Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4715-2023
https://doi.org/10.5194/gmd-16-4715-2023
Methods for assessment of models
 | 
23 Aug 2023
Methods for assessment of models |  | 23 Aug 2023

Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications

Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti

Related authors

Reduced global warming from CMIP6 projections when weighting models by performance and independence
Lukas Brunner, Angeline G. Pendergrass, Flavio Lehner, Anna L. Merrifield, Ruth Lorenz, and Reto Knutti
Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020,https://doi.org/10.5194/esd-11-995-2020, 2020
Short summary
An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles
Anna Louise Merrifield, Lukas Brunner, Ruth Lorenz, Iselin Medhaug, and Reto Knutti
Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020,https://doi.org/10.5194/esd-11-807-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023,https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
URock 2023a: an open-source GIS-based wind model for complex urban settings
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023,https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
DASH: a MATLAB toolbox for paleoclimate data assimilation
Jonathan King, Jessica Tierney, Matthew Osman, Emily J. Judd, and Kevin J. Anchukaitis
Geosci. Model Dev., 16, 5653–5683, https://doi.org/10.5194/gmd-16-5653-2023,https://doi.org/10.5194/gmd-16-5653-2023, 2023
Short summary
Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1)
Siddhartha Bishnu, Robert R. Strauss, and Mark R. Petersen
Geosci. Model Dev., 16, 5539–5559, https://doi.org/10.5194/gmd-16-5539-2023,https://doi.org/10.5194/gmd-16-5539-2023, 2023
Short summary
All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0
Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein
Geosci. Model Dev., 16, 5515–5538, https://doi.org/10.5194/gmd-16-5515-2023,https://doi.org/10.5194/gmd-16-5515-2023, 2023
Short summary

Cited articles

Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019. a, b, c, d, e
Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017. a, b
Ashfaq, M., Rastogi, D., Abid, M. A., and Kao, S.-C.: Evaluation of CMIP6 GCMs over the CONUS for downscaling studies, Earth and Space Science Open Archive, p. 28, https://doi.org/10.1002/essoar.10510589.1, 2022. a, b
Athanasiadis, P. J., Ogawa, F., Omrani, N.-E., Keenlyside, N., Schiemann, R., Baker, A. J., Vidale, P. L., Bellucci, A., Ruggieri, P., Haarsma, R., Roberts, M., Roberts, C., Novak, L., and Gualdi, S.: Mitigating climate biases in the mid-latitude North Atlantic by increasing model resolution: SST gradients and their relation to blocking and the jet, J. Climate, 35, 6985–7006, https://doi.org/10.1175/JCLI-D-21-0515.1, 2022. a
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst, Kowalczyk, E., Golebiewski, Sullivan, A., Yan, Y., Hannah, Franklin, C., Sun, Z., Vohralik, Watterson, Fiedler, R., Collier, M., and Puri, K.: The ACCESS coupled model: Description, control climate and evaluation, Aust. Meteorol. Ocean., 63, 41–64, https://doi.org/10.22499/2.6301.004, 2012. a
Download
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.