions. Ideally, the in-
corporation of such data should be easy, efficient and flexi-
ble in the sense that same tools can be conveniently applied
for different data sets in which the formation rate depends on
different parameters. In this work, we present a tool to gener-
ate and interpolate lookup tables of formation rates for user-
defined input parameters. The table generator primarily ap-
plies cluster dynamics modeling to calculate formation rates
from an input quantum chemistry data set defined by the user,
but the interpolator may also be used for tables generated by
other models or data sources. The interpolation routine uses
a multivariate interpolation algorithm, which is applicable to
different numbers of independent parameters, and gives fast
and accurate results with typical interpolation errors of up to
a few percent. These routines facilitate the implementation
and testing of different aerosol formation rate predictions in
large-scale models, allowing the straightforward inclusion of
new or updated data without the need to apply separate pa-
rameterizations or routines for different data sets that involve
different chemical compounds or other parameters.

1 Introduction

Formation of secondary aerosol particles from condensable
gases is a well-known and ubiquitous phenomenon in Earth’s
atmosphere (Kerminen et al., 2018; Kontkanen et al., 2017).
Aerosols have significant effects on climate and air quality,
with the indirect climate effect through aerosol–cloud in-
teractions forming the largest uncertainty in radiative forc-
ing assessments (Szopa et al., 2021). New-particle forma-
tion, including the formation and condensational growth of
nanoparticles from vapors, is an important factor affecting
aerosol number concentrations and size distributions (Foun-
toukis et al., 2012; Makkonen et al., 2012; Gordon et al.,
2017). The primary quantity characterizing the formation
process is the initial particle formation rate J , often re-
ferred to as the nucleation rate, which gives the rate at which
new particles of ca. 1–2 nm in diameter form per unit time
and volume at given ambient conditions through cluster-
ing of vapor molecules. The chemical compounds that are
able to drive and enhance the initial formation process in-
clude acids, bases, and organic species (Glasoe et al., 2015;
Lehtipalo et al., 2018; Xiao et al., 2021). The roles and ef-
fects of different potentially important precursor vapors are
not, however, resolved. While it is established that sulfuric
acid (H2SO4) initiates particle formation in the presence of
stabilizing species such as ammonia (NH3) or monoamines
(Jen et al., 2014; Almeida et al., 2013), there exist various
species, such as diamines (Jen et al., 2016), organic acids
(Zhang et al., 2004) and complex highly oxidized organic
molecules (Kirkby et al., 2016), that may contribute to par-
ticle formation with or without sulfuric acid. Furthermore,
quantitative particle formation rates are very challenging to
assess: both theoretically and experimentally deduced forma-
tion rates involve high uncertainties (Almeida et al., 2013;
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Kürten et al., 2018) and may be sensitive to ambient condi-
tions such as temperature and scavenging sink of the initial
molecular clusters (Olenius et al., 2017; Elm et al., 2020).

The combination of quantum chemistry and molecular
cluster dynamics simulations is the state-of-the-art method
to calculate theoretical particle formation rates (Elm et al.,
2020). Quantum chemistry is applied to compute the ther-
modynamics of the formation of the initial molecular clus-
ters from vapor molecules. The thermochemistry data are
converted to cluster evaporation rate constants and used as
input in cluster population dynamics simulations, which de-
termine the formation rate by modeling cluster formation
and growth considering molecular collisions and evapora-
tions and other dynamic processes such as cluster sinks (Ole-
nius et al., 2013). Such simulations are fast and easy to per-
form, thus enabling the assessment of formation rates over
wide ranges of atmospheric conditions for given chemical
compounds. Benchmarking the theoretical methods against
experimental data, which often cover a limited set of condi-
tions, provides quality control and uncertainty estimates for
the predicted formation rates (Almeida et al., 2013; Kürten
et al., 2016).

New quantum chemical data, calculated for different
chemical species (Elm et al., 2020; Elm, 2019a) or by apply-
ing different physical and computational approaches (Besel
et al., 2020), are constantly becoming available. Such data
can be used to test the effects of different particle formation
mechanisms or improve quantitative formation rate predic-
tions in atmospheric large-scale models. To this end, the for-
mation rate data must be implemented as parameterizations
or lookup tables (Dunne et al., 2016; Ehrhart et al., 2018;
Kazil et al., 2010; Yu et al., 2020; Baranizadeh et al., 2016),
as applying formation rate simulations within a large-scale
model is not feasible. The formation rate is a function of sev-
eral parameters, the most obvious of which are the concen-
trations of the vapors participating in the formation process
and the temperature. In addition, formation rates obtained by
cluster simulations include the effects of cluster sink caused
by pre-existing larger aerosol particles and, depending on
the chemical compounds and quantum chemical input data,
possibly also atmospheric ions and relative humidity. In the
presence of several cluster-forming vapors, particle forma-
tion can proceed through multicompound clustering or par-
allel clustering pathways involving non-interacting chemical
mechanisms (Elm, 2019b).

Deriving parameterizations quickly becomes cumbersome
as the number of independent parameters increases: finding
parameterization formulas and coefficients that reproduce
the formation rate data with a reasonable accuracy through-
out the parameter space is virtually impossible for arbitrary
chemical systems. Furthermore, evaluation of very complex
formulas within a computationally heavy large-scale model
may not be optimal. The benefit of lookup tables is that val-
ues determined from a table of sufficient resolution are guar-
anteed to be close to the original data, and no pre-processing

of the formation rate data is needed. The use of such tables,
on the other hand, requires multivariate interpolation algo-
rithms that should ideally be applicable to tables of arbitrary
dimensions, with no need for manual changes depending on
the number of independent parameters. While interpolated
values must be sufficiently accurate, the interpolation routine
should be computationally efficient and preferably simple.

In this work, we introduce a tool to incorporate molecular
modeling data in atmospheric models by flexible routines to
generate and interpolate formation rate lookup tables. With
this approach, we aim to cover the following aspects:

– flexible implementation of state-of-the-art molecular
modeling results in large-scale models;

– inclusion of arbitrary chemical compounds;

– efficient multivariate interpolation; and

– user-friendly routines with no need for modifications
depending on, for instance, included chemical com-
pounds.

We construct a lookup table generator that embeds a publicly
available cluster dynamics model to calculate formation rates
from user-defined quantum chemistry input data and provide
a table interpolation routine that can be readily implemented
in a large-scale model. The table generator enables easy ap-
plication of the standard formation rate modeling approach,
but the interpolator can also be used for tables saved from
other models in the same, simple format. We present assess-
ments of optimal table resolution and interpolation accuracy
and demonstrate the use and performance of the tool by ap-
plication on sulfuric acid–ammonia cluster chemistry data.
We generate tables suitable for global applications for these
data and assess the performance of the interpolation routine
in typical computationally heavy model setups.

2 Methods

The proposed lookup table approach comprises two compo-
nents: a generator routine to create tables and an interpola-
tion routine to be implemented in an atmospheric model. We
refer to the routines as J-GAIN (Formation rate (J ) lookup
table Generator And INterpolator). The details of the genera-
tion and interpolation routines are presented in Sect. 2.1 and
2.2, respectively, and their application is further discussed in
Sect. 2.3 and 2.4. The table generator primarily uses input
data from quantum chemical calculations and calls a molec-
ular cluster dynamics model to determine the formation rates,
as this is the standard method in theoretical atmospheric par-
ticle formation studies. The interpolation routine can, how-
ever, also be applied to formation rate data obtained by other
means by saving the tabulated data in the given table for-
mat. Figure 1 shows a schematic presentation of the J-GAIN
routines, summarizing the input, output and usage. J-GAIN
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is written in Fortran, with the exception that the cluster dy-
namics model used by the table generator applies also Perl,
and licensed under GPL 3.0. The code repository includes
detailed instructions for using the programs (Yazgi and Ole-
nius, 2023a, b).

2.1 Table generation

By default, the table generator takes molecular cluster ther-
mochemistry data for the given chemical compounds as in-
put and calculates the formation rates by molecular cluster
dynamics simulations through coupling to the open-source
cluster model ACDC (Atmospheric Cluster Dynamics Code;
Olenius, 2021). In practice, application of the generator on
a new cluster data set consists of two steps: creating the for-
mation rate equations by ACDC and running the generator to
obtain the table (see Yazgi and Olenius, 2023a). As the em-
bedded ACDC application provides automatized and flexible
treatment of arbitrary cluster data sets, we recommend the
default table generator when applying the commonly used
combination of quantum chemical input and cluster dynam-
ics modeling to obtain formation rates. It can be noted that
ACDC also includes a wide selection of options that increase
the flexibility: for example, while cluster evaporation rate
constants are by default obtained from the thermochemistry
data, they can also be given as direct input if the user wishes
to assess them in some other way. The advanced user may
also modify other cluster simulation settings (see the ACDC
manual; Olenius, 2021). However, the table interpolator is
not limited to tables generated by the default table generator,
and thus it is possible to use alternative approaches to deter-
mine formation rates. For this, the rates must be saved in the
same file format as that produced by the default generator, as
detailed in Appendix A.

In addition to the molecular cluster data, the table gener-
ator requires user-defined input for the ranges of the param-
eters that define the ambient conditions. These parameters
include the concentrations of the vapor compounds, temper-
ature (T ), coagulational scavenging sink (CS; given as vapor
condensation sink which is scaled for different cluster sizes
within the cluster dynamics model as derived by Lehtinen
et al., 2007), and optionally also ion production rate (IPR;
given as generic ion pairs per unit volume and time) and
relative humidity (RH). This gives n+ (2. . .4) independent
parameters, where n is the number of chemical compounds.
While vapor concentrations, temperature and cluster sink al-
ways affect the particle formation rate and are thus included
by default, the inclusion of IPR and RH depends on the
chemical system and also on data availability. For strongly
clustering chemistries, ion effects may be negligible (Myllys
et al., 2019), and RH effects may also be minor (Henschel
et al., 2016). As the addition of charged species and hydrates
in a quantum chemistry data set requires a significant compu-
tational effort, these effects are not always included in avail-
able thermochemistry data sets.

The user sets the range for the values of each parameter
by giving the lower and upper limits, and the number of val-
ues to be placed within the limits at even intervals. Parame-
ters can be defined as “logarithmic”, in which case the data
points are placed evenly on a logarithmic scale. This is rel-
evant for, for example, vapor concentrations. The formation
rate table is then generated by running the generator which
calls ACDC to obtain the formation rate J for each combina-
tion of parameter values.

The tables are outputted as binary files, and a descriptor
file is generated together with the table. The latter contains
the essential information on the table, including the names
and units of the independent parameters, the lower and up-
per limits of the parameter values, and the numbers of values
along each dimension. In order to ensure sufficient accuracy,
several tables can be generated at different resolutions. Then,
possible errors in interpolated values can be assessed by in-
terpolating a coarser-resolution table on the grid of a higher-
resolution reference table (Sect. 3.1).

2.2 Table interpolation

The interpolation routine uses the descriptor file to obtain
the number and identities of the independent parameters for
the corresponding lookup table. After loading the table, the
routine determines the formation rate by linear multivariate
interpolation. In general, for anN -dimensional function f =
f (x1,x2, . . .,xN ) with nearest known data points at locations
xj,0 and xj,1 for each variable xj , where xj,0 < xj,1 and j =
1, . . .,N , the interpolated value f̃ can be written as

f̃ (x1,x2, . . .,xN )=
∑

(i1,i2,...,iN )∈{0,1}N

· f
(
x1,i1 ,x2,i2 , . . .,xN,iN

) N∏
j=1

{
x′j , ij = 1

1− x′j , ij = 0
, (1)

where the summation goes over the values of f at all combi-
nations of points xj,0 and xj,1 for j = 1, . . .,N , and

x′j =
xj − xj,0

xj,1− xj,0
. (2)

Here, we perform linear interpolation by default for f =
logJ and either xj or logxj depending on if parameter j is
defined as linear or logarithmic, respectively. This gives more
accurate results than assuming purely linear relationships, as
J generally varies smoothly on a logarithmic scale. More-
over, a linear dependence between the logarithms of J and
the concentration C of a contributing vapor within a short in-
terval along the C axis is also expected based on simplified
cluster formation theories (see, e.g., Li and Signorell, 2021).
The choices of applying either the actual values or the loga-
rithms of the dependent and independent parameters can also
be changed by the user.

Treatment of input values that are outside the ranges cov-
ered by the table is parameter-dependent and defined by the
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Figure 1. Flow chart illustrating the generation and application of particle formation rate tables by J-GAIN. The boxes summarize the steps
for using the two parts: (1) table generation with automatized calculation of formation rates by cluster dynamics modeling and (2) imple-
mentation of tables and the table interpolator in a host model. User-defined input and output are specified outside the boxes.

user. For each parameter, the following options are included
in the example routines.

1. Value below/above the table limits → the value is set
to the lower/upper limit of the table (this is the default
behavior).

2. Value below the lower limit→ J = 0 is returned; input
value above the upper limit → the value is set to the
upper limit.

The latter option is for vapor concentrations, provided that
the lower limits of the table are chosen so that effectively
no particle formation is expected at concentrations below the
limits. The first option is by default used for other parame-
ters.

2.3 Incorporation of tables in a host model

In the code repository, we provide an example of simple in-
terfaces to load and interpolate lookup tables within a host
model. The input parameters of the interpolation subroutine
include all independent parameters that the particle forma-
tion rate may depend on, and the total formation rate is re-
turned as output. Importantly, the interpolator is not limited
to using a single table: separate particle formation pathways,
corresponding to different chemical compounds, can be in-
corporated as separate tables. If more than one table is used,

the interpolator is applied separately to each table, and the
total formation rate can be obtained as the sum of the indi-
vidual formation rates.

The repository includes a simple example of summing the
rates interpolated from two separate tables. However, the user
may construct different ways to treat several tables according
to their needs and data availability. To give an example, a pos-
sible practical application could be as follows: separate tables
are used for parallel formation mechanisms, for example, in-
organic H2SO4–base and organics-driven pathways. There
may also be alternative tables that are selected based on the
presence of a given chemical species, that is, if the concen-
tration of the species is high enough for the species to con-
tribute. For instance, there may be data for particle formation
from H2SO4 and NH3 with or without an amine species. In
the presence of the amine, a table of H2SO4–NH3–amine for-
mation rates is selected for the H2SO4–base pathway, while
otherwise a H2SO4–NH3 table is applied. This example of
a potential table combination is schematically presented in
Fig. 2.

2.4 Example case: sulfuric acid–ammonia particle
formation

We demonstrate the application and performance of the J-
GAIN table generator and interpolator using previously pub-
lished quantum chemical data for sulfuric acid and ammonia
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Figure 2. Schematic presentation of treatment of several tables: an example of a possible table combination that the user may construct
according to their needs.

(Olenius et al., 2013), which are common atmospheric par-
ticle formation precursor vapors. Here, the input molecular
cluster data for the H2SO4–NH3 chemistry includes charged
clusters but no hydration, and therefore the independent pa-
rameters that determine the formation rate are vapor concen-
trations [H2SO4] and [NH3], T , CS and IPR.

We apply the H2SO4–NH3 cluster data to generate tables
of different resolution and coverage. First, we demonstrate
the effect of table resolution by generating tables that cover
subsets of independent parameter ranges where J is sensitive
to the parameter values and compare the interpolated values
of J to accurate values given by a high-resolution reference
table. Second, we generate extended tables suitable for global
applications, where the ranges of all independent parameters
cover various environments from the boundary layer to the
upper troposphere. The extended tables are applied to evalu-
ate the accuracy of J interpolated over the full set of param-
eters [H2SO4], [NH3], T , CS and IPR that follow representa-
tive diurnal cycles, corresponding to practical model imple-
mentations. To assess the performance of the interpolation
routine for given table sizes, we determine the interpolation
speed for test tables of different numbers of data points and
dimensions.

3 Results and discussion

3.1 Effect of table resolution on accuracy

Figure 3 presents J interpolated along the [H2SO4] axis
and the error in the interpolated values at representative at-
mospheric conditions for tables with 2k + 1,k = 4. . .9 data
points on the axis. That is, for each subsequent table the num-
ber of points is doubled, resulting in numbers ranging from
17 to 513. For the lowest resolution of 24

+ 1= 17 points,

the relative error is less than ±10 %, and for ≥ 26
+ 1= 65

points the error is well below ±1 %. Figure 4 shows the er-
ror as a function of both [H2SO4] and [NH3] at two different
temperatures for the two lowest resolutions used here. For
24
+1= 17 points along both axes, the error is up to 10 % but

mostly below it, and doubling the resolution to 25
+ 1= 33

points drops the error below a couple of percent.
In order to demonstrate the application of the interpolator

for interpolation over all independent parameters at realistic
ambient conditions, corresponding to implementation of the
routine in an atmospheric model, J is determined for a rep-
resentative diurnal cycle as shown in Fig. 5. The independent
parameters are set to follow 24 h time profiles as described in
Appendix B. Here, we apply extended tables that cover wide
ranges of parameter values, suitable for larger-scale chemi-
cal transport or general circulation models: [H2SO4]= 105–
108 cm−3, [NH3]= 106

− 3× 1011 cm−3, T = 180–320 K,
CS= 10−5–10−1 s−1, and IPR= 0.1–60 cm−3 s−1. The er-
rors in Fig. 5 are generally of the same order as in Figs. 3
and 4 although somewhat higher due to interpolation over all
parameters. Doubling the table resolution from 24

+ 1= 17
to 25
+ 1= 33 points (1) only for vapor concentrations and

(2) for all parameters decreases the maximum errors down to
ca. ±15 % and well below ±10 %, respectively. The errors
are similar when using different absolute values of the inde-
pendent parameters, tested by modifying the diurnal profiles
by scaling the parameter values up or down (by, e.g., an order
of magnitude for vapor concentrations or CS).

In general, such errors are very small compared to typical
uncertainty estimates for formation rate data: uncertainties
in both theoretical and experimental J generally span up to
an order of magnitude and beyond (see, e.g., Kürten et al.,
2016). Based on the present evaluations, the interpolation
approach is not expected to add notable uncertainties in the
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Figure 3. Particle formation rate J as a function of H2SO4 concentration for H2SO4–NH3 model chemistry ([NH3]= 1010 cm−3, T =
298.15 K, CS= 10−3 s−1, IPR= 3 cm−3 s−1), determined from lookup tables of different resolution. (a) Absolute J . Note that the different
lines mostly fall on top of each other. (b) Relative error in interpolated J compared to accurate values given by the highest-resolution reference
table with 224

+ 1∼ 2× 107 points along the [H2SO4] axis. (c) Relative error in interpolated J for resolutions of ≥ 26
+ 1= 65 points.

formation rate representation even at the lowest resolutions
applied. Moreover, the accuracy is significantly increased by
doubling the resolution. However, it can be noted that high-
resolution tables quickly become very large, and the interpo-
lation speed may be affected by the number of data points
along the dimensions. Therefore, the choice of resolution de-
pends on (1) the desired accuracy, (2) the size of the tables
the user is willing to generate and store, and (3) the com-
putational aspects of the model application considering the
number of calls to the interpolator (Sect. 3.2).

3.2 Effect of table size and number of independent
parameters on performance

In order to assess the interpolation speed with respect to the
numbers of data points and independent parameters, we ap-
ply arbitrary test tables of different sizes and dimensions.
Figure 6 shows the mean run time for 1 million calls to the
interpolator with randomly assigned input parameter values.
Here, the x axis is the base-2 logarithm of the table size
(total number of values in the table). Therefore, for a table
with equal numbers of points 2k + 1 along all dimensions,
the x axis corresponds to approximately N × k, where N is
the number of dimensions.

The performance is primarily affected by the number of di-
mensions: the addition of a new dimension may increase the
run time by up to a factor of ∼ 2. In addition, the run time

exhibits a major increase when the table size becomes very
large, here beyond ca. 228 (of the order of & 108) data points.
This is due to memory limits and management, and thus the
exact threshold size depends on the computing system. For
example, for the H2SO4–NH3 table with N = 5 and the cur-
rent simple test setup with 64 GiB memory on the node, the
threshold of ∼ 228 points corresponds to k > 5. In the case
that managing very large tables becomes slow on a given
system, the performance can be optimized by splitting the
table into subtables that cover different parts of the ambient
conditions parameter space.

The approximative run times of Fig. 6 can be compared to
typical overall times for, e.g., global-scale applications. We
have implemented the H2SO4–NH3 table for first tests in the
EC-Earth climate model (Döscher et al., 2022). In this EC-
Earth setup, the total number of grid points where the inter-
polation routine is called is 367 200 (120×90 horizontal grid
points and 34 vertical layers), the time step for determining
the formation rate is 1 h, and the chemistry model uses 90
processes. This corresponds to approximately . 1 min run
time for the formation rate routine for a simulation of 1 year,
assuming a mean time of . 2 s for 106 lookups (Fig. 6, res-
olutions of 24

+ 1= 17 and 25
+ 1= 33 for all axes). Such

a contribution can be considered acceptable compared to the
overall model run time of & 10 h per year or to the contri-
bution of the atmospheric chemistry component, which ac-
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Figure 4. Relative error in interpolated particle formation rate J as a function of H2SO4 and NH3 concentrations for lookup tables with
24
+1= 17 and 25

+1= 33 data points along the [H2SO4] and [NH3] axes at CS= 10−3 s−1 and IPR= 3 cm−3 s−1 and (a) T = 298.15 K
and (b) T = 285 K.

Figure 5. Particle formation rate J for a diurnal cycle in which all independent parameters [H2SO4], [NH3], T , CS and IPR vary with time
(Appendix B). (a) Absolute J . (b) Relative error in interpolated J compared to accurate values. Interpolated values are determined from the
extended tables with increasing resolution either along only vapor concentration axes or along all axes as indicated in the legend.

counts for up to even ∼ 90 % of the total run time (van Noije
et al., 2014).

For applications with, e.g., higher spatial resolution or
shorter time step, the performance of the formation rate rou-
tine can be optimized by reasonable choices of table di-
mensions and size. For example, for very strongly clustering
chemical systems, the presence of atmospheric ions only has
minor effects. The IPR parameter could thus be discarded in

the interest of speed. In addition to the resolution of the inde-
pendent parameter values (i.e., the absolute intervals), their
ranges (minimum and maximum values) can also be chosen
considering the modeled environment, so that redundant val-
ues are avoided. If the numbers and ranges of parameters can-
not be optimized further, very large tables can be divided into
separate subtables that cover different sets of ambient condi-
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Figure 6. Time required to perform 1 million lookups for tables of
different sizes. The figure shows different combinations (2k+1,2l+
1,2m+ 1, ..) of data points along axes, keeping k = l and the total
number of points < (27

+ 1)2(24
+ 1)4 ∼ 230.37. For more details,

see discussion in Sect. 3.2.

tions and selected within the host model application based on
the input conditions.

It can also be noted that considering the high accuracy of
the interpolated values, interpolation from pre-generated ta-
bles is superior compared to the time required to calculate the
formation rates by the molecular cluster model. For exam-
ple, generating the table of (24

+ 1)5 = 1419857 data points
takes 27 h on a single process, corresponding to a mean time
of ca. 0.068 s per value. Such times would be infeasible for
operational models.

3.3 Potential limitations in applying formation rates in
a host model

It must be noted that incorporating aerosol formation rates
in an atmospheric model involves given limitations. These
limitations are independent of the data source or implemen-
tation method and apply equally to lookup tables, parame-
terizations or other approaches. An obvious restriction is the
availability of tracers in the host model. While various chem-
ical compounds may contribute to atmospheric particle for-
mation, including large numbers of new species in a chemical
transport model may be cumbersome. In addition, sources of
individual chemical species, such as different types of amines
or organic acids, may not be well quantified.

Here, we apply particle formation rates from H2SO4 and
NH3, which are common species included in atmospheric
models, and comprise a central particle formation pathway
according to current understanding (Dunne et al., 2016; Gor-
don et al., 2017). Tables generated in this work can thus be
easily implemented in standard models that include aerosol
formation processes. On the other hand, H2SO4–amine par-
ticle formation, for example, requires the inclusion of amine
species which are not common tracers despite their potential
importance to aerosol formation (Bergman et al., 2015). Dif-
ferent types of amines may exhibit different particle forma-
tion efficiencies, but some amine species are similar in terms

of their effects on the formation rate (Jen et al., 2014; Olenius
et al., 2017). In order to test the importance of such particle
formation agents in a large-scale model, some simplifications
are often needed.

A simplified option to include rough source–sink dynam-
ics for species that can be assumed to have common sources
and similar properties with respect to gas-phase chemistry
and gas-to-particle partitioning is to implement a lumped or
representative trace compound. For example, monoamines
with similar properties – namely di- and trimethylamines
– have been approximated as a single representative alky-
lamine species, the emissions of which are scaled from am-
monia emissions by assumed amine-to-ammonia ratio due to
their common sources (Bergman et al., 2015). To take into
account possible differences in the particle formation rates
due to different amines, an option is to estimate the contribu-
tions of individual species based on available measurements
(Schade and Crutzen, 1995). Oxidized organic species can be
treated in a similar manner through a representative highly
oxidized, ultra/extremely low-volatile compound (generally
referred to as HOM or ULVOC/ELVOC; Kirkby et al., 2016;
Schervish and Donahue, 2021), which is already included
in some transport models (Gordon et al., 2017; Julin et al.,
2018; Patoulias and Pandis, 2022).

In addition, it can be noted that the standard approach to
implement formation rates involves certain approximations
related to molecular cluster kinetics. Namely, formation rates
are assumed to be determined solely by ambient conditions,
applying the steady-state approximation for the cluster pop-
ulation and omitting time-dependent vapor–cluster–aerosol
kinetics (Yu, 2003; Olenius and Riipinen, 2017; Olenius and
Roldin, 2022). While such simplifications are needed for
large-scale applications, they may affect the secondary par-
ticle concentrations. To minimize such effects, it can be rec-
ommended to extend the modeled aerosol size distribution to
as small sizes as achievable instead of extrapolating the for-
mation rate to a substantially larger size (Lee et al., 2013),or
to apply a more detailed size distribution representation on
the smallest particle sizes (Blichner et al., 2021). Neverthe-
less, the inherent steady-state assumption in the initial for-
mation rate at ca. 1 nm is likely to cause overprediction in the
case of strongly clustering, low-concentration trace species,
and thus the rate should be considered as an upper-limit esti-
mate for such chemistries (Olenius and Roldin, 2022).

4 Conclusions

Adequate representation of aerosol particle formation from
vapors in atmospheric models is needed for assessing the cli-
mate and health effects of aerosols. The increasing amount
of available computational molecular cluster chemistry data
enables calculation of new-particle formation rates for differ-
ent chemical compounds and computational chemistry meth-
ods. As formation rates are typically complicated functions
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of ambient conditions, a practical approach to apply them in
an atmospheric model framework is through lookup tables.
Here, we provide a tool to generate and interpolate formation
rate tables, applicable to arbitrary sets of chemical species,
for conveniently incorporating theoretical particle formation
rate data in large-scale models.

Tests conducted using data for H2SO4–NH3 particle for-
mation show that the interpolation approach is efficient and
accurate, with maximum interpolation errors typically rang-
ing from negligible to ca. ± 10 %–20 % depending on ta-
ble resolution. Interpolation errors can also be minimized by
choosing to interpolate given parameters on a logarithmic in-
stead of a linear scale. As interpolation speed is affected by
the number of independent parameters and also by the ta-
ble size for very large tables, the choice of parameters and
the resolution should be optimized considering the compu-
tational burden of the application where the table is imple-
mented. For heavy applications, redundant independent pa-
rameters that have only minor effects on the formation rate
can be discarded, and the number of data points along each
dimension can be set according to the desired accuracy. The
flexibility of the provided tool makes the routines easy to ap-
ply to different data sets and choices of table dimensions and
size. This design facilitates data transfer between the molec-
ular modeling and the large-scale modeling communities.

Appendix A: Data sources and table format

For J-GAIN, formation rate tables can be created (1) by the
provided table generator when applying the molecular clus-
ter dynamics modeling approach or (2) by saving tabulated
formation rates from another data source in a similar table.
The details of the formats are listed below, and detailed in-
structions for the table generator are available in the J-GAIN
repository (Yazgi and Olenius, 2023a).

For the J-GAIN table generator, the molecular cluster in-
put data are given in the format of the ACDC model. Briefly,
the set of input files include

1. molecular compositions of the clusters

2. cluster formation free energies as enthalpies and en-
tropies, and

3. cluster dipole moments and polarizabilities if charged
species are also included.

These files are summarized in the J-GAIN repository where
also example files for the present test case can be found
(Yazgi and Olenius, 2023a, ACDC subdirectory) and de-
scribed in detail in the ACDC technical manual (Chap. 3)
available in the ACDC repository (Olenius, 2021). Before
applying the table generator, the user creates the ACDC for-
mation rate equations for the given input by running the pro-
gram provided in the J-GAIN repository. This gives the stan-
dard model setup, although it can be noted that the advanced

Algorithm A1 Order of loops over the values of the inde-
pendent parameters for saving a lookup table in the J-GAIN
format (see Appendix A for details).

i = 0
for i1 = 1 to imax,1 do

. . .
for iN = 1 to imax,N do
i = i+ 1
Save f (i)= f (x1,i1 ,x2,i2 , . . .,xN,iN )

end for
. . .

end for

user may also adjust the cluster modeling settings within the
program if wanting to, for example, modify rate constants
(ACDC manual, Chap. 2.5). Lastly, for running the table gen-
erator, the user sets the ranges of the ambient conditions in
the namelist file (template provided in the generator subdi-
rectory).

For other data sources, the data need to be processed into
the table format applied by the J-GAIN interpolator, includ-
ing two files:

1. a binary file that contains the formation rate array and

2. a descriptor file that lists the independent parameters
and their ranges.

The rates are saved in the binary file as a flattened 1-
dimensional array that can be constructed by iterating over
the independent parameter values in a nested loop. The order
of the parameters in the nested loop must be the same as that
in the descriptor file. That is, if the descriptor file lists param-
eters x1, x2, . . . , xN , in this order, the outermost loop must
correspond to x1 and the innermost to xN (Algorithm A1).

In Algorithm A1, ij is the index corresponding to values
given for parameter xj , and imax,j is the total number of val-
ues for xj . Example codes for such loops are included in the
J-GAIN repository. The descriptor file can be created by fol-
lowing the instructions and example files in the repository
(table generator subdirectory).

Appendix B: Parameter descriptions in the diurnal test
case

Table B1 lists the functional forms of the independent pa-
rameters applied for the diurnal test case (Fig. 5). The time
profiles, visualized in Fig. B1, are simply set to exhibit realis-
tic magnitudes and shapes: the temperature peaks at daytime
while the condensation sink drops as boundary layer grows
and [H2SO4] follows a sinusoidal diurnal profile due to the
photochemical production of H2SO4. [NH3] and ion produc-
tion rate generally do not show regular diurnal patterns but
here are set to vary in order to test the interpolation approach
at different combinations of independent parameters.
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Table B1. Parameter value as a function of time t (in hours) for the diurnal test case.

Parameter Value f = f (t), t = 0. . .24 h

[H2SO4] [cm−3]

{
0.5× (107

− 105)× (sin(2π(t − 6)/12− 0.5π)+ 1)+ 105, t ∈ {6. . .18}

105, otherwise
[NH3] [cm−3] (109

− 2× 1010)× exp(−((t − 18)/12)2)+ 2× 1010

T [K] 10× exp(−((t − 10)/6)2)+ 283.15
CS [s−1] (10−3

− 6× 10−3)× exp(−((t − 10)/12)2)+ 6× 10−3

IPR [cm−3s−1] 0.5× (4− 1)× (sin(2π(t − 6)/24− 0.5π)+ 1)+ 1

Figure B1. Time profiles of the independent parameters for the di-
urnal test case.

Code and data availability. J-GAIN is available at https://github.
com/tolenius/J-GAIN (current version) (Yazgi and Olenius, 2023a)
and https://doi.org/10.5281/zenodo.8220223 (v1.1) (Yazgi and Ole-
nius, 2023b). Scripts and tables applied for the figures in this work
are available from the corresponding authors.
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