Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4715-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4715-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
Anna L. Merrifield
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Lukas Brunner
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Ruth Lorenz
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Vincent Humphrey
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Reto Knutti
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Related authors
Peter Pfleiderer, Anna Merrifield, István Dunkl, Homer Durand, Enora Cariou, Julien Cattiaux, and Sebastian Sippel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2397, https://doi.org/10.5194/egusphere-2025-2397, 2025
Short summary
Short summary
Due to changes in atmospheric circulation some regions are warming quicker than others. Statistical methods are used to estimate how much of the local summer temperature trends are due to circulation changes. We evaluate these methods by comparing their estimates to special simulations representing only temperature changes related to circulation changes. By applying the methods to observations of 1979–2023 we find that half of the warming over parts of Europe is related to circulation changes.
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Short summary
In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
Eva Holtanová, Jan Koláček, and Lukas Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3360, https://doi.org/10.5194/egusphere-2025-3360, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Our global analysis assess temperature annual cycle and its changes using an innovative statistical approach. We reveal, e.g., slight temperature decreases during the historical period in some parts of the year. Future projections show different rates of warming between seasons, resulting in changes in the amplitude. The diagnostics introduced here can be tailored for different purposes and applied to other climatic variables, without making any prior assumptions about the annual cycle shape.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025, https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone and greenhouse gases alone are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies and to underpin the next IPCC report.
Arim Yoon, Cathy Hohenegger, Jiawei Bao, and Lukas Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3221, https://doi.org/10.5194/egusphere-2025-3221, 2025
Short summary
Short summary
We studied how removing the Amazon rainforest impacts extreme weather by using an advanced global model that resolves convection. Our results show deforestation significantly intensifies short but severe rainfall, leading to more frequent droughts and flooding. Temperatures rise sharply, creating dangerous heat conditions harmful to human health and productivity. Wind speeds drastically increase. These findings provide a stark warning of the effects of continuing deforestation of the Amazon.
Peter Pfleiderer, Anna Merrifield, István Dunkl, Homer Durand, Enora Cariou, Julien Cattiaux, and Sebastian Sippel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2397, https://doi.org/10.5194/egusphere-2025-2397, 2025
Short summary
Short summary
Due to changes in atmospheric circulation some regions are warming quicker than others. Statistical methods are used to estimate how much of the local summer temperature trends are due to circulation changes. We evaluate these methods by comparing their estimates to special simulations representing only temperature changes related to circulation changes. By applying the methods to observations of 1979–2023 we find that half of the warming over parts of Europe is related to circulation changes.
Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken
EGUsphere, https://doi.org/10.5194/egusphere-2025-1755, https://doi.org/10.5194/egusphere-2025-1755, 2025
Short summary
Short summary
We compared two techniques that are affected by the amount of liquid water in a forest canopy. One technique relies on remote sensing (a pair of GPS systems) and the other uses tree motion generated by the wind. Though completely different, these two techniques show strikingly similar changes when rain falls on an evergreen forest. We combine these measurements with eddy-covariance fluxes of water vapor to provide some insight into the evaporation of canopy-intercepted precipitation.
Luna Bloin-Wibe, Robin Noyelle, Vincent Humphrey, Urs Beyerle, Reto Knutti, and Erich Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-525, https://doi.org/10.5194/egusphere-2025-525, 2025
Short summary
Short summary
Weather extremes have become more frequent due to climate change. It is therefore crucial to understand them, but since they are rarer than average weather, they are challenging to study. Ensemble Boosting (EB) is a tool that generates extreme climate model events efficiently, but without directly estimating their probability. Here, we present a method to recover these probabilities for a global climate model. EB can thus now be used to find extremes with meaningful statistical information.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Vincent Humphrey and Christian Frankenberg
Biogeosciences, 20, 1789–1811, https://doi.org/10.5194/bg-20-1789-2023, https://doi.org/10.5194/bg-20-1789-2023, 2023
Short summary
Short summary
Microwave satellites can be used to monitor how vegetation biomass changes over time or how droughts affect the world's forests. However, such satellite data are still difficult to validate and interpret because of a lack of comparable field observations. Here, we present a remote sensing technique that uses the Global Navigation Satellite System (GNSS) as a makeshift radar, making it possible to observe canopy transmissivity at any existing environmental research site in a cost-efficient way.
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023, https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Short summary
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability of the models to represent the key physical processes that are important for representing European climate. Filtering the models with the assessment leads to more models with less global warming being removed, and this shifts the lower part of the projected temperature range towards greater warming. This is in contrast to the affect of weighting the ensemble using global temperature trends.
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023, https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary
Short summary
Precipitation change is an important consequence of climate change, but it is hard to detect and quantify. Our intuitive method yields robust and interpretable detection of forced precipitation change in three observational datasets for global mean and extreme precipitation, but the different observational datasets show different magnitudes of forced change. Assessment and reduction of uncertainties surrounding forced precipitation change are important for future projections and adaptation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
Short summary
In this study, we weight climate models by their performance with respect to simulating aspects of historical climate and their degree of interdependence. Our method is found to increase projection skill and to correct for structurally similar models. The weighted end-of-century mean warming (2081–2100 relative to 1995–2014) is 3.7 °C with a likely (66 %) range of 3.1 to 4.6 °C for the strong climate change scenario SSP5-8.5; this is a reduction of 0.4 °C compared with the unweighted mean.
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary
Short summary
Justifiable uncertainty estimates of future change in northern European winter and Mediterranean summer temperature can be obtained by weighting a multi-model ensemble comprised of projections from different climate models and multiple projections from the same climate model. Weights reduce the influence of model biases and handle dependence by identifying a projection's model of origin from historical characteristics; contributions from the same model are scaled by the number of members.
Axel Lauer, Veronika Eyring, Omar Bellprat, Lisa Bock, Bettina K. Gier, Alasdair Hunter, Ruth Lorenz, Núria Pérez-Zanón, Mattia Righi, Manuel Schlund, Daniel Senftleben, Katja Weigel, and Sabrina Zechlau
Geosci. Model Dev., 13, 4205–4228, https://doi.org/10.5194/gmd-13-4205-2020, https://doi.org/10.5194/gmd-13-4205-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool is a community software tool designed for evaluation and analysis of climate models. New features of version 2.0 include analysis scripts for important large-scale features in climate models, diagnostics for extreme events, regional model and impact evaluation. In this paper, newly implemented climate metrics, emergent constraints for climate-relevant feedbacks and diagnostics for future model projections are described and illustrated with examples.
Cited articles
Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019. a, b, c, d, e
Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017. a, b
Ashfaq, M., Rastogi, D., Abid, M. A., and Kao, S.-C.: Evaluation of CMIP6 GCMs
over the CONUS for downscaling studies, Earth and Space Science Open Archive,
p. 28, https://doi.org/10.1002/essoar.10510589.1, 2022. a, b
Athanasiadis, P. J., Ogawa, F., Omrani, N.-E., Keenlyside, N., Schiemann, R.,
Baker, A. J., Vidale, P. L., Bellucci, A., Ruggieri, P., Haarsma, R.,
Roberts, M., Roberts, C., Novak, L., and Gualdi, S.: Mitigating climate
biases in the mid-latitude North Atlantic by increasing model resolution: SST
gradients and their relation to blocking and the jet, J. Climate, 35, 6985–7006, https://doi.org/10.1175/JCLI-D-21-0515.1, 2022. a
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst,
Kowalczyk, E., Golebiewski, Sullivan, A., Yan, Y., Hannah, Franklin, C., Sun,
Z., Vohralik, Watterson, Fiedler, R., Collier, M., and Puri, K.: The ACCESS
coupled model: Description, control climate and evaluation,
Aust. Meteorol. Ocean., 63, 41–64,
https://doi.org/10.22499/2.6301.004, 2012. a
Bishop, C. and Abramowitz, G.: Climate model dependence and the replicate Earth
paradigm, Clim. Dynam., 41, 885–900, https://doi.org/10.1007/s00382-012-1610-y, 2013. a, b, c, d
Bloomfield, H. C., Shaffrey, L. C., Hodges, K. I., and Vidale, P. L.: A
critical assessment of the long-term changes in the wintertime surface Arctic
Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis,
Environ. Res. Lett., 13, 094004, https://doi.org/10.1088/1748-9326/aad5c5,
2018. a
Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez-Gutierrez,
L., and Müller, W. A.: Decadal Predictions of the Probability of Occurrence
for Warm Summer Temperature Extremes, Geophys. Res. Lett., 46,
14042–14051, https://doi.org/10.1029/2019GL085385, 2019. a
Borg, I. and Groenen, P.: Modern Multidimensional Scaling: Theory and
Applications (Springer Series in Statistics),
https://doi.org/10.1007/978-1-4757-2711-1, 2005. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé,
C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton,
Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial,
J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of
the IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth
Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a
Boé, J.: Interdependency in Multimodel Climate Projections: Component
Replication and Result Similarity, Geophys. Res. Lett., 45,
2771–2779, https://doi.org/10.1002/2017GL076829, 2018. a
Brands, S.: A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the Northern Hemisphere mid-to-high latitudes, Geosci. Model Dev., 15, 1375–1411, https://doi.org/10.5194/gmd-15-1375-2022, 2022a. a
Brands, S., Tatebe, H., Danek, C., Fernández, J., Swart, N. C., Volodin, E.,
Kim, Y., Collier, M., Bi, D., and Tongwen, W.:
SwenBrands/gcm-metadata-for-cmip: First standalone version of GCM metadata
archive “get_historical_metadata.py”, Zenodo, https://doi.org/10.5281/zenodo.7715384, 2023. a, b, c
Brunner, L. and Sippel, S.: Identifying climate models based on their daily output using machine learning, Environ. Data Sci., 2, E22, https://doi.org/10.1017/eds.2023.23, 2023. a, b
Brunner, L., Lorenz, R., Zumwald, M., and Knutti, R.: Quantifying uncertainty
in European climate projections using combined performance-independence
weighting, Environ. Res. Lett., 14, 124010,
https://doi.org/10.1088/1748-9326/ab492f, 2019. a
Brunner, L., Hauser, M., Lorenz, R., and Beyerle, U.: The ETH Zurich CMIP6
next generation archive: technical documentation, p. 10,
https://doi.org/10.5281/zenodo.3734128, 2020a. a
Charney, J. G., Arakawa, A., Baker, D. J., Bolin, B., Dickinson, R. E., Goody,
R. M., Leith, C. E., Stommel, H. M., and Wunsch, C. I.: Carbon dioxide and
climate: A scientific assessment, National Academy of Sciences, Washington,
D. C., https://doi.org/10.17226/12181, 1979. a
Cheruy, F., Dufresne, J. L., Hourdin, F., and Ducharne, A.: Role of clouds and
land-atmosphere coupling in midlatitude continental summer warm biases and
climate change amplification in CMIP5 simulations, Geophys. Res. Lett., 41, 6493–6500, https://doi.org/10.1002/2014GL061145, 2014. a
Christensen, O. and Kjellström, E.: Partitioning uncertainty components of
mean climate and climate change in a large ensemble of European regional
climate model projections, Clim. Dynam., 54, 4293–4308,
https://doi.org/10.1007/s00382-020-05229-y, 2020. a
CORDEX, S. A. T.: CORDEX Coordinated Output for Regional Evaluations (CORE): A
simulation framework in support of IPCC AR6, wCRP Coordinated Regional Climate Downscaling Experiment,
https://cordex.org/experiment-guidelines/cordex-core/cordex-core-simulation-framework/
(last access: 1 May
2022), 2018. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data
Sets, J. Geophys. Res.-Atmos., 123, 9391–9409,
https://doi.org/10.1029/2017JD028200, 2018. a
Dalelane, C., Früh, B., Steger, C., and Walter, A.: A Pragmatic Approach to
Build a Reduced Regional Climate Projection Ensemble for Germany Using the
EURO-CORDEX 8.5 Ensemble, J. Appl. Meteorol. Clim., 57,
477 – 491, https://doi.org/10.1175/JAMC-D-17-0141.1, 2018. a, b
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a
Davy, R. and Outten, S.: The Arctic Surface Climate in CMIP6: Status and
Developments since CMIP5, J.puzti Climate, 33, 8047–8068,
https://doi.org/10.1175/JCLI-D-19-0990.1, 2020. a
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate
change projections: the role of internal variability, Climm Dynam., 38,
527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E.,
Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S.,
Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from
Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020. a
Di Virgilio, G., Ji, F., Tam, E., Nishant, N., Evans, J. P., Thomas, C., Riley,
M. L., Beyer, K., Grose, M. R., Narsey, S., and Delage, F.: Selecting CMIP6
GCMs for CORDEX Dynamical Downscaling: Model Performance, Independence, and
Climate Change Signals, Earth's Future, 10, e2021EF002625,
https://doi.org/10.1029/2021EF002625, 2022. a, b, c
Dorrington, J., Strommen, K., and Fabiano, F.: How well does CMIP6 capture the
dynamics of Euro-Atlantic weather regimes, and why,
Weather and Climate
Dynamics Discussions, 2021, 1–41, 2021. a
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a, b
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W.,
Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J.,
Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman,
L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., and
Zadeh, N.: GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models.
Part I: Physical Formulation and Baseline Simulation Characteristics, J. Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1, 2012. a
Evans, J. P., Ji, F., Abramowitz, G., and Ekström, M.: Optimally choosing
small ensemble members to produce robust climate simulations, Environ. Res. Lett., 8, 044050, https://doi.org/10.1088/1748-9326/8/4/044050, 2013. a, b, c
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b, c
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G.,
Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M.,
Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A., Krasting, J. P.,
Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass, A. G.,
Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., Santer, B. D.,
Sherwood, S. C., Simpson, I. R., Stouffer, R. J., and Williamson, M. S.:
Taking climate model evaluation to the next level, Nat. Clim. Change, 9,
102–110, https://doi.org/10.1038/s41558-018-0355-y, 2019. a
Fischer, E. M., Seneviratne, S. I., Lüthi, D., and Schär, C.:
Contribution of land-atmosphere coupling to recent European summer heat
waves, Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068, 2007. a
Flynn, C. M. and Mauritsen, T.: On the climate sensitivity and historical warming evolution in recent coupled model ensembles, Atmos. Chem. Phys., 20, 7829–7842, https://doi.org/10.5194/acp-20-7829-2020, 2020. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013. a
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Johns, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004. a, b, c
Gründemann, G., van de Giesen, N., Brunner, L., and van der Ent, R.: Rarest
rainfall events will see the greatest relative increase in magnitude under
future climate change, Commun. Earth Environ., 3, 235,
https://doi.org/10.1038/s43247-022-00558-8, 2022. a
Harper, M., Weinstein, B., Woodcock, T. G., and Simon, C.: python-ternary:
Ternary Plots in Python, Zenodo,
https://doi.org/10.5281/zenodo.594435, 2015. a
Harvey, B. J., Cook, P., Shaffrey, L. C., and Schiemann, R.: The Response of
the Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the
CMIP3, CMIP5, and CMIP6 Climate Models, J. Geophys. Res.-Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701, 2020. a
Haughton, N., Abramowitz, G., Pitman, A., and Phipps, S. J.: On the generation
of climate model ensembles, Clim. Dynam., 43, 2297–2308,
https://doi.org/10.1007/s00382-014-2054-3, 2014. a
Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K., and Sanderson, B. M.: Selecting a climate model subset to optimise key ensemble properties, Earth Syst. Dynam., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, 2018. a, b, c
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J., Balaji, V., Duan, Q.,
Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L.,
Watanabe, M., and Williamson, D.: The Art and Science of Climate Model
Tuning, B. Am. Meteorol. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017. a, b
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, UK and New York, NY,
USA, https://doi.org/10.1017/9781009157896, 2021. a
Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodetskaya, I. V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G. T., Nurhati, I. S., Pinto, I., Seneviratne, S. I., van den Hurk, B., and Vera, C. S.: An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets, Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, 2020. a
Jones, P. D. and Harpham, C.: Estimation of the absolute surface air
temperature of the Earth, J. Geophys. Res.-Atmos., 118,
3213–3217, https://doi.org/10.1002/jgrd.50359, 2013. a
Katsavounidis, I., Jay Kuo, C.-C., and Zhang, Z.: A new initialization
technique for generalized Lloyd iteration, IEEE Signal Proc. Let., 1,
144–146, https://doi.org/10.1109/97.329844, 1994. a, b
Kay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R.,
Gettelman, A., Eaton, B., Boyle, J., Marchand, R., and Ackerman, T. P.:
Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using
Satellite Observations and Their Corresponding Instrument Simulators, J. Climate, 25, 5190–5207, https://doi.org/10.1175/JCLI-D-11-00469.1, 2012. a
Keeley, S. P. E., Sutton, R. T., and Shaffrey, L. C.: The impact of North
Atlantic sea surface temperature errors on the simulation of North Atlantic
European region climate, Q. J. Roy. Meteor.
Soc., 138, 1774–1783, https://doi.org/10.1002/qj.1912, 2012. a
Kiesel, J., Stanzel, P., Kling, H., Fohrer, N., Jähnig, S. C., and
Pechlivanidis, I.: Streamflow-based evaluation of climate model sub-selection
methods, Clim. Change, 163, 1267–1285, https://doi.org/10.1007/s10584-020-02854-8,
2020. a
Knutti, R.: The end of model democracy?, Clim. Change, 102, 395–404,
https://doi.org/10.1007/s10584-010-9800-2, 2010. a
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G.: Challenges in
combining projections from multiple climate models, J. Climate, 23,
2739–2758, 2010. a
Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation
CMIP5 and how we got there, Geophys. Res. Lett., 40, 1194–1199,
https://doi.org/10.1002/grl.50256, 2013. a, b
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer,
E. M., and Eyring, V.: A climate model projection weighting scheme
accounting for performance and interdependence, Geophys. Res. Lett., 44,
1909–1918, https://doi.org/10.1002/2016GL072012, 2017. a, b, c, d
Leduc, M., Laprise, R., de Elía, R., and Šeparović, L.: Is Institutional
Democracy a Good Proxy for Model Independence?, J. Climate, 29, 8301–8316, https://doi.org/10.1175/JCLI-D-15-0761.1, 2016. a
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and Hsu, H.-H.: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, 2020. a
Lipat, B. R., Tselioudis, G., Grise, K. M., and Polvani, L. M.: CMIP5 models'
shortwave cloud radiative response and climate sensitivity linked to the
climatological Hadley cell extent, Geophys. Res. Lett., 44,
5739–5748, https://doi.org/10.1002/2017GL073151, 2017. a
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth’s
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31, 895–918, https://doi.org/10.1175/JCLI-D-17-0208.1, 2018. a
Loeb, N. G., Rose, F. G., Kato, S., Rutan, D. A., Su, W., Wang, H., Doelling,
D. R., Smith, W. L., and Gettelman, A.: Toward a Consistent Definition
between Satellite and Model Clear-Sky Radiative Fluxes, J. Climate,
33, 61–75, https://doi.org/10.1175/JCLI-D-19-0381.1, 2020. a
Lorenz, R., Herger, N., Sedláček, J., Eyring, V., Fischer, E. M., and
Knutti, R.: Prospects and Caveats of Weighting Climate Models for Summer
Maximum Temperature Projections Over North America, J. Geophys.
Res.-Atmos., 123, 4509–4526, https://doi.org/10.1029/2017JD027992, 2018. a
Lutz, A., ter Maat, H., Biemans, H., Shresth, A., Wester, P., and Immerzeel,
W.: Selecting representative climate models for climate change impact
studies: an advanced envelope based selection approach, Int. J. Climatol., 36,
3988–4005, https://doi.org/10.1002/joc.4608, 2016. a, b
Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, 2021a. a
Maher, N., Power, S., and Marotzke, J.: More accurate quantification of
model-to-model agreement in externally forced climatic responses over the
coming century, Nat. Commun., 12, 788, https://doi.org/10.1038/s41467-020-20635-w,
2021b. a
Masson, D. and Knutti, R.: Climate model genealogy, Geophys. Res. Lett., 38, L08703, https://doi.org/10.1029/2011GL046864, 2011. a, b
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M.,
Haak, H., Jungclaus, J., Klocke, D.and Matei, D., Mikolajewicz, U., Notz, D.,
Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global
model, J. Adv. Model. Earth Syst., 4, M00A01, https://doi.org/10.1029/2012MS000154, 2012. a, b
McSweeney, C. F. and Jones, R. G.: How representative is the spread of climate
projections from the 5 CMIP5 GCMs used in ISI-MIP?, Climate Services, 1,
24–29, https://doi.org/10.1016/j.cliser.2016.02.001, 2016. a, b
McSweeney, C. F., Jones, R. G., Lee, R. W., and Rowell, D. P.: Selecting CMIP5
GCMs for downscaling over multiple regions, Clim. Dynam., 44, 3237–3260,
https://doi.org/10.1007/s00382-014-2418-8, 2015. a
Meehl, G. A., Boer, G. J., Covey, C., Latif, M., and Stouffer, R. J.:
Intercomparison makes for a better climate model, Eos, Transactions American
Geophysical Union, 78, 445–451, https://doi.org/10.1029/97EO00276, 1997. a
Meehl, G. A., Boer, G. J., Curt Covey, M. L., and Stouffer, R. J.: The Coupled
Model Intercomparison Project (CMIP), B. Am. Meteorol.
Soc., 81, 313–318, 2000. a
Mendlik, T. and Gobiet, A.: Selecting climate simulations for impact studies
based on multivariate patterns of climate change, Clim. Change, 135,
381–393, https://doi.org/10.1007/s10584-015-1582-0, 2016. a
Merrifield, A. L.: CMIP_subselection: Scripts to accompany Climate model
Selection by Independence, Performance, and Spread, Zenodo [code],
https://doi.org/10.5281/zenodo.7492727, 2022. a
Merrifield, A. L.: Predictor files for ClimSIPS: Climate model Selection by
Independence, Performance, and Spread, ETH Research Collection [data set],
https://doi.org/10.3929/ethz-b-000599312, 2023. a
Merrifield, A. L. and Könz, M. S.: ClimSIPS: Climate model Selection by
Independence, Performance, and Spread, Zenodo [code],
https://doi.org/10.5281/zenodo.8165835, 2023. a, b
Mignot, J. and Bony, S.: Presentation and analysis of the IPSL and CNRM climate
models used in CMIP5, Clim. Dynam., 40, 2089, https://doi.org/10.1007/s00382-013-1720-1,
2013. a
Moreno-Chamarro, E., Caron, L.-P., Ortega, P., Tomas, S. L., and Roberts,
M. J.: Can we trust CMIP5/6 future projections of European winter
precipitation?, Environ. Res. Lett., 16, 054063,
https://doi.org/10.1088/1748-9326/abf28a, 2021. a
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Palmer, T. E., McSweeney, C. F., Booth, B. B. B., Priestley, M. D. K., Davini, P., Brunner, L., Borchert, L., and Menary, M. B.: Performance-based sub-selection of CMIP6 models for impact assessments in Europe, Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023, 2023. a, b, c
Parker, W. S.: When Climate Models Agree: The Significance of Robust Model
Predictions, Philos. Sci., 78, 579–600, https://doi.org/10.1086/661566, 2011. a
Parker, W. S.: Ensemble modeling, uncertainty and robust predictions, WIREs
Clim Change, 4, 213–223, https://doi.org/10.1002/wcc.220, 2013. a, b
Pirtle, Z., Meyer, R., and Hamilton, A.: What does it mean when climate models
agree? A case for assessing independence among general circulation models,
Environ. Sci. Policy, 13, 351–361,
https://doi.org/10.1016/j.envsci.2010.04.004, 2010. a
Qian, B., Jing, Q., Cannon, A. J., Smith, W., Grant, B., Semenov, M. A., Xu,
Y.-P., and Ma, D.: Effectiveness of using representative subsets of global
climate models in future crop yield projections, Sci. Rep., 11, 20565,
https://doi.org/10.1038/s41598-021-99378-7, 2021. a, b, c
Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, L., Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Loosveldt Tomas, S., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – technical overview, Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, 2020. a
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele, J., Curry, J., Wickham, C., and Mosher, S.:
Berkeley Earth Temperature Averaging Process, Geoinfor Geostat: An Overview,
1, 1000103, https://doi.org/10.4172/2327-4581.1000103, 2013. a
Ruane, A. and McDermid, S.: Selection of a representative subset of global
climate models that captures the profile of regional changes for integrated
climate impacts assessment, Earth Perspectives, 4, 28,
https://doi.org/10.1186/s40322-017-0036-4, 2017. a, b, c
Sanderson, B. M., Wehner, M., and Knutti, R.: Skill and independence weighting for multi-model assessments, Geosci. Model Dev., 10, 2379–2395, https://doi.org/10.5194/gmd-10-2379-2017, 2017. a
Sanderson, B. M., Pendergrass, A. G., Koven, C. D., Brient, F., Booth, B. B. B., Fisher, R. A., and Knutti, R.: The potential for structural errors in emergent constraints, Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, 2021. a
Schmidt, G.: Absolute temperatures and relative anomalies,
https://www.realclimate.org/index.php/archives/2014/12/absolute-temperatures-and-relative-anomalies/#ITEM-17690-0 (last access: 5 April 2022),
2014. a
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020. a
Semenov, M. and Stratonovich, P.: Adapting wheat ideotypes for climate change:
accounting for uncertainties in CMIP5 climate projections, Clim. Res., 65,
123–139, https://doi.org/10.3354/cr01297, 2015. a
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts on the natural physical environment, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109–230, https://doi.org/10.7916/d8-6nbt-s431, 2012. a
Simpson, I., Yeager, S., McKinnon, K., and C., D.: Decadal predictability of
late winter precipitation in western Europe through an ocean-jet stream
connection, Nat. Geosci., 12, 613–619, https://doi.org/10.1038/s41561-019-0391-x,
2019. a
Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A.,
Garcia, R. R., Lauritzen, P. H., Marsh, D. R., Mills, M. J., Medeiros, B.,
and Richter, J. H.: An Evaluation of the Large-Scale Atmospheric Circulation
and Its Variability in CESM2 and Other CMIP Models, J. Geophys.
Res.-Atmos., 125, e2020JD032835, https://doi.org/10.1029/2020JD032835,
2020. a
Simpson, I. R., McKinnon, K. A., Davenport, F. V., Tingley, M., Lehner, F.,
Fahad, A. A., and Chen, D.: Emergent Constraints on the Large-Scale
Atmospheric Circulation and Regional Hydroclimate: Do They Still Work in
CMIP6 and How Much Can They Actually Constrain the Future?, J.
Climate, 34, 6355–6377, https://doi.org/10.1175/JCLI-D-21-0055.1, 2021. a
Sippel, S., Zscheischler, J., Mahecha, M. D., Orth, R., Reichstein, M., Vogel, M., and Seneviratne, S. I.: Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics, Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, 2017. a
Sliggers, J. and Kakebeeke, W.: Clearing the air; 25 Years of the Convention on Long-range Transboundary Air Pollution, ECE/EB.AIR/84, United Nations, New York and Geneva,
2004. a
Smith, C., Nicholls, Z. R. J., Armour, K., Collins, W., Forster, P.,
Meinshausen, M., Palmer, M. D., and Watanabe, M.: The Earth’s Energy
Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material,
chap. 7, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., https://ipcc.ch/static/ar6/wg1 (last access: 28 September 2022), 2021. a
Sperna Weiland, F. C., Visser, R. D., Greve, P., Bisselink, B., Brunner, L.,
and Weerts, A. H.: Estimating Regionalized Hydrological Impacts of Climate
Change Over Europe by Performance-Based Weighting of CORDEX Projections,
Frontiers in Water, 3, 713537, https://doi.org/10.3389/frwa.2021.713537, 2021. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b, c
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J.,
Lehner, F., and Knutti, R.: Past warming trend constrains future warming in
CMIP6 models, Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549,
2020. a
Tselioudis, G., Lipat, B. R., Konsta, D., Grise, K. M., and Polvani, L. M.:
Midlatitude cloud shifts, their primary link to the Hadley cell, and their
diverse radiative effects, Geophys. Res. Lett., 43, 4594–4601,
https://doi.org/10.1002/2016GL068242, 2016. a
Ukkola, A. M., Pitman, A. J., Donat, M. G., De Kauwe, M. G., and Angélil, O.:
Evaluating the Contribution of Land-Atmosphere Coupling to Heat Extremes in
CMIP5 Models, Geophys. Res. Lett., 45, 9003–9012,
https://doi.org/10.1029/2018GL079102, 2018. a
Weigel, A., Knutti, R., Liniger, M., and Appenzeller, C.: Risks of Model
Weighting in Multimodel Climate Projections, J. Climate, 23,
4175–4191, https://doi.org/10.1175/2010JCLI3594.1, 2010.
a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
a, b
Zheng, W., Yu, Y.-Q., Luan, Y., Zhao, S., He, B., Dong, L., Song, M., Lin, P.,
and Liu, H.: CAS-FGOALS Datasets for the Two Interglacial Epochs of the
Holocene and the Last Interglacial in PMIP4, Adv. Atmos.
Sci., 37, 1034–1044, https://doi.org/10.1007/s00376-020-9290-8, 2020. a
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many...