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Abstract. As the number of models in Coupled Model In-
tercomparison Project (CMIP) archives increase from gener-
ation to generation, there is a pressing need for guidance on
how to interpret and best use the abundance of newly avail-
able climate information. Users of the latest CMIP6 seek-
ing to draw conclusions about model agreement must con-
tend with an “ensemble of opportunity” containing similar
models that appear under different names. Those who used
the previous CMIP5 as a basis for downstream applications
must filter through hundreds of new CMIP6 simulations to
find several best suited to their region, season, and climate
horizon of interest. Here we present methods to address both
issues, model dependence and model subselection, to help
users previously anchored in CMIP5 to navigate CMIP6 and
multi-model ensembles in general. In Part I, we refine a defi-
nition of model dependence based on climate output, initially
employed in Climate model Weighting by Independence and
Performance (ClimWIP), to designate discrete model fami-
lies within CMIP5 and CMIP6. We show that the increased
presence of model families in CMIP6 bolsters the upper
mode of the ensemble’s bimodal effective equilibrium cli-
mate sensitivity (ECS) distribution. Accounting for the mis-
match in representation between model families and indi-
vidual model runs shifts the CMIP6 ECS median and 75th
percentile down by 0.43 ◦C, achieving better alignment with
CMIP5’s ECS distribution. In Part II, we present a new ap-
proach to model subselection based on cost function min-
imization, Climate model Selection by Independence, Per-
formance, and Spread (ClimSIPS). ClimSIPS selects sets of
CMIP models based on the relative importance a user as-
cribes to model independence (as defined in Part I), model
performance, and ensemble spread in projected climate out-

come. We demonstrate ClimSIPS by selecting sets of three to
five models from CMIP6 for European applications, evaluat-
ing the performance from the agreement with the observed
mean climate and the spread in outcome from the projected
mid-century change in surface air temperature and precipi-
tation. To accommodate different use cases, we explore two
ways to represent models with multiple members in Clim-
SIPS, first, by ensemble mean and, second, by an individual
ensemble member that maximizes mid-century change diver-
sity within the CMIP overall. Because different combinations
of models are selected by the cost function for different bal-
ances of independence, performance, and spread priority, we
present all selected subsets in ternary contour “subselection
triangles” and guide users with recommendations based on
further qualitative selection standards. ClimSIPS represents
a novel framework to select models in an informed, efficient,
and transparent manner and addresses the growing need for
guidance and simple tools, so those seeking climate services
can navigate the increasingly complex CMIP landscape.

1 Introduction

Since its inception in 1995, the Coupled Model Inter-
comparison Project (CMIP) has guided the climate sci-
ence community in a coordinated effort to understand how
climate variability and change are represented by cou-
pled ocean–atmosphere–cryosphere–land general circulation
models (GCMs; Meehl et al., 1997, 2000; Taylor et al.,
2012; Eyring et al., 2016). The backbone of international
climate assessments (IPCC, 2021), the CMIP’s common ex-
periments have generated a range of possible future climate
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outcomes representative of a range of modeling strategies,
socioeconomic decision-making, and inherent systemic in-
ternal climate variability. Generation to generation, CMIP
model archives have grown, due to the participation of new
modeling centers and to the recognition that multiple re-
alizations of a single model provide valuable estimates of
uncertainty arising from internal variability (e.g., Haughton
et al., 2014; Deser et al., 2020; Maher et al., 2021a). Though
these larger multi-model ensembles represent advancements
in global coordination and uncertainty representation, they
present interpretation and utilization challenges for down-
stream users (Dalelane et al., 2018).

1.1 The composition of the CMIP

Interpreting results derived from multiple CMIP models is
complicated by the fact that the CMIP is an “ensemble
of opportunity”; the project assembles all available climate
projections that adhere to its simulation guidelines (Knutti
et al., 2010). This inclusive strategy collects “best guesses”
from modeling groups with the capacity to participate, which
range from long-running, well-funded climate model devel-
opment programs to brand-new groups with the computa-
tional resources to run a version of an existing climate model.
While being inclusive, such ensembles of opportunity are not
designed to be a representative sample of multi-model un-
certainty in the way most would envision. For example, one
might consider a representative sample of multi-model un-
certainty to be a distribution put forth by a set of distinct cli-
mate models with different but plausible strategies for sim-
ulating the Earth system, equally represented by a single-
model run. Further, each of those distinct models could be
represented by several runs that start from slightly different
states (initial-condition ensemble members) to reflect inter-
nal variability and by several runs that differ by parame-
ter values (perturbed-physics ensemble members) to reflect
parametric uncertainty (Parker, 2013), with the same number
of runs for each model to maintain equal representation.

In reality, though, CMIP6 features over 60 uniquely named
models (and counting), while its predecessor CMIP5 fea-
tured on the order of 40. Uniquely named models range in
terms of representation within the ensemble, from a single-
model run to several-member perturbed-physics ensembles
to 50-member single-model initial-condition large ensem-
bles. Modeling centers often contribute several versions of
their base model under different names as well (Leduc et al.,
2016); these variants differ by, for example, the spatial reso-
lution of some model components or entire sub-models (see
Brands et al., 2023), which may influence their simulated
climate in ways that are difficult to anticipate. Adding fur-
ther complexity, models actually fall over a spectrum that
ranges from effective replicates to fully independent enti-
ties. Different models share historical predecessors (Masson
and Knutti, 2011; Knutti et al., 2013), conceptual frame-
works, and, in some cases, source code (Boé, 2018; Brands,

2022b; Brands et al., 2023). An active field of research has
developed to identify and manage these “hidden dependen-
cies” through weighting or subselection of the broader CMIP
archives (e.g., Bishop and Abramowitz, 2013; Sanderson
et al., 2015; Knutti et al., 2017; Brunner and Sippel, 2023),
but open questions remain, particularly with regards to how
best to determine dependence within multi-model ensembles
(Abramowitz et al., 2019; Annan and Hargreaves, 2017).

Dependence is important to identify within multi-model
ensembles because a common assumption is that when mod-
els converge to the same outcome, their consensus suggests
certainty or robustness (Parker, 2011, 2013). Dependence un-
dermines this assumption because robustness requires differ-
ent modeling approaches to agree. Because the CMIP is not
systematically designed to equally sample different model-
ing approaches, ensemble agreement could be coming from
a diverse set of models or could simply be coming from the
same (or similar) models supporting an outcome repeatedly
(Pirtle et al., 2010). Redundant agreement reflects certainty
in a particular model’s outcome but does not mean that that
model’s outcome is necessarily correct, nor that we should
be more confident in that outcome overall. Too many highly
dependent entities within an ensemble clearly shift and/or
narrow uncertainty estimates (Merrifield et al., 2020), so it
is, therefore, crucial to systematically identify dependencies
and evaluate how they affect distributional statistics before
statements about robustness or uncertainty are made.

One method that has been developed to ward against over-
confident multi-model climate uncertainty estimates is Cli-
mate model Weighting by Independence and Performance
(ClimWIP; e.g., Knutti et al., 2017; Lorenz et al., 2018;
Brunner et al., 2019, 2020b). ClimWIP uses model out-
put variables to identify (1) potential issues that preclude a
model from successfully simulating a realistic future climate
response (performance) and (2) similarities that suggest a
model is a duplicate or close relation of another in the en-
semble (independence). Initial versions of ClimWIP based
performance and independence definitions on the same set
of predictors, which led to concerns about convergence to re-
ality. The basic concern was that as models improved, their
(valid) agreement towards an outcome would be interpreted
as dependence and result in them being downweighted. To
address this concern, separate sets of predictors were in-
troduced to define performance and independence within
ClimWIP to allow for a straightforward and universal defi-
nition of dependence in line with prior knowledge of model
origin (Merrifield et al., 2020).

In addition to providing an operational definition of de-
pendence that can be used to contextualize CMIP-derived
results, ClimWIP has the advantage of being available for
general open use (Sperna Weiland et al., 2021; Gründemann
et al., 2022) as part of the Earth System Model Evaluation
Tool (ESMValTool; Righi et al., 2020). In the first part of
this study, we revisit and refine ClimWIP’s definition of de-
pendence using long-term, large-scale climatological “fin-
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gerprints” that enhance the spread between models and re-
duce internal variability. We show that distances between
different climate models and versions of the same model or
even between initial-condition members derived from clima-
tological fingerprints delineate levels of dependence within
the CMIP more precisely than distances based on previous
predictor sets. This allows us to better illustrate how ensem-
ble composition has changed from CMIP5 to CMIP6 in low-
dimensional projected space. These intermember distances
also reveal the presence of broader “model families” within
the CMIP comprised of similar models from different institu-
tions. In light of this, we determine a potential point of sepa-
ration between models in families and the rest of CMIP5 and
CMIP6 (henceforth CMIP5/6) and validate the resulting fam-
ily designations using model metadata. Finally, to better un-
derstand how dependence may affect CMIP uncertainty es-
timates, we investigate how restricting representation to one
“vote” per family constrains distributions of effective equi-
librium climate sensitivity (ECS; Gregory et al., 2004).

Sections 2 through 4 comprise Part I of this study. Sec-
tion 2 details the CMIP5/6 base ensembles used throughout.
In Sect. 3, refinements made to ClimWIP’s dependence strat-
egy for the purpose of defining model families are described.
Model family designations are put forward in Sect. 4 and sub-
sequently employed to introduce a one-vote-per-family con-
straint on ECS in CMIP5/6.

1.2 The CMIP for downstream applications

Understanding dependencies within a multi-model CMIP en-
semble is only the first step to designing an ensemble suitable
for a downstream climate service application (Dalelane et al.,
2018). For many applications, using the entirety of a modern
CMIP archive is too computationally expensive. It has been
widely assumed within the impact and regional modeling
communities that a subset of several CMIP simulations will
suffice for most tasks, provided the subset retains key char-
acteristics of the larger ensemble that is selected from such
as spread (e.g., Evans et al., 2013; McSweeney and Jones,
2016; Christensen and Kjellström, 2020; Kiesel et al., 2020).

The questions are then as follows: how should one se-
lect a representative subset from a multi-model ensemble
for a specific task? How many simulations are necessary?
Should those simulations come from independent models so
that model agreement means something (Sanderson et al.,
2015)? Should they come from models that are considered
well suited in reproducing observed climate in a particular
region or season to inspire fidelity in the projected outcomes
(Ashfaq et al., 2022)? Should the subset prioritize having ex-
treme cool–wet and hot–dry representatives, while also sam-
pling possible climatic states in between (Qian et al., 2021)?

We posit that all three considerations, model individu-
ality (henceforth “independence”), model suitability for a
task (henceforth “performance”), and model outcome range
(henceforth “spread”), should be taken into account when

subselecting from the CMIP archive. Existing subselection
methods are typically based on two of the three considera-
tions and can be broadly grouped into performance-based or
spread-based categories.

While subselection can be based on performance alone
(Ashfaq et al., 2022), studies that evaluate performance-
based subselection tend to do so in conjunction with inde-
pendence (Evans et al., 2013; Sanderson et al., 2015; Herger
et al., 2018; Di Virgilio et al., 2022; Palmer et al., 2023).
Evans et al. (2013) succinctly demonstrated that for small
subsets to reflect the spread of larger ensembles, it is more
important to account for model independence (defined in
the study following Bishop and Abramowitz, 2013) than for
model performance. Selection by model performance is usu-
ally anticipated to reduce ensemble spread, which can also
pose issues if there is an interest in reproducing the mean
of the base ensemble. Herger et al. (2018) established that
an ensemble selected based on a performance ranking was
sometimes worse at reproducing the base ensemble mean
than an ensemble selected at random. Using a comprehen-
sive method to select diverse and skillful model subsets from
CMIP5, Sanderson et al. (2015) found the multi-model en-
semble to be a “rather heterogeneous, clustered distribution,
with families of closely related models lying close together
but with significant voids in-between model clusters” via em-
pirical orthogonal function (EOF) analysis. CMIP5’s interde-
pendencies allowed for stages of subselection, first removing
redundant simulations (without reducing the effective num-
ber of models), then removing poor-performing simulations
to improve ensemble mean state representation. More re-
cently, Di Virgilio et al. (2022) and Palmer et al. (2023) built
on these CMIP5-era strategies to support CMIP6 model sub-
selection for regional modeling exercises. In Di Virgilio et al.
(2022), CMIP6 models, represented by an individual ensem-
ble member, were first filtered by performance for Australian
climate applications, with top- and mid-tier performers fur-
ther evaluated for dependencies based on the methods of
Bishop and Abramowitz (2013) and Herger et al. (2018). The
study then went a step further to also assess climate change
signal diversity to determine whether their high-performing,
independent subset effectively sampled the range of Aus-
tralian climatic changes in CMIP6. In Palmer et al. (2023), a
process-based European performance assessment for CMIP6
is presented. The study, an extension of the work of Mc-
Sweeney et al. (2015), also incorporates a second filter based
on ClimWIP’s dependence definition (Brunner et al., 2020b)
and notably finds that regional model selection can differ
from approaches targeting global metrics such as ECS that
were central to CMIP5-era model subselection recommen-
dations (CORDEX, 2018).

Spread-based subselection or selection, with the goal of
maximizing climate change signal diversity, is often carried
out either alone (e.g., Semenov and Stratonovich, 2015; Mc-
Sweeney and Jones, 2016; Ruane and McDermid, 2017; Qian
et al., 2021) or in conjunction with performance (Lutz et al.,
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2016) or independence (Mendlik and Gobiet, 2016). The
clear application for this approach is impact studies where
worst-case scenarios are often of interest. A common thread
in spread-maximizing subselection studies is the concept of
a “climate envelope”, typically defined by changes in spa-
tiotemporal aggregations of surface air temperature (SAT)
and precipitation (PR) fields. For example, Lutz et al. (2016)
selected models from a base ensemble initially based on pro-
jected changes in SAT and PR means and then refined the
selection using changes and historical performance of SAT
and PR extreme indices. Similarly, the Representative Tem-
perature and Precipitation GCM Subsetting (T&P) approach,
developed by Ruane and McDermid (2017), sampled SAT
and PR changes in terms of deviation from their respective
ensemble medians. This allows for selected model combi-
nations that span the cool–hot, wet–dry quadrants, as well
as the “neutral” center, of the model ensemble. Qian et al.
(2021) further advanced spread-maximizing subselection by
evaluating the T&P approach against the Katsavounidis–
Kuo–Zhang (KKZ) algorithm (Katsavounidis et al., 1994),
in which members are recursively selected to best span the
spread of an ensemble. While both approaches had merit, the
KKZ approach was more likely than the T&P approach to
perform better than a randomly selected five-GCM subset in
terms of both error in relation to the full-ensemble mean and
coverage of the full-ensemble spread.

Despite the numerous model subselection approaches
available, the process remains somewhat burdensome to
users and often requires several rounds of iterative filtering
before a subset of a user’s desired size is reached. And chal-
lenges can emerge depending on the choice of the starting
filter: if performance is used as the starting filter, there is a
risk the user is left with a set of very similar models that,
though high-performing, are not independent and perhaps do
not effectively sample ensemble spread. If spread is used as
the starting filter, there is no way for a user to ensure that the
models they select projecting the worst-case scenarios are re-
alistic to begin with. If independence is used as a starting fil-
ter, which is not a common practice but perhaps should be,
the user can be assured that model agreement is equivalent to
robustness but may struggle to select the highest-performing
or most unique projection from each model family.

To address these difficulties, we present an alternative ap-
proach to subselection that allows a user to simultaneously
balance independence, performance, and spread interests and
generate a subset of CMIP models of any size tailored to
their specific application. The subselection method, Climate
model Selection by Independence, Performance, and Spread
(ClimSIPS; Merrifield and Könz, 2023), leverages a three-
term cost function that grants the user freedom to decide
how important independence, performance, and spread are
(relative to one another) for the application. We demonstrate
ClimSIPS for European climate applications in the second
part of this study. First, the remaining methodological inputs
are defined, including a performance score (also derived from

ClimWIP) based on climatological biases that affect projec-
tions of European climate and a multivariate SAT and PR
change spread metric. We then discuss the mechanics of sub-
selection: the independence, performance, and spread cost
function minimization and its visual representation, the sub-
selection triangle. Because the cost function balances three
interests, different combinations of models are selected as
priorities shift. The subselection triangle, a ternary contour
plot, summarizes which combination of models is optimal
for each set of priorities.

ClimSIPS is demonstrated primarily within the CMIP6 en-
semble for central European summer climate applications,
beginning with a toy example. Upon extending the method
to the full CMIP6 ensemble, we generate three-model sub-
sets and formulate recommendations to help users navigate
the subselection triangle. We compare ClimSIPS outcomes
based on how a model is represented, whether by its en-
semble mean (where applicable) or by an individual, spread-
maximizing member. Finally, we generate five-model subsets
for both central European summer climate and northern Eu-
ropean winter climate applications. CMIP6 five-model sub-
selection is highlighted in the main text, while CMIP5 five-
model subselection is included in the Supplement.

Part II of this study is a case study of ClimSIPS for Eu-
ropean climate applications, detailed in Sect. 5. Section 5.1
centers the definitions of performance and Sect. 5.2 the def-
initions of spread for European climate applications in the
ClimSIPS protocol. The protocol is described in detail in
Sect. 5.3, and the resulting three- and five-model subsets for
each combination of independence, performance, and spread
prioritization are presented in Sect. 5.4. To close, concluding
remarks are made in Sect. 6.

2 CMIP models

We begin our assessment with ensembles comprised of all
models (and all initial-condition and perturbed-physics en-
semble members therein) with historical simulations and the
highest emissions projection pathways: Shared Socioeco-
nomic Pathway 5-8.5 (SSP5-8.5) for CMIP6 model projec-
tions (Eyring et al., 2016; O’Neill et al., 2016) and Repre-
sentative Concentration Pathway 8.5 (RCP8.5) for CMIP5
model projections (Taylor et al., 2012). For inclusion in Part
I, the models also must provide (1) an estimate of ECS, cal-
culated from a 4×CO2 run using the Gregory method (Gre-
gory et al., 2004), and (2) the following monthly mean out-
put fields (with their abbreviation and model output vari-
able name given in brackets): near-surface 2 m air temper-
ature (SAT; tas), precipitation (PR; pr), and sea-level pres-
sure (SLP; psl). Further inclusion in Part II’s European case
studies requires the additional monthly mean output fields
of sea surface temperature (SST; tos) and all-sky and clear-
sky downwelling shortwave radiation at the surface (rsds and
rsdscs, respectively). All fields are conservatively remapped
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onto a 2.5◦× 2.5◦ latitude–longitude grid. At the time of
writing, 218 CMIP6 and 75 CMIP5 simulations met the
aforementioned criteria for Part I, and 197 CMIP6 and 68
CMIP5 simulations met the further criteria for Part II; addi-
tional CMIP6 simulations will be considered in subsequent
publications as fields become available in the CMIP6 next-
generation archive, a standardized repository used by re-
searchers at ETH Zurich (Brunner et al., 2020a).

The inclusion requirements each serve a specific purpose
in the study. Historical SAT, SLP, and PR fields are explored
as a means to set degrees of model dependence within the
CMIP ensembles. The degrees of model dependence are then
used to constrain ECS values through subsetting. Remaining
historical model output fields establish model performance,
and SSP5-8.5–RCP8.5 projections establish mid-century cli-
mate change spread for Part II’s European case studies.

Tables 1 and 2 provide a summary of the CMIP6 and
CMIP5 models included in the study, respectively. We assign
each uniquely named model (37 in CMIP6 and 29 in CMIP5)
a numerical identifier (column 1) to be used throughout Part
I. Model name and member count are also noted, with mem-
bers labeled as initial- condition ensemble members (IC),
perturbed-physics ensemble members (PP), or differently
initialized ensemble members (DI) for multi-member ensem-
bles. We provide additional information about members used
in Tables S1–S3 in the Supplement, including full “ripf”
identifiers for CMIP6 and “rip” identifiers for CMIP5. The
IC designation corresponds to the “r” or realization index,
the DI to the “i” or initialization index, and the PP to the “p”
or physics index. The “f” or forcing index, unique to CMIP6,
is shared by all members of each model.

Finally, to familiarize the reader with the concept of model
families we will subsequently define, we also list the fam-
ily group status of each model. The designation, “INDV”,
indicates a model is considered to be an individual repre-
sented by a single member. “SME” signifies that a model is a
single-model ensemble or an individual represented by mul-
tiple members (e.g., initial-condition ensembles, perturbed-
physics ensembles, combinations thereof). This means it was
not found to be part of a broader multi-model family or
“FAM” by the criteria we subsequently define. In total, the
218 CMIP6 simulations from 37 uniquely named models
considered in Part I fall into 19 groups (seven multi-model
families, eight single-model ensembles, and four individu-
als), and the 75 CMIP5 simulations from 29 uniquely named
models fall into 20 groups (eight multi-model families, five
single-model ensembles, and seven individuals). In Part II,
197 CMIP6 simulations from 34 uniquely named models and
68 CMIP5 simulations from 26 uniquely named models re-
main for the subselection exercise (Tables S1–S3).

3 Revisiting model dependence

In prior studies, it has been shown that a climate model’s
origins and evolution can be traced via statistical properties
of its outputs (e.g., Masson and Knutti, 2011; Bishop and
Abramowitz, 2013; Knutti et al., 2013). Output-based model
identification can uncover hidden dependencies within the
ensemble, e.g., models that are similar because they share
components or lineages but not names. The approach also
has the advantage that it does not presume model similarity
based on name alone; output from models in active develop-
ment can evolve substantially from version to version (e.g.,
Kay et al., 2012; Boucher et al., 2020; Danabasoglu et al.,
2020), while output from the same version of a model run
at different modeling centers is often quite similar (Maher
et al., 2021b). Risks arise, though, if model output used to de-
termine similarity converges within a multi-model ensemble
broadly and thus becomes ineffective at differentiating be-
tween dependent and independent models (Brands, 2022b).
To reduce the risk of similar output conflating dependent
and independent models, we update the model dependence
strategy from the ClimWIP independence weighting scheme
(Brunner et al., 2020b) to revisit the concept of model fami-
lies within the CMIP.

ClimWIP defines model dependence using an intermem-
ber distance metric based on long-term, large-scale clima-
tological averages (Merrifield et al., 2020). The rationale
behind this underlying spatiotemporal aggregation is that it
is able to identify an initial-condition or perturbed-physics
ensemble as a single model (by averaging over differences
due to internal variability or parameter uncertainty) while si-
multaneously maintaining varying degrees of differentiation
between models in the ensemble overall. In practice, this
balance between reducing intra-model or “within-model”
intermember spread while still preserving inter-model or
“between-model” intermember spread is key to a useful def-
inition of dependence within the CMIP. It was found that
the absolute values of global-scale annual average SAT and
SLP climatologies are able to achieve this balance (Merri-
field et al., 2020), but the extent of this has not yet been eval-
uated.

Here we explicitly investigate the within-model vs.
between-model spread balance in ClimWIP’s independence
predictors to ensure they provide a suitable application-
agnostic definition of model dependence for atmospheric
studies. This is done by testing the sensitivity of the final
root-mean-square error (RMSE) intermember distance met-
ric to each methodological choice in ClimWIP, including
temporal averaging period, spatial masking strategies, and
predictor field choices. Intermember distance (Iij ) is calcu-
lated through pairwise RMSE between ensemble members i
and j for each predictor field ŷ individually. Individual pre-
dictor RMSEs (φij ) are defined as
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Table 1. Summary of the CMIP6 multi-model ensemble. Starred models meet the inclusion criteria for Part I only at the time of writing.

ID Model name Members Family ID Model name Members Family

1) ACCESS-ESM1-5 10 (IC) SME 20) MPI-ESM1-2-HR 2 (IC) FAM
2) HadGEM3-GC31-MM 4 (IC) FAM 21) GFDL-CM4 1 FAM
3) KACE-1-0-G 3 (IC) FAM 22) GFDL-ESM4 1 FAM
4) ACCESS-CM2 3 (IC) FAM 23) EC-Earth3* 8 (IC) FAM
5) HadGEM3-GC31-LL 4 (IC) FAM 24) EC-Earth3-Veg* 4 (IC) FAM
6) UKESM1-0-LL 5 (IC) FAM 25) FGOALS-f3-L 1 INDV
7) TaiESM1 1 FAM 26) FGOALS-g3 4 (IC) SME
8) CMCC-ESM2 1 FAM 27) INM-CM4-8 1 FAM
9) CMCC-CM2-SR5 1 FAM 28) INM-CM5-0 1 FAM
10) NorESM2-MM 1 FAM 29) MIROC6 50 (IC) SME
11) CESM2-WACCM 3 (IC) FAM 30) MIROC-ES2L 10 (IC) SME
12) CESM2 5 (IC) FAM 31) MRI-ESM2-0 2 (DI) SME
13) CNRM-CM6-1-HR 1 FAM 32) E3SM-1-1 1 INDV
14) CNRM-ESM2-1 5 (IC) FAM 33) CanESM5 50 (IC,PP) SME
15) IPSL-CM6A-LR 6 (IC) FAM 34) CAS-ESM2-0 2 (IC) SME
16) CNRM-CM6-1 6 (IC) FAM 35) GISS-E2-1-G 6 (IC,PP) SME
17) AWI-CM-1-1-MR 1 FAM 36) MCM-UA-1-0* 1 INDV
18) NESM3 2 (IC) FAM 37) KIOST-ESM 1 INDV

19) MPI-ESM1-2-LR 10 (IC) FAM Totals (Members, groups) 218 19

Table 2. Summary of the CMIP5 multi-model ensemble. Starred models meet the inclusion criteria for Part I only at the time of writing.

ID Model name Members Family ID Model name Members Family

1) ACCESS1-0 1 FAM 16) GFDL-ESM2M 1 FAM
2) ACCESS1-3 1 FAM 17) GFDL-CM3 1 INDV
3) HadGEM2-ES 4 (IC) FAM 18) MIROC5 3 (IC) SME
4) NorESM1-ME 1 FAM 19) MIROC-ESM 1 INDV
5) NorESM1-M 1 FAM 20) GISS-E2-H 5 (IC,PP) FAM
6) CCSM4 6 (IC) SME 21) GISS-E2-R 5 (IC,PP) FAM
7) CESM1-CAM5 3 (IC) SME 22) bcc-csm1-1 1 FAM
8) IPSL-CM5B-LR 1 INDV 23) bcc-csm1-1-m 1 INDV
9) IPSL-CM5A-MR 1 FAM 24) BNU-ESM* 1 FAM
10) IPSL-CM5A-LR 1 FAM 25) inmcm4 1 INDV
11) EC-EARTH* 5 (IC) FAM 26) CanESM2 5 (IC) SME
12) CNRM-CM5 5 (IC) FAM 27) MRI-CGCM3 1 INDV
13) MPI-ESM-MR 1 FAM 28) CSIRO-Mk3-6-0 10 (IC) SME
14) MPI-ESM-LR 3 (IC) FAM 29) FGOALS-g2* 1 INDV

15) GFDL-ESM2G 1 FAM Totals (Members, groups) 75 20

φij =

√∑p

k=1wk|ŷi − ŷj |
2∑p

k=1wk
, (1)

which reflects an RMSE weighted over the p grid points in
a latitude–longitude domain, with wk indicating the corre-
sponding cosine latitude weights. Each φij is normalized by
its respective ensemble mean value (φ) and then averaged
together to obtain a single Iij for each member pair. As in
Merrifield et al. (2020), Iij is comprised of two individual
predictor fields, global-scale annual average SAT and SLP

climatologies:

Iij =
1
2

2∑
l=1

(
φij

φ

)
l

. (2)

To first order, Iij is robust to methodological choices; the
sensitivity testing did not reveal major shifts in whether a
model was considered relatively dependent or independent
with respect to the other models in the ensemble (See Figs. 1
and S1 in the Supplement). However, refining each method-
ological choice sharpens dependence delineations along the
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spectrum of dependence and lends further credence to the
concept of model families.

The first methodological choice we revisit is the length of
the climatological period of the global SAT and SLP pre-
dictors (Fig. 1). To reduce internal variability on decadal
timescales, we extend the predictor climatological period
from 1980–2014 (Brunner et al., 2020b) to 1905–2005,
a common 101 years from the historical period of both
CMIP5 and CMIP6. Illustrating the effect in the CMIP6
ensemble, we find reduced intermember distances between
initial-condition ensemble members, highlighted in color,
for the 1905–2005 averaging period (Fig. 1a) compared to
the 1980–2014 period (Fig. 1b). The grouping effect of the
longer predictor averaging period helps to further distinguish
initial-condition and perturbed-physics ensemble members
from members of other models (Fig. 1, light gray) in most
cases. This differentiation is particularly clear in the case of
CESM2-WACCM. The longer climatological averaging pe-
riod distinguishes its three ensemble members from those
of CESM2; with the shorter period, the two CESM2 model
variants overlap (Fig. 1, models 11 and 12). In contrast,
though, the longer averaging period fails to subdue internal
variability enough to differentiate EC-Earth3-Veg from its
base model, Earth3 (Fig. 1, models 23 and 24). The remain-
ing internal variability in EC-Earth’s global SAT and SLP
fields is traceable to oscillations in the EC-Earth3 preindus-
trial control run from which both model variants are branched
(Döscher et al., 2022). Functionally, this means that despite
differing by coupled dynamic global vegetation, EC-Earth3
and EC-Earth3-Veg would be identified as one model by our
independence metric. This ambiguity was also found in a
model identification scheme that employs convolutional neu-
ral networks to daily output (Brunner and Sippel, 2023).

As the CMIP6 historical record spans 1850–2014 (Eyring
et al., 2016) and the CMIP5 historical record spans 1870–
2005 (Taylor et al., 2012), our choice of a 101-year averaging
period could have been extended further back in time. How-
ever, we find that increasing the period back into the 19th
century does not appreciably change intermember distances
(not shown). Additionally, the 1905 start date may allow for
backward compatibility of the metric with future generations
of the CMIP should organizers decide to begin the historical
period in the 20th century rather than the 19th century.

The second methodological choice of interest is whether
the dependence definition benefits from a spatial mask ap-
plied to the global SAT and SLP predictors. Spatial masking
may not be a necessity; within-model spread can be reduced
through temporal averaging, as seen in Fig. 1, and some level
of between-model spread is provided by the choice to use
predictor absolute values (Merrifield et al., 2020). Predic-
tor absolute values provide between-model spread because
it has not been a priority, historically, to calibrate or tune a
model towards the absolute value of observed SAT or SLP
(Mauritsen et al., 2012; Hourdin et al., 2017). The absolute
magnitude of a climatic field tends to be seen as secondary

to its relative change with respect to a historical base pe-
riod for most applications (Jones and Harpham, 2013). The
absolute value of global SAT in particular has been identi-
fied as an emergent property of climate models, reflecting
differences underpinned by different model components and
physical parameterizations (Schmidt, 2014). It is conceivable
that in the future, however, the reduction of absolute global
biases with respect to observations will become more of a
priority to modeling centers, and the between-model spread
we use to determine model diversity will disappear. Several
emergent properties defined in the CMIP5 era have vanished
in CMIP6, making this a credible concern (Simpson et al.,
2021; Sanderson et al., 2021).

Spatial masking can help guard against independence pre-
dictor convergence because an atypically masked model out-
put field is unlikely to feature in traditional model evaluation
or tuning exercises. Further, spatial masks can be explicitly
designed to leave behind “fingerprints” tailored to meet de-
pendence objectives. Here we design a spatial fingerprint,
shown in Fig. 2 for CMIP6 and Fig. S2 for CMIP5, that
bolsters between-model spread and reduces within-model
spread in the ClimWIP independence predictor fields. The
SAT and SLP fingerprints, shown superimposed on their en-
semble mean annual average climatologies (1905–2005) in
Fig. 2e and f for CMIP6 and Fig. S2e and f for CMIP5, de-
fine model dependence for the remainder of the study.

The fingerprint design is conceptually simple; between-
model spread is amplified by masking regions where it is
low (Fig. 2, square hatching), and within-model spread is
damped by masking regions where it is high (Fig. 2, dia-
mond hatching). Though between-model spread is difficult
to clearly define within the CMIP’s multi-member, multi-
model structure, it can be estimated via standard deviation
across an ensemble comprised of one ensemble member per
model. The first member is selected from each multi-member
ensemble: r1i1p1 in CMIP5 and r1i1p1f1 where available in
CMIP6, with exceptions listed in Table S4. Upon computing
the standard deviation across the ensembles of one member
per model, we mask out the region where between-model
spread is at or below its 15th percentile (Fig. 2a,b, square
hatching). This “low” between-model spread is largely con-
fined to oceanic regions in the tropics and subtropics for both
the SAT and SLP 1905–2005 climatologies.

In addition to regions of low between-model spread, we
also select and mask regions of high (at or above the 85th
percentile) within-model spread (Fig. 2c, d, diamond hatch-
ing). CMIP6 within-model spread is represented in Fig. 2c
and d by the median of the standard deviations within the 12
CMIP6 initial-condition ensembles with five or more mem-
bers (see Supplement Sect. S2). CMIP5 within-model spread
is similarly defined within five initial-condition ensembles.
Because the requirement of five or more members necessi-
tates using a set of models to define internal variability rather
than the full ensemble, we evaluate within-model spread
within each individual model ensemble in Figs. S3 and S4
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Figure 1. Intermember distances in CMIP6 based on Global SAT and SLP climatological fields averaged over the period (a) 1905–2005
and (b) 1980–2014. For each model, distances between initial-condition or perturbed-physics ensemble members are marked in color, and
distances to members of the remaining models are marked in light gray.

for SAT and SLP climatology, respectively. For SAT clima-
tology, most models share regions of elevated internal vari-
ability across the Arctic and in particular, in the vicinity of
the annual climatological sea ice edge in the Irminger and
Barents seas (Fig. 2c; Davy and Outten, 2020). For SLP cli-
matology (Fig. 2d), internal variability remains in parts of
the Arctic and Antarctic, masking the Antarctic polar high

region where between-model variability is also at a maxi-
mum (Fig. 2b). Patterns of elevated internal variability are
broadly similar among the models evaluated (Figs. S3–S4),
so we make the assumption that this within-model spread es-
timate is transferable to the other models in the ensemble that
lack additional initial-condition ensemble members.
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Results are not highly sensitive to precise percentile
thresholds used to exclude regions of low between-model
spread and high within-model spread; intermember distances
are largely consistent for thresholds between the 5th and
20th percentile for between-model spread and the 80th and
95th percentile for within-model spread (Fig. S1). The 15th
and 85th percentiles were chosen to limit the percentage of
masked grid points to no more than 30% of the domain to-
tal, similar in extent to a land mask. Masking the majority
of the points in the domain increases the risk of relying on
small-scale biases to define dependence, which complicates
the interpretation of models being dependent because they
are spatially similar overall. Masking very few points does
not refine intermember distances much beyond those based
on unmasked predictors (as used in Fig. 1), thus rendering
the exercise unwarranted.

The third and final methodological choice we investigate
is that of the fields in ClimWIP’s independence predictor
set. Due to the complexity and breadth of model output, in-
numerable combinations of different climatic fields can be
put forth to define dependence. Because we aim for a de-
pendence definition that is broadly applicable to studies of
surface climate, we also considered PR as an addition to the
independence predictor base set. However, we found that the
inclusion of PR did not promote our primary goals: to group
known dependencies and differentiate between models. The
spatially masked annual-average PR climatology predictor,
shown in Fig. S5, tended to reduce between-model differen-
tiation within the ensemble as a whole, likely because the
majority of its between-model spread is co-located and thus
masked by high within-model spread in the tropical rain belts
associated with the Intertropical Convergence Zone (ITCZ).
For this reason, we chose to move forward with a dependence
definition based solely on SAT and SLP fingerprints.

4 Model families and their influence on CMIP
uncertainty

Refining ClimWIP’s dependence definition aids our effort to
define model families within CMIP5/6. We pursue defining
model families because many downstream applications, in-
cluding ClimSIPS, benefit from a discrete definition of de-
pendence rather than a continuous dependence spectrum. To
achieve the discrete definition of dependence, each CMIP5/6
model is designated as either a single-model ensemble, part
of a model family, or an individual (see Tables 1 and 2)
based on intermember distances within the ensemble. We
then make an effort to verify the designations through pub-
lished model descriptions and reported metadata.

In Fig. 3, we show how intermember distances based on
the sum of normalized RMSEs calculated from SAT and
SLP fingerprints help to uncover model relationships within
the CMIP. Intermember distances are presented for each
model in one dimension (Fig. 3a, c) and, as recommended

by Abramowitz et al. (2019), for the ensemble as a whole in
a low-dimensional projected space (Fig. 3b, d). The second
display strategy is appropriate because we find our matrix
of Iij meets the formal mathematical definition of a metric
space. To be mathematically a metric, the distance from a
model to itself must be zero, and distances between models
must be positive, symmetric, and adherent to the triangle in-
equality, which states that the distance from A to B is less
than or equal to the distance through an intermediary point
C (Abramowitz et al., 2019). The low-dimensional projec-
tion is obtained through a standard metric multidimensional
scaling (MDS) approach. The MDS method embeds the N -
dimensional CMIP distance matrices into two-dimensional
space while attempting to preserve relative positioning be-
tween models (Borg and Groenen, 2005). To assist the MDS
method with model positioning, we ensure that ensemble
members from each model are initially placed together and
can thus settle into their final positions as a group. Without
this initialization, there is a risk that an ensemble member
may get stranded away from its group as the method contends
with how best to map N dimensions to two dimensions.

In both one and two-dimensional visual representations,
it is clear that the ensemble of opportunity has grown from
CMIP5 (Fig. 3c, d) to CMIP6 (Fig. 3a, b); there are more
uniquely named models in CMIP6 than in CMIP5 and, on
average, more ensemble members per model. In projected
space (Fig. 3b, d), models with multiple ensemble members
are highlighted using a radius of similarity (shaded circles), a
construct also conceived by Abramowitz et al. (2019). Here
we employ this construct largely as a visual aid and set the
radius to 2.5 times the maximum deviation of an individual
ensemble member from its ensemble mean. Models are la-
beled by number in the projections, with numbers listed in
Tables 1 and 2 and on the y axis of Fig. 3a and c.

In CMIP6, an ensemble “core” comprised of all but two
models has emerged; the intermember distance metric iden-
tifies MIROC6 and MIROC-ES2L as considerably more in-
dependent from the rest of the ensemble (Fig. 3b). We use
a broken axis in CMIP6’s low-dimensional space projection
to accommodate the two MIROC outliers and emphasize the
structure of the CMIP6 core. In contrast, CMIP5 does not
have the same level of core and outlier structure, and in-
termember distances create a more distributed dependence
spectrum (Fig. 3d) similar to the one described in Sanderson
et al. (2015).

In the one-dimensional representation, distances between
a model’s ensemble members are shown in color, distances
to family members are shown in dark gray, and distances to
the rest of the ensemble are shown in light gray (Fig. 3a,
c). Beginning with the most dependent entities in the CMIP,
the SAT and SLP fingerprint metric clusters initial-condition
ensemble members at distances of around 0.05 in all but
one case. The exception, EC-Earth3 and EC-Earth3-Veg
(Fig. 3a, dark green, 23 and 24), exhibits overlapping in-
termember distances from 0.08 to 0.20, as stated previ-
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Figure 2. Determining the spatial “fingerprint” within the fields used to identify CMIP6 climate model dependence: annual mean SAT (◦C)
and SLP (hPa) climatology averaged over the period 1905–2005. (a, b) A measure of between-model spread of the dependence predictors
computed as the standard deviation (σ ) across a CMIP6 ensemble with only one member per model (see Table S4). Square hatching indicates
where between-model spread is low, at or below its 15th percentile (calculated based on the spatial field). (c, d) Median internal variability
of the dependence predictors computed as the median of the standard deviations within the 12 CMIP6 initial-condition ensembles with five
or more members (ACCESS-ESM1-5, CanESM5, CESM2, CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3, GISS-E2-1-G, IPSL-CM6A-LR,
MIROC-ES2L, MIROC6, MPI-ESM1-2-LR, and UKESM1-0-LL). Diamond hatching indicates where median internal variability is high, at
or above its 85th percentile. (e, f) Fingerprint used to determine dependence, shown as the ensemble mean climatology of the whole CMIP6
ensemble, with the regions of low between-model spread and high internal variability masked and hatched with square and diamond hatching,
respectively.

ously, due to remaining decadal variability in the predic-
tors (Döscher et al., 2022). At the next level of depen-
dence, the intermember distance metric introduces a measure
of disambiguation between initial-condition and perturbed-
physics ensemble members, as illustrated by two models
in CMIP6, CanESM5 (Fig. 3a, bright blue, 33) and GISS-
E2-1-G (Fig. 3a, bright purple, 35). Strikingly, in Fig. 3b,
CanESM5’s two 25-member initial-condition ensembles can
be seen clearly as two distinct clusters in two-dimensional
space. CanESM5 initial-condition ensembles are reported to

differ by wind stress remapping; conservative remapping is
used for “p1” members, and bilinear regridding is used for
“p2” members (Swart et al., 2019).

Continuing along the spectrum of dependence from most
dependent to most independent, intermember distances re-
veal model similarities that would require high-level knowl-
edge of CMIP model origins to determine a priori (Fig. 3a,
c, dark gray). In this regime, where models are separated by
distances of around 0.1 to 0.6, subjective decisions must be
made regarding whether or not a model is part of a family. We
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Figure 3. Intermember distances used to identify degrees of dependence within (a) CMIP6 and (c) CMIP5. For each model, within-model
distances (i.e., initial-condition ensemble members or perturbed-physics ensemble members) are marked in color, distances to members
of other similar models are marked in dark gray, and distances to members of the remaining models are marked in light gray. Models
grouped into families are highlighted on the y axis. To better visualize levels of similarity within the multi-model ensembles, CMIP6 (b) and
CMIP5 (d) intermember distances are projected from high-dimensional space into two dimensions using multidimensional scaling. Models
are colored and labeled numerically as indicated in panels (a) and (c). Initial-condition and perturbed-physics ensembles are given a radius of
similarity (shaded circles) equivalent to 2.5 times the maximum deviation from their ensemble mean. Note that in panel (b), a broken axis is
used to emphasize the structure of the primary CMIP6 model core with respect to the independent constituents, MIROC6 and MIROC-ESL.

chose two criteria to determine if a family should be formed:
(1) a model family must be a self-contained group, i.e., all
family members must be closer to each other than to other
models, and (2) models within the family must have a median
intermember distance to the rest of the family that is less than
0.56. This median intermember distance threshold was based
specifically on the composition of CMIP6 to ensure that we
did not simply define one large family within the ensemble’s
core (Fig. 3b). However, because it is ultimately a subjective

threshold, we pursued further justification of model families
in the literature.

To ensure that similar models form self-contained groups,
we match intermember distances between pairs of models in
one-dimensional space. For example, CMIP6’s INM-CM4-8
and INM-CM5-0 are separated by a distance of 0.32 from
each other as indicated by a dark-gray line in their respec-
tive rows in Fig. 3a. To assist with model pair matching,
we ordered and used mutual colors for models that we an-
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ticipated would be similar enough to be grouped into fami-
lies. In general, we predicted that models contributed by the
same modeling center might be family members and then set
about to determine if the assumption was substantiated by
intermember distances. We also anticipated three “extended”
families based on an analysis of model metadata, summa-
rized in Tables S1–S3, and the work of Brands (2022b),
which grouped models via shared atmospheric circulation er-
ror patterns. The first, shown in dark red (CMIP6 models 1–6,
CMIP5 models 1–3) in Fig. 3, is comprised of models with
UK Met Office Hadley Centre atmospheric components. In
CMIP6, intermember distances show five of the six models
highlighted in red on the y axis of Fig. 3a, satisfying both
the self-contained group and median intermember distance
threshold criteria to form a family. This grouping makes
sense as all five models (HadGEM3-GC31-MM, KACE-1-
0-G, ACCESS-CM2, HadGEM3-GC31-LL, and UKESM1-
0-LL) use the same MetUM-HadGEM3-GA7.1 atmospheric
component (Table S1). The sixth model, ACCESS-ESM1-
5, does not satisfy the self-contained criteria and is closer
to other models in CMIP6 than it is to its anticipated fam-
ily members. This likely occurs because ACCESS-ESM1-5
uses a CMIP5-era HadGAM2 atmospheric component rather
than the CMIP6-era MetUM-HadGEM3-GA7.1 atmospheric
component, highlighting the potential for models in the
same development stream to differentiate themselves from
their successors. In CMIP5, a similar family of models with
UK Met Office Hadley Centre atmospheric components is
present (Fig. 3c, dark red, models 1–3), where it is comprised
of three uniquely named models, ACCESS1-0, ACCESS1-
3, and HadGEM2-ES. ACCESS1-0 and HadGEM2-ES also
share HadGAM2 atmospheres, while ACCESS1-3 features a
modified version of the UK Met Office Global Atmosphere
1.0 AGCM (UM7.3/GA1; Bi et al., 2012; Brands, 2022a).
ACCESS1-3 is closer to ACCESS1-0 and HadGEM2-ES
than to other CMIP5 models and thus joins the family group
despite the differing atmospheric component, demonstrating
that a family designation is more complex than just a single
shared model component.

The second anticipated extended family, shown in gold-
enrod (CMIP6 models 7–12, CMIP5 models 4–7), features
models with atmospheres that share commonalities with the
National Center for Atmospheric Research (NCAR) Com-
munity Atmosphere Model (CAM). In CMIP6, there is a
gap in pairwise intermember distance between models with
a CAM5.3 atmosphere (CMCC-ESM2, CMCC-CM2-SR5)
and models with a CAM6 atmosphere (CESM2 and CESM2-
WAACM). Two additional models, TaiESM1 and NorESM2-
MM, are similar enough to also be included in the fam-
ily (Fig. 3a, goldenrod highlight), likely because their at-
mospheres are based on CAM5.3 and CAM6, respectively,
with several alternative parameterizations incorporated (Lee
et al., 2020; Seland et al., 2020). Though NorESM2-MM
is closer to the CAM6-based models than the CAM5.3-
based models in terms of intermember distance, it does

end up placed towards the CAM5.3-based cluster in low-
dimensional space due to how the MDS method chooses to
optimize relative positioning (Fig. 3b). In CMIP5, there is
less similarity seen between members of the CAM-based an-
ticipated extended family (Fig. 3c, goldenrod, models 4–7),
particularly between CESM1-CAM5 and the models based
on CAM4, its predecessor atmospheric component (see Ta-
ble S3). The four models (NorESM1-ME, NorESM1-M,
CCSM4, and CESM1-CAM5) reside in the same region of
low-dimensional space, but do not form a discernible clus-
ter (Fig. 3d) and do not satisfy either criteria to be con-
sidered one extended family. Instead, NorESM1-ME and
NorESM1-M form a family (Fig. 3c goldenrod highlight),
while CCSM4 and CESM1-CAM5 remain as single-model
ensembles.

The third anticipated extended family, shown in orange
(CMIP6 models 17–20, CMIP5 models 13–14), is made of
models that utilize ECHAM6 atmospheric components de-
veloped at the Max Planck Institute for Meteorology. In
CMIP6, a gap is present between within- (Fig. 3a color) and
between-model distances (Fig. 3a dark gray) in the grouping,
which may be traceable to differences in horizontal resolu-
tion (Table S1). This anticipated family has also grown from
CMIP5, which featured two ECHAM6.1-based model vari-
ants that differ by vertical atmospheric resolution and hori-
zontal ocean resolution (Giorgetta et al., 2013), to CMIP6,
which features four ECHAM6.3-based models contributed
by different modeling centers. The family is positioned in
a cluster towards the center of both CMIP ensembles in low-
dimensional space (Fig. 3b, d).

In addition to the three anticipated families, several other
families emerge upon assessing intermember distances. In
CMIP5, the EC-EARTH and CNRM-CM5 initial-condition
ensembles share a level of similarity on par with the other
families, as do bcc-csm1-1 and BNU-ESM (Fig. 3c). In
CMIP6, we find the three CNRM models to be similar
enough to IPSL-CM6A-LR to satisfy the family criteria
(Fig. 3a light blue and medium blue, models 13–16). Sim-
ilarity in these cases cannot be traced to a particular atmo-
spheric component model, but for CNRM and IPSL, simi-
larity could have arisen through an effort to foster collabora-
tion between the two French modeling groups after CMIP5
(Mignot and Bony, 2013) or due to similar ocean compo-
nent models (Brands et al., 2023). The remainder of model
families in both CMIP5 and CMIP6 feature models originat-
ing from the same modeling center. However, not all same
center models are similar enough, in terms of intermember
distance, to be considered potential relatives. For example,
GFDL-CM3 is more similar to other CMIP5 models than it
is to Earth system models from the same modeling group,
GFDL-ESM2M and GFDL-ESM2G (Fig. 3d). In this case,
a different atmospheric component model version accompa-
nies the dissimilarity in historical model output; GFDL-CM3
uses a later-generation atmospheric component than GFDL-
ESM2M and GFDL-ESM2G (See Table S3). Meanwhile,
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GFDL-ESM2M and GFDL-ESM2G only differ from each
other by ocean component (Dunne et al., 2012) and do sat-
isfy the criteria to form a family. CMIP6’s FGOALS-f3-L
and FGOALS-g3 are also found to be relatively distinct from
each other in terms of intermember distance; the two models
differ in atmospheric component, notably by the atmospheric
finite differencing method (Zheng et al., 2020). The only
models to share an atmospheric component and not form a
family are CMIP6’s MIROC6 and MIROC-ES2L. Though
the two MIROC variants form a self-contained group, they
are more distinct from each other in terms of intermember
distance than most models pairs considered to be indepen-
dent within the CMIP6 core and are thus considered inde-
pendent single-model ensembles instead of a family.

One of the primary reasons we define model families
is to enhance our understanding of how dependence influ-
ences CMIP uncertainty estimates. Model families establish
a stricter definition of independence within the CMIP than
the “one model, one vote” standard typically employed in
multi-model assessments if weights (fractional votes) are not
desired or possible (Knutti, 2010). The one model, one vote
standard treats all uniquely named models in the ensemble as
independent and allows them each to be represented by one
simulation. By this standard, CMIP6 is represented by 37 in-
dependent entities, and CMIP5 is represented by 29 indepen-
dent entities. We compare this traditional approach against a
“one family, one vote” standard, where each model family,
single-model ensemble, and individual is represented by one
simulation. This reduces CMIP6’s representation to 19 and
CMIP5’s to 20 independent entities.

We assess the impact of the one family, one vote indepen-
dence constraint on distributions of ECS, a key climate met-
ric reflecting the magnitude of warming a model projects in
response to CO2 doubling from preindustrial levels (Char-
ney et al., 1979). We source ECS values primarily from the
IPCC (Smith et al., 2021) and, when not available, from stud-
ies reporting to compute ECS via the Gregory et al. (2004)
method. Further information on the sourcing of ECS is pro-
vided in the Supplement; the ECS values used are shown
in Fig. S6. Raw distributions of ECS in CMIP5/6 are rep-
resented in Fig. 4 by both violin (gray shading) and box-and-
whisker elements. The violin representation gives a sense
of how the shape of the ECS distribution has evolved from
CMIP5 to CMIP6, with CMIP6 having a more bimodal struc-
ture, a lighter low-ECS tail, and a heavier high-ECS tail than
CMIP5. This is consistent with the highly publicized find-
ing that a subset of CMIP6 models are “running hotter” than
their CMIP5 predecessors (e.g., Flynn and Mauritsen, 2020;
Zelinka et al., 2020; Tokarska et al., 2020); there are only five
models with an ECS above 4 ◦C in the CMIP5 distribution
compared to 17 in the CMIP6 distribution. Box-and-whisker
elements, superimposed on the violins, provide a way to in-
vestigate how different percentiles of the distribution com-
pare between CMIP generations and shift under the new one
family, one vote independence constraint. We focus on the

5th (purple), 25th (red), median (green), 75th (orange), and
95th (blue) percentiles. All percentiles have increased be-
tween CMIP5 and CMIP6, ranging from the 5th, which in-
creases by 0.19 ◦C (2.19 to 2.38 ◦C), to the 95th, which in-
creases by 1.03 ◦C (4.41 to 5.45 ◦C). Also notable is that no
CMIP5 model has an ECS that exceeds CMIP6’s 75th per-
centile of 4.72 ◦C (see Fig. S6).

To ascertain if model dependence can explain the shift in
ECS between CMIP generations, we apply the one family,
one vote independence constraint to ECS in both ensembles
via a bootstrap protocol. First, base ensembles are formed
from the models (single-model ensembles and individuals)
already represented by one ECS value. Subsequently, one
member of each model family is randomly selected, and its
ECS value joins the base ensemble to form a one-per-family
ensemble. Percentiles are then computed, and the procedure
is repeated 10 000 times to generate distributions of per-
centiles (Fig. 4 color-coordinated violin elements). Percentile
distributions reflect the fact that model families span a range
of ECS values, and the one-per-family distribution shifts de-
pending on the combination of models selected. Finally, the
overall one-per-family ensemble box-and-whisker element is
constructed from the means of each percentile distribution.

In CMIP6, there are seven families, comprised of two to
six models, to randomly select from (Fig. 3a label high-
lights). After 10 000 rounds of selection, the average CMIP6
one-per-family distribution (Fig. 4 second element from left)
has reduced skewness towards high ECS compared to the raw
CMIP6 distribution. The removal of dependent entities does
not affect CMIP6’s 95th percentile (Fig. 4 blue; 5.4 ◦C) due
to the certainty that at least 2 of the 19 models in the one-
per-family distribution have an ECS above 5 ◦C (E3SM-1-1
and CanESM5; Fig. S6). In contrast, the interquartile range
(Fig. 4 red to orange) of CMIP6’s one-per-family distribu-
tion is shifted toward lower values of ECS with respect to the
raw distribution, to 2.85–4.29 ◦C from 3.0–4.72 ◦C. CMIP6
median ECS also shifts down by 0.43 to 3.44 ◦C when rep-
resentation is limited to one family, one vote. This suggests
that the higher ECS mode of CMIP6’s bimodal distribution
is due, in part, to there being more “copies” of higher ECS
models in the ensemble. Removing redundancies also con-
strains the lower tail of the distribution (Fig. 4 purple), which
is set in the raw ensemble by the two models with ECS below
2 ◦C, family members INM-CM4-8 and INM-CM5-0.

In CMIP5, of eight families, seven are comprised of two
models, and one is comprised of three models (Fig. 3c label
highlights). Selecting from CMIP5’s smaller families (com-
pared to CMIP6) results in a CMIP5 one-per-family distri-
bution that is nearly identical to the raw CMIP5 distribu-
tion (Fig. 4 right). Limiting family representation does have
a marginal impact on the CMIP5 95th percentile and me-
dian, shifting them each down by 0.11 ◦C, but does not skew
the distribution nor narrow its interquartile range as it does
in CMIP6. This suggests the approach taken in IPCC AR5
where model dependence was not explicitly considered was
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Figure 4. Comparison between the full distribution and the one-per-family subset distribution of effective equilibrium climate sensitivity
(ECS) in CMIP6 and CMIP5. Full distributions are shown as a violin plot (gray), with the median (green) and the 5th (purple), 25th (red),
75th (orange), and 95th (blue) percentiles superimposed. One-per-family subset distributions of each percentile (violins) reflect 10 000 subsets
from a bootstrap random selection of one model from each model family (see Fig. 3). The means of each percentile distribution are used to
create the one-per-family box and whisker. The number of members in each distribution are given in parentheses.

reasonable. While dependencies exist in CMIP5, they hap-
pen to be distributed in a way that the mean and overall
model spread is not strongly affected. We find that depen-
dence alone cannot account for the full distributional shift in
ECS between CMIP5 and CMIP6 but does reconcile the two
somewhat, reducing the difference for CMIP6 and CMIP5
median ECS by over 60%.

Ultimately, constraining by independence emphasizes that
though there are significantly more simulations in CMIP6
than in CMIP5 (here 218 versus 75), there are not signifi-
cantly more independent models in CMIP6 as of yet. Highly
similar models appear more frequently in CMIP6 under dif-
ferent names, and increased representation has just happened
to occur more for model families on the high end of the ECS
distribution. It is important to note that limiting representa-
tion in this instance is not a comment on model quality in
any way; it is only a comment on whether a model’s his-
torical output is sufficiently independent of other models in
the ensemble. Because of the influence redundancies have
on multi-model uncertainty distributions, model families are
crucial for users to be aware of, whether or not they choose
to sub-sample CMIP6.

5 ClimSIPS for European climate applications

For use in cases that require a subset of CMIP models, model
dependence is one of three common ensemble design con-
siderations. Equally important to subselection are model per-
formance and spread between model outcomes in the cho-
sen set. Discussed in the following subsections, we define
performance with respect to observations over different pe-
riods of the historical record. Spread is calculated from pro-
jected regional changes between present climate, averaged
from 1995–2014, and mid-century climate, averaged from
2041–2060 in CMIP6’s SSP5-8.5 or CMIP5’s RCP8.5 emis-
sions scenario. Performance and spread definitions were de-
signed to select sets of models to underpin European regional
climate modeling efforts and impact assessments.

5.1 Performance metric

Performance centers on properties of a model that make it
suited to simulating future European climatic states, as de-
fined by a multivariate model–observation comparison met-
ric. We aim to identify models with historical biases that
would preclude them from accurately projecting future Eu-
ropean climate rather than attempting to elevate one model
over another based on its success in simulating a limited set
of historical European climate variables. We focus on histori-
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cal biases because all CMIP models have strengths and weak-
nesses in simulating aspects of the climate system, and it is
not always clear that model’s historical strengths will trans-
late into future skill (Weigel et al., 2010). Historical biases,
in contrast, highlight cases where models lack important dy-
namic or thermodynamic processes (Knutti et al., 2017) or
are simply too hot, cold, wet, or dry to transition into a real-
istic future temperature or precipitation regime (Eyring et al.,
2019).

Specifically, we compare all CMIP members with obser-
vations using ClimWIP’s performance weighting strategy
(Brunner et al., 2020b). We utilize predictor fields relevant to
two European case studies: central European (CEU) summer
(June–July–August; JJA) and northern European (NEU) win-
ter (December–January–February; DJF) SAT and PR change
between 1995–2014 and 2041–2060 mean states. The two
European regions assessed correspond to the CMIP5-era
CEU and NEU SREX regions used by the IPCC (Senevi-
ratne, 2012), with the CEU region now named “western and
central Europe” or WCE in the CMIP6-era report (Iturbide
et al., 2020). Hereafter, we describe a mix of local, regional,
and global climatological predictors, including a base set
of four annual-average predictors used in both cases and
two additional seasonal predictors specific to each case. The
four predictor base set includes annual-average European
SAT climatology over two base periods (1950–1969, 1995–
2014), annual-average North Atlantic sea surface temper-
ature (SST) climatology (1995–2014), and annual-average
Southern Hemisphere midlatitude shortwave cloud radia-
tive effect (SWCRE) climatology (2001–2018). We define
SWCRE as the difference between all- and clear-sky down-
welling shortwave radiation (rsds− rsdscs) at the surface
(Cheruy et al., 2014). For the central European summer case,
additional relevant predictors include the JJA average clima-
tologies of gridded central Europe station PR (1995–2014)
and CEU SWCRE (2001–2018). For the northern European
winter case, DJF average climatologies of gridded northern
Europe station PR (1995–2014) and North Atlantic sector
SLP (1950–2014) are used. Further details on predictor re-
gions and masks are provided in Sect. S4.

In both summer and winter, local predictors have the po-
tential to reveal specific historical biases that erode confi-
dence in future SAT and PR projections. For example, sum-
mer radiation biases (due to biases in local cloud cover) may
affect a model’s ability to warm a realistic amount in the fu-
ture. Potentially persistent summer precipitation biases may
also affect warming biases further through moisture avail-
ability and local land–atmosphere interaction issues (Fischer
et al., 2007; Sippel et al., 2017; Ukkola et al., 2018). In win-
ter, local precipitation biases, which are common at the grid
resolution scales of GCMs, may signify a model’s inability
to represent processes relevant to precipitation change, such
as ocean eddies and extratropical cyclone activity (Moreno-
Chamarro et al., 2021).

On regional scales, predictors serve to indicate potential
process-based simulation issues that may affect both past and
future European climate. We employ two periods of annual-
average European SAT climatology, 1950–1969 and 1995–
2014, to establish (1) if notable European SAT biases exist
in the period prior European air quality directives (Sliggers
and Kakebeeke, 2004) and (2) if a model’s “present-day” Eu-
ropean SAT is significantly warmer or cooler than observed.
Using two climatological periods also helps to avoid penal-
izing models for differing from observations by chance over
a 20-year period due to internal variability (Deser et al.,
2012). Additionally, we include annual-average North At-
lantic SST climatology because SST biases in the region have
been linked to biases in European SAT and PR variability
through interactions with atmospheric circulation (e.g., Kee-
ley et al., 2012; Simpson et al., 2019; Borchert et al., 2019;
Athanasiadis et al., 2022). As atmospheric circulation biases
tend to be more pronounced in the winter than in the summer,
we also explicitly incorporate mean state SLP in the North
Atlantic sector into the winter predictor set. Mean state SLP
serves as a potential indicator of biases in the storm track
and the frequency of prevailing weather regimes, both pri-
mary drivers of winter SAT and PR variability (e.g., Simpson
et al., 2020; Harvey et al., 2020; Dorrington et al., 2021).

Finally, with the advent of CMIP6 and models with high
climate sensitivity, we incorporate a metric related to how
much a model warms globally into the base performance pre-
dictor set: annual-average SWCRE climatology in the South-
ern Hemisphere midlatitudes, a region known for its reflec-
tive low clouds (Zelinka et al., 2020). Models that historically
underestimate Southern Hemisphere low cloud decks do not
have them present to counteract future radiative warming in-
creases associated with the Hadley cell and its high cloud
curtain moving poleward (Lipat et al., 2017; Tselioudis et al.,
2016). Because European change is superimposed on global
change, models with these documented cloud cover biases
should be penalized as well.

Model performance is benchmarked against predictors
from the following observational datasets (Fig. 5):

– SAT, Berkeley Earth Surface Temperature (BEST)
merged temperature (Fig. 5a, b; Rohde et al., 2013);

– SST, NOAA Extended Reconstructed Sea Surface Tem-
perature version 5 (ERSSTv5; Fig. 5c; Huang et al.,
2017);

– PR, European-wide station-data-based E-OBS dataset
(Fig. 5d, e; Cornes et al., 2018);

– SWCRE, Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) Energy Balanced and Filled all- and
clear-sky shortwave surface flux products (Fig. 5f, g;
Loeb et al., 2018, 2020);

– SLP, NOAA-CIRES-DOE 20th Century Reanalysis V3
reanalysis (Fig. 5h; Bloomfield et al., 2018).
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We found using a single observational estimate for each
predictor to be sufficient for demonstrating ClimSIPS; the
method’s sensitivity to representations of observational un-
certainty, different predictor combinations, and alternative
performance definitions all warrant further exploration. Here,
though, we define a performance metric for each model
i with cosine-latitude-weighted RMSEs (φi) computed for
each performance predictor. In contrast to the model-
pairwise φij in Eq. (1), φi values are defined between CMIP5
and CMIP6 members ŷ and the observational estimate y for
each predictor as

φi =

√∑p

k=1wk|ŷi − y|
2∑p

k=1wk
. (3)

Each φi is subsequently normalized by dividing it by
its combined CMIP5 and CMIP6 ensemble mean value,
φCMIP5/6, and six predictors are averaged together to define
the “aggregated-distance-from-observed” performance met-
ric Pi :

Pi =
1
6

6∑
l=1

(
φi

φCMIP5/6

)
l

. (4)

Lower values of Pi , reflecting lower levels of model bias
amongst the predictors, indicate higher performance. The
combined CMIP5 and CMIP6 ensemble mean normalization
allows for a direct comparison of model performance within
the two ensembles. Figures S7–S10 give a sense of how the
individual φi and aggregated Pi metrics compare in CMIP5
and CMIP6 in terms of their relationship with JJA CEU or
DJF NEU SAT and PR change. As a further reference, per-
formance order in CMIP5 and CMIP6 for the two cases is
presented in Fig. S11.

5.2 Spread in projected European temperature and
precipitation change

Spread, the third and final dimension of ClimSIPS, differs
from independence and performance because it is explic-
itly based on targeted future model outcomes rather than on
historical model properties. While it is important for users
to recognize that without independence, model agreement
is meaningless, and without performance, uncertainty in fu-
ture projections can be excessive, it is also important they
have the opportunity to sample novel climate outcomes if
their application so requires. To allow users to maximize cli-
mate change signal diversity, we define spread as the distance
between models in normalized JJA-CEU- and DJF-NEU-
averaged SAT and PR change space, with change, as previ-
ously stated, referring to the difference between 2041–2060
and 1995–2014 mean state values in SSP5-8.5 and RCP8.5.
Normalization (subtracting the ensemble mean and dividing
it by the ensemble standard deviation) is carried out within
CMIP5 and CMIP6 separately and ensures that SAT and PR

distances contribute equally to the spread metric Sij . With
normalized SAT and PR change for each model, abbreviated
as SAT1 and PR1, respectively, spread distance between
models i and j is

Sij =

√
(SAT1i −SAT1j )2+ (PR1i −PR1j )2. (5)

The only remaining complexity to computing spread is de-
ciding on model representation in an ensemble where some
models contribute multiple members. Two strategies are ex-
plored. In the first, models with multiple ensemble mem-
bers are represented by their ensemble mean SAT and PR
changes, alongside their individually represented counter-
parts. In the second, all models are represented by an individ-
ual ensemble member chosen such that overall spread within
the ensemble is at a maximum (i.e., is farthest from all other
members already placed in SAT–PR change space). We se-
lect spread-maximizing members from models in a manner
similar to the KKZ algorithm (Katsavounidis et al., 1994).
First, all individually represented models are placed in SAT–
PR change space. Next, the model ensembles are assessed
one by one, and the member farthest from all already placed
models is chosen. Because member selection is done itera-
tively, there are multiple possible spread-maximizing solu-
tions; here we focus on one solution obtained by selecting
from model ensembles in alphabetical order. Further details
of individual member selection are provided in Sect. S5. We
apply these two representation strategies to the performance
and independence metrics as well and enter into ClimSIPS
with a set of 34 CMIP6 models (Table 1) and 26 CMIP5
models (Table 2), each with a scalar performance score (Pi)
and vectors of intermember (from Part I; Iij ) and spread (Sij )
distances to all other models in the ensemble.

5.3 Cost function and subselection triangle

With independence, performance, and spread metrics com-
puted for each model, ClimSIPS can be carried out via a
cost function minimization scheme. The first step of Clim-
SIPS is for the user to decide the number n of selections (si)
they would like to make from a selection pool of N available
models (s1, . . .sN ). In this study, we demonstrate the method
by selecting subsets of varying sizes n from selection pools
of varying sizes N , henceforth referred to as a “N -choose-n
subselection”. To illustrate the method, we select two model
simulations, s1 and s2, from a purposefully reduced five-
model selection pool, s1, . . .s5, in a 5-choose-2 subselection.
We then explore method sensitivities and recommendation
strategies with a 34-choose-3 subselection for CMIP6 cen-
tral European summer case. Lastly, to suit a broader range
of applications, we report and recommend five-model sub-
sets for the central European summer and northern European
Winter cases from CMIP6 (N = 34). The CMIP5 26-choose-
5 subselection is also provided in Sect. S6.

Once a subset size is decided upon by the user, ClimSIPS
proceeds to compute the value of a cost function for each
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Figure 5. Observed predictor fields used to determine model performance for European climate applications in ClimSIPS; a base set used
in both cases includes (a) annual average Berkeley Earth Surface Temperature (BEST) European SAT climatology (1950–1969), (b) annual
average BEST European SAT climatology (1995–2014), (c) annual average NOAA Extended Reconstructed Sea Surface Temperature version
5 (ERSSTv5) North Atlantic sea surface temperature (SST) climatology (1995–2014), and (f) annual average Clouds and the Earth’s Radiant
Energy System (CERES) Southern Hemisphere midlatitude shortwave cloud radiative effect (SWCRE) climatology (2001–2018). For June–
July–August (JJA) central European (CEU) applications, (d) JJA average E-OBS gridded central Europe station PR climatology (1995–2014)
and (g) JJA CERES CEU SWCRE climatology (2001–2018) are added to the base set. For December–January–February (DJF) northern
European (NEU) applications, (e) DJF average E-OBS gridded northern Europe station PR climatology (1995–2014) and (h) DJF NOAA-
CIRES-DOE 20th Century Reanalysis V3 (NOAA-20C) North Atlantic sector sea-level pressure (SLP) climatology (1950–2014) are added
to the base set.

possible combination of n selections. Comprised of a perfor-
mance term, P(s1, ..sn); an independence term, I(s1, . . .sn);
and a spread term, S(s1, . . .sn), the cost function is

Cα,β(s1, . . .sn)= (1−α−β) ·P(s1, . . .sn)
−α · I(s1, . . .sn)−β ·S(s1, ..sn). (6)

The importance to the user of P(s1, . . .sn), I(s1, . . .sn), and
S(s1, . . .sn) is determined by two parameters, α and β. Both
parameters range from 0 to 1; α sets the importance of in-
dependence, and β sets the importance of spread. The im-
portance of performance, 1−α−β is a trade-off based on
the importance of the other two terms that cannot be nega-
tive, thus requiring that α+β ≤ 1. For each pair of α and β
values, there is a combination of models that minimizes the
cost function based on their combined values of P(s1, . . .sn),
I(s1, . . .sn), and S(s1, . . .sn).

Because each model has a scalar performance score Pi ,
P(s1, . . .sn) is defined as the sum of the normalized Pi values
in each subset:

P(s1, . . .sn)=
n∑
k=1

Psk −P s1,...sN

σ(P s1,..sN )
. (7)

Pi values are normalized by subtracting the selection pool
mean value P s1,...sN and dividing it by the selection pool

standard deviation σ(P s1,...sN ). The term is positive in the
cost function because lower values of Pi indicate smaller bi-
ases and thus higher performance. If a user prefers to select
based on model performance only (α = 0, β = 0), the set of n
highest-performing models will minimize the cost function.

Model independence and spread metrics, I(s1, . . .sn) and
S(s1, . . .sn), are based on the Iij and Sij distance matrices
of the selected model subsets. The distances are normalized
by the mean and standard deviation of their entire selection
pool distance matrices (Is1,...sN ,s1,...sN and Ss1,...sN ,s1,...sN , re-
spectively) and then summed over half of the matrix to avoid
double counting:

I(s1, ..sn)=
n∑
k<l

Isk,sl − Is1,..sN ,s1,..sN
σ(Is1,..sN ,s1,..sN )

(8)

S(s1, ..sn)=
n∑
k<l

Ssk,sl −Ss1,..sN ,s1,..sN
σ(Ss1,..sN ,s1,..sN )

. (9)

In the cost function, I(s1, ..sn) and S(s1, ..sn) are negative
terms because larger distances between models correspond to
higher levels of independence and spread, which, along with
higher performance, are the subset properties we prioritize.
As independence and/or spread increases within a subset, the
larger negative I(s1, ..sn) and S(s1, ..sn) terms eclipse the
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P(s1, ..sn) term, leading to a more and more negative mini-
mum value of the cost function.

As previously discussed, different sets of models minimize
the cost function for different values of α and β. To sum-
marize how different subsets map to different priorities, we
utilize a “subselection triangle” ternary contour plot (Harper
et al., 2015). Ternary plots represent three-component sys-
tems that require the component contributions together to
sum to a constant, typically 100 %. The requirement, which
reduces the degrees of freedom in the system from 3 to 2,
allows component value combinations to be plotted on an
equilateral triangle with angled axes along each side. As the
cost function balances the relative importance of indepen-
dence (α), performance (1-α-β), and spread (β), it is an ideal
candidate for such a visual representation.

We introduce the subselection triangle in a toy example
of subselection: choosing two out of five CMIP6 models for
JJA CEU applications (Fig. 6). Of the five models in the
selection pool, AWI-CM-1-1-MR is represented by its sin-
gle member, while HadGEM3-GC31-MM, UKESM1-0-LL,
MIROC-ES2L, and FGOALS-g3 are represented by their en-
semble means. The models were chosen because they span
a range of independence (Fig. 6a), performance (Fig. 6b),
and spread (Fig. 6c) within CMIP6 and therefore can help
illustrate how the cost function selects subsets based on the
different priorities. Intermember distances between the mod-
els in the selection pool (Fig. 6a) highlight the low level of
independence between family members HadGEM3-GC31-
MM and UKESM1-0-LL and the high level of independence
of MIROC-ES2L with respect to all other models, as dis-
cussed in Part I. Performance scores, shown for each ensem-
ble member (Fig. 6b, horizontal lines) and ensemble means
(Fig. 6b, stars), lend themselves to an ordered rank of the
models from no. 1 (AWI-CM-1-1-MR) to no. 5 (FGOALS-
g3). Placing each model in normalized SAT–PR change space
(Fig. 6c) demonstrates the spread in future climate outcomes
possible within the selection pool (labeled stars) and with
CMIP6 overall (gray dots). Notably, AWI-CM-1-1-MR and
MIROC-ES2L, two relatively independent models, project
near-identical changes in SAT and PR mean states by the
mid-century, while family members HadGEM3-GC31-MM
and UKESM1-0-LL do not.

In Fig. 6d, selected subsets are represented by colored re-
gions of the subselection triangle. Boundaries between se-
lected subsets are determined by the distributions of inde-
pendence, performance, and spread within the selection pool
and by the step resolution on which α and β vary. Throughout
the study, we vary α and β from 0 to 1 (in concert) in steps
of 0.01. In the five-model example, six two-model combina-
tions (out of a possible 10 combinations) minimize the cost
function as α and β vary in this way.

The subselection triangle is best investigated first along its
boundaries. At each vertex, one property is given 100% pri-
ority, and along each edge, only two priorities are balanced.
At the top vertex, 100% priority is given to performance

(α = 0, β = 0), as indicated by the axis that runs down the
left edge of the triangle. Along the left edge from top to bot-
tom, the importance of performance diminishes, while the
importance of spread increases to reach 100% priority at the
left vertex (α = 0, β = 1). Along the bottom edge (the spread
axis), the trade-off shifts to be between spread and indepen-
dence, with independence being given 100% priority at the
right vertex (α = 1, β = 0). Finally, from bottom to top along
the independence axis (the right edge of the triangle), the im-
portance of independence diminishes, while the importance
of performance increases.

Regions that intersect with vertices or edges can then be
characterized according to priority. In Fig. 6d, the magenta
region that intersects with the triangle’s top vertex is the
subset of the highest-performing models, AWI-CM-1-1-MR
and HadGEM3-GC31-MM, as indicated by the color bar la-
beled with performance ranks out of 5. From the point where
performance and spread are each given 50% priority, AWI-
CM-1-1-MR and UKESM1-0-LL minimize the cost function
(purple region). The blue region, intersecting with the left
vertex, is comprised of the models furthest apart in normal-
ized SAT–PR change space, UKESM1-0-LL and FGOALS-
g3 (Fig. 6c). In the green region, independence rather than
performance takes priority alongside spread, resulting in a
subset of the no. 3 and no. 4 ranked models, UKESM1-0-LL
and MIROC-ES2L. Overall, if independence is prioritized,
the cost function is likely to select subsets containing the in-
dependent MIROC-ES2L, as seen in the red and yellow re-
gions of the subselection triangle. For the yellow region, the
balance between performance and independence happens to
yield a subset of models with little spread (AWI-CM-1-1-MR
and MIROC-ES2L). Assigning no priority to a certain prop-
erty does not necessarily mean the subset will be lacking in
it; the other two subsets that fall along the independence axis
(Fig. 6 magenta and red regions) do have reasonable levels of
model spread. However, without some level of priority given
to a property, there is no guarantee it will be sufficiently rep-
resented.

5.4 Recommended subsets for European applications

Selecting more models from a larger selection pool leads to
an increase in subsets composed of different models, mini-
mizing the cost function as α and β vary. Subselection tri-
angles become more complex and subdivided when three-
and five-model subsets are selected from full CMIP ensem-
bles; the six selected subsets from the 5-choose-2 CMIP6 JJA
CEU example shown in Fig. 6 become 37 selected subsets
in the CMIP6 JJA CEU 34-choose-3 subselection by ensem-
ble mean and 45 selected subsets in the 34-choose-5 subs-
election by individual member. The size, shape, and num-
ber of regions within the subselection triangle are determined
by independence, performance, and spread distributions; the
larger the selection pool, the more difficult it becomes to pre-
dict the combination of models that will minimize the cost
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Figure 6. Five models from CMIP6 are used to illustrate ClimSIPS for JJA CEU applications. Independence, defined by intermember
distances (Fig. 3), for the five models is shown in panel (a). Performance, defined as the average of model-observed RMSE for the six
JJA CEU predictors (Fig. 5), is shown in panel (b). Lower values indicate a model is close to observed and thus higher-performing for the
task. Performance of individual ensemble members is shown as horizontal lines, and ensemble mean performance is starred. In panel (c),
the five selected models are highlighted among CMIP6 ensemble means (gray dots; single members where appropriate) in normalized JJA
CEU SAT and PR change (SAT1 and PR1, respectively; 2041/2060–1995/2014 in SSP5-8.5) space. The target values are normalized by
subtracting the CMIP6 mean and dividing it by the CMIP6 standard deviation. Panel (d) shows the “subselection triangle” ternary contour
plot. Selected subsets (colored regions) minimize a performance–independence–spread cost function as varying degrees of importance are
placed on performance (1-α-β), independence (α), and spread (β). Subsets are listed by performance rank (out of 5) and model name on the
color bar to the right of the triangle.

function. A subset can minimize the cost function for a small
region in α–β space or even a single value of α and β. Small
subset regions are as valid as larger ones; they simply reflect
that independence, performance, and spread are distributed
such that there are several model combinations in contention
to minimize the cost function in that region of the subselec-
tion triangle. Conversely, when a subset minimizes the cost
function for a large region of the subselection triangle, it sug-
gests that it is comprised of outliers given priority in the cost
function to such an extent that other model combinations
cannot reach the minimum.

To help users decide which subset is best suited to their
needs, we provide recommendations based on independence,

performance, and spread criteria that go further than con-
tribution percentages. Recommendation criteria are listed in
Fig. 7 in conjunction with CMIP6 JJA CEU performance and
(non-normalized) SAT–PR change distributions for models
represented by ensemble means. The objective of these rec-
ommendation criteria is to further screen out selected sets
that do not meet the following specific (user-defined) desir-
able properties. The criteria are as follows:

1. All models in the subset come from different model
families.

2. All models in the subset rank in the upper N∗ of the
ensemble in terms of performance.
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Figure 7. Independence, performance, and spread criteria that underpin model subset recommendations used throughout the remainder of
the study. For independence, we recommend all models in a subset come from different model families (listed in the legend below panel b).
For performance, we recommend all models in a subset rank in the upperN∗ of the ensemble withN∗ left up to user discretion. Performance
in the full CMIP6 ensemble for JJA CEU applications is shown in panel (a) in terms of the aggregated distance from the observed, a
metric based on the average of model-observed RMSE for the six JJA CEU predictors shown in Fig. 5. Higher performers have a lower
aggregated distance from the observed, and performance order is based on ensemble mean performance (stars) where applicable, i.e., when
a model is represented by more than one ensemble member. Horizontal lines represent the performance of individual ensemble members.
For spread, we recommend models within the subset fall into the different quadrants of JJA CEU SAT and PR change space. JJA CEU SAT
and PR change (2041/2060–1995/2014 for SSP5-8.5) values for each ensemble member of CMIP6 (light-gray dots) and for ensemble means
(colored markers) are shown in panel (b). Dashed gray lines indicate the median JJA CEU SAT and PR change value within the ensemble of
ensemble means and separate the ensemble into four quadrants.

3. Models in the subset fall into the different quadrants
(defined by ensemble medians) in SAT and PR change
space. For subsets of four or more models, all quadrants
must be represented.

For the independence criteria, model families defined in
Part I are used as an independence guideline. For the perfor-
mance criteria, the threshold N∗ is left up to user discretion;
we choose different thresholds for the different regional and
seasonal cases to accommodate different performance dis-
tributions. For the spread criteria, we adapt the strategy of
Ruane and McDermid (2017) and separate SAT–PR change
space into quadrants with respect to ensemble medians. By
recommending subsets of models that occupy the (relatively)

cool–wet, cool–dry, warm–wet, and warm–dry margins of
the ensemble, we ensure not only spread but also a set of
diverse future climate outcomes.

In Fig. 7a, for models with multiple members, perfor-
mance metrics are ordered by ensemble mean value (star
markers), which are superimposed on the performance met-
rics of individual members (horizontal lines). The JJA CEU
performance distribution in CMIP6 reflects the fact that most
of the models in the ensemble are not significantly biased
with respect to observations, though several models are bi-
ased enough to form a perceptible tail. This implies that most
CMIP6 models meet the basic standards to be considered
suitable for downstream climate applications and allows us
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Figure 8. Ternary subselection triangles of the three-model subselection from the full CMIP6 ensemble for JJA CEU applications. Each model
is represented by its ensemble mean (or individual member when applicable). A total of 37 three-model subsets minimize the independence–
performance–spread cost function for different values of α and β (a). Models within each subset are listed with their performance rank (out
of 34). Of the 37 possible subsets, we recommend 15 (panel b; labeled in bold) based on the following criteria: (1) all models in the subset
come from different model families, (2) all models in the subset have a performance rank at or above 23 out of 34, and (3) all models in the
subset come from different quadrants in JJA CEU SAT and PR change space. Remaining subsets that fail the performance criteria are listed
in gray; those that fail the independence criteria are listed in gray with model family members underlined. Subsets that fail the spread criteria
are indicated in italics.

to set the N∗ threshold to be more inclusive than exclusive.
Overall, individual member performance is tightly clustered
around its ensemble mean for each model; this is true for all
cases we explore in this study (see Fig. S11). The tight clus-
tering confirms that performance is a model property rather
than a member property. When defined by climatological
predictors, performance is not just a matter of chance that
observations match some members but not others due to in-
ternal variability. Tight clustering also means that represent-
ing models by ensemble mean versus an individual member
will not fundamentally change performance order, aside from
a few minor shifts up or down for models in the heart of the
distribution.

In Fig. 7b, ensemble means (colored markers) and all
CMIP6 ensemble members (gray dots) are placed within raw
JJA CEU SAT–PR change space. Without normalization, it is
clear that there is a wide range of JJA CEU SSP5-8.5 mid-
century warming in CMIP6 models from 1.37 to 5.59 ◦C.
However, models on both ends of the warming spectrum tend
to be lower than average in terms of performance, suggest-
ing these best- and worst-case warming projections may not
be as realistic as the projections within the approximately
2–4 ◦C warming range populated by the bulk of the CMIP6
ensemble. In terms of precipitation change, only CanESM5
(Fig. 7b, bright-blue cross marker) has an ensemble mean
projecting wetter conditions in the region by the mid-century;
all other models project little change or an overall central
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European summer drying. The joint SAT–PR change distri-
bution is separated into a less warming–less drying quadrant
containing 10 models, a less warming–more drying quadrant
containing 7 models (including MPI-ESM1-2-HR, which has
a value slightly below the PR change ensemble median), a
more warming–more drying quadrant containing 11 models,
and a more warming–less drying quadrant containing 6 mod-
els. Model labels, listed below Fig. 7b, are grouped in terms
of their designations determined in Part I: as model fami-
lies, single-model ensembles, or individuals. In two of the six
model families, all family members reside in the same quad-
rant; models with a MetUM-HadGEM3-GA7.1 atmosphere
(Fig. 7b dark red) all warm and dry more than the ensem-
ble median, while the two GFDL model variants both warm
and dry less than the ensemble median (Fig. 7b dark pur-
ple). The remaining model families each span two to three
quadrants, demonstrating that model dependence is not nec-
essarily clearly correlated with spread in projected outcome
because internal variability and parameter perturbations in-
fluence the latter.

With independence, performance, and spread metrics de-
fined, the CMIP6 JJA CEU 34-choose-3 subselection, with
models represented by the ensemble mean, is presented in
Fig. 8. While stepping through α and β, 37 three-model
combinations minimize the cost function, from the three
highest performers (Fig. 8a black region; AWI-CM-1-1-
MR/HadGEM3-GC31-MM/MPI-ESM1-2-HR) to the three
most independent models (Fig. 8a dark-red region; MIROC-
ES2L/FGOALS-g3/KIOST-ESM) to the three models fur-
thest from each other in SAT–PR change space (Fig. 8a
dark-magenta region; UKESM1-0-LL/E3SM-1-1/FGOALS-
g3). The subsets that minimize the cost function between
those 100% priority cases are labeled by model performance
rank (out of 34) triplet and model names (Fig. 8, color bar).
Note that model performance rank is used here specifically
as a shorthand for comparing constituents across subsets, not
as a commentary on how much better performing one model
is than another model. Most models in the ensemble have a
similar level of performance (Fig. 7a), allowing us to set the
recommendation performance threshold N∗ to include mod-
els in the top two-thirds of the ensemble, ranked up to and
including no. 23 out of 34.

Applying all three recommendation criteria results in 15
recommended subsets (Fig. 8b), which are listed as color
bar labels in black. For reference, all subsets recommended
throughout the study are cataloged in Tables S5 and S6. Of
the remaining subsets, those listed in gray do not satisfy one
or more of the recommendation criteria. The same model
family representation within a subset is indicated with fam-
ily members underlined. Subsets that include one or more
model with a performance rank between no. 24 and no. 34
are listed in plain gray text, while subsets that have more than
one model in the same SAT–PR change quadrant are listed in
italics. There is a higher likelihood of selecting two models
from the same model family in subsets comprised of high-

performing models. Mirroring the finding of Sanderson et al.
(2017) that high-performing CMIP5 models tended to be less
independent and have more near replicates in the archive, the
relationship between performance and independence we find
in CMIP6 suggests that the global-scale SAT and SLP clima-
tological differences that bestow independence also manifest
as local and regional-scale model biases that diminish perfor-
mance.

In the CMIP6 JJA CEU 34-choose-3 subselection by en-
semble means, recommended subsets (Fig. 8b) are com-
prised either solely of members of model families or a
combination of model family members with the indepen-
dent MIROC-ES2L and/or unique in SAT–PR change space
CanESM5. In total, recommended subsets cover 15 % of the
subselection triangle. Models with a CAM-based atmosphere
(TaiESM1, CMCC-ESM2, and CESM2) are included in 10
of the 15 recommended subsets, GFDL variants (GFDL-
CM4 and GFDL-ESM4) are included in 9, and MIROC-
ES2L is included in 7. Together, the three groupings form
4 of the 15 subsets. Models with a MetUM-HadGEM3-
GA7.1 atmosphere (HadGEM3-GC31-MM and UKESM1-
0-LL) and the ECHAM6.3-based AWI-CM-1-1-MR are also
well represented within the recommended subsets, appear-
ing in six and five subsets, respectively. AWI-CM-1-1-MR
and HadGEM3-GC31-MM tend to be chosen as family rep-
resentatives because they are ranked first and second in per-
formance in the ensemble. UKESM1-0-LL, which features
the largest mid-century joint change in JJA CEU SAT and
PR in the ensemble, takes over for HadGEM3-GC31-MM
as its family’s representative when the importance of per-
formance drops below approximately 70%. Small recom-
mended subset regions (< 10 pixels in α–β space) occur at
approximately 70% performance, 10% independence, and
20% spread, likely because performance priority has re-
duced enough to allow spread outliers like UKESM1-0-LL
and CanESM5 to be in contention alongside various mod-
els within the core of the performance distribution. Simi-
larly, small recommended subset regions near 50% perfor-
mance and 50% independence result from the selection of
various models in the performance core with the independent
MIROC-ES2L.

For use cases that require recommendations of specific
simulations, we also run ClimSIPS with each model repre-
sented by an individual member. For subselection by ensem-
ble mean, some models are represented by a member, while
others are represented by an average. This representational
difference is less of an issue for the independence and perfor-
mance metrics, which both are intentionally designed such
that ensemble members do not deviate far from their ensem-
ble mean values. For the spread metric, however, an individ-
ual climate change projection and an average across a set of
climate change projections are unlikely to be equivalent due
to internal variability. For example, a model’s range of pro-
jected climate outcomes may include interesting outlier cases
that are curtailed by ensemble averaging. Using the ensem-
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Figure 9. Three model subselection for CMIP6 JJA CEU applications with all models represented by an individual ensemble member. CMIP6
JJA CEU SAT–PR change (not normalized) for ensemble mean representation (as in Fig. 7b) versus individual member representation are
shown in panels (a) and (b), respectively. Colored markers, indicating model representation, are superimposed on all CMIP6 ensemble
members (light-gray dots). Individual ensemble members are labeled in the key and were selected to maximize spread. In both panels,
ensemble median values for JJA CEU SAT and PR change (gray dashed lines) delineate the four quadrants used for spread recommendations.
The full and recommended (inset) subselection triangles for three-model subselection by individual member are shown in panel (c). As in
Fig. 8, recommended subsets are labeled in black. Subsets labeled in gray contain one or more models (1) that come from the same model
family (underlined), (2) that fall below the performance threshold, or (3) that fall within the same quadrant of SAT–PR change space (italic).
Additionally, common subsets in ensemble mean-based subselection (Fig. 8) and individual member-based subselection share common
colors; these subsets in common are also labeled with a starred performance rank triplet.

ble mean as representation then does not capture the model’s
full “spread potential” or ability to differentiate itself within
the ensemble. For a model represented by only one member,
the projection provided as representation could fall anywhere
within the model’s un-sampled SAT–PR change distribution;
there is no way to know if it sits near to and thus reflects the
model’s hypothetical ensemble mean.

Figure 9 summarizes how individual member representa-
tion affects the CMIP6 JJA CEU 34-choose-3 subselection,
predominately by amplifying model spread. When given the

choice among ensemble members, the method selects out-
lier cases to represent models to provide users interested in
novel climate outcomes with not just a model but a specific
projection that may be of interest. Compared to ensemble
mean representation (Fig. 9a), individual member represen-
tation (Fig. 9b) provides an increase, in CMIP6 JJA CEU
PR change spread in particular, including an additional pro-
jection of wetter future JJA CEU conditions (IPSL-CM6A-
LR-r6i1p1f1) and fewer model overlaps in the core of the
ensemble. There is not a substantial increase in the range
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of JJA CEU SAT change in CMIP6, due to the fact that
high and low change projections come from individually
represented models. To evaluate whether these differences
were CMIP6 JJA CEU-specific, we also compare ensem-
ble mean representation to that of spread-maximizing mem-
bers for the CMIP6 DJF NEU (Fig. S12), CMIP5 JJA CEU
(Fig. S13), and CMIP5 DJF NEU (Fig. S14) cases. Similar
to the CMIP6 JJA CEU case, CMIP5 JJA CEU PR change
spread increases more than SAT change spread when models
are represented by an individual member versus an ensemble
mean. In both CMIP6 and CMIP5 DJF NEU cases, however,
the SAT change spread increase is more striking than the PR
change increase (Fig. S12).

The additional distance between models in SAT–PR
change space afforded by individual member representation
serves to simplify the CMIP6 JJA CEU 34-choose-3 sub-
selection triangle (Fig. 9c). The number of cost function-
minimizing model subsets decreases from 37 subsets with
15 recommended when models are represented by ensemble
mean (Fig. 8) to 21 subsets with eight recommended when
models are represented by individual members (Fig. 9c). The
two strategies share 12 subsets in common, which are indi-
cated by regions of common color in Figs. 8a and 9c and by
starred model rank triplets in the color bar labels of Fig. 9c.
Though some model ranks have shifted up or down due to the
change in representation, the same set of 23 out of 34 mod-
els meet the performance threshold in both cases. Of the 12
shared subsets, two are recommended in both cases (Figs. 8a,
9c dark gray and teal), while three are recommended in en-
semble mean subselection but not in individual member sub-
selection (Figs. 8a, 9c dark sky blue, dark blue, and dark
brown). This recommendation difference is due to MIROC-
ES2L shifting from the less warming–more drying quadrant
to the more warming–less drying quadrant when represented
by member r1i1p1f2 (Fig. 9a, b salmon cross marker). The
remaining recommended individual member subsets feature
many of the same models/model families as in the ensem-
ble mean case. A comparison of I(s1, ..sn), P(s1, ..sn), and
S(s1, ..sn) component contributions to the minimized cost
function, shown separately in Fig. S15, confirms the two rep-
resentations have qualitatively similar gradients in compo-
nent magnitude within the subselection triangle. Because the
two strategies yield similar results in our CMIP6 JJA CEU
test case and because individual member representation has
the additional advantage of guiding users to specific simula-
tions, we move forward to five-model subselection by indi-
vidual members for each of the European case studies, shown
as subselection triangles in Figs. 10 and S16.

Combinations of five models add further complexity to the
CMIP6 JJA CEU subselection triangle (Fig. 10a); 45 out of
a possible 278 256 subsets minimize the cost function at dif-
ferent points in α–β space. We recommend six subsets based
on the same recommendation criteria used in CMIP6 JJA
CEU three-model subselection, with the additional condition
that all four SAT–PR change quadrants are represented by

the five models. All recommendations include AWI-CM-1-
1-MR-r1i1p1f1 from the ECHAM6.3-based family (Fig. 3a
orange), one simulation with a MetUM-HadGEM3-GA7.1
atmosphere (HadGEM3-GC31-MM-r1i1p1f3 or UKESM1-
0-LL-r1i1p1f2), and a representative from the CAM-based
model family (Fig. 3a goldenrod; TaiESM1-r1i1p1f1 or
CMCC-ESM2-r1i1p1f1). GFDL variants (Fig. 3a purple)
also appear in five of the six recommended subsets, suggest-
ing that those four-model families comprise a reasonable,
independent subset spanning a range of climate outcomes
for CMIP6 JJA CEU applications. Depending on user needs,
the highly independent MIROC-ES2L-r1i1p1f2; relatively
less-biased MRI-ESM2-0-r1i1p1f1; or CanESM5-r16i1p1f1,
which is one of few that project wetter future JJA CEU con-
ditions, should also be considered.

Because region- and season-specific performance and
spread metrics are used for each case, different CMIP6 sub-
sets feature in the subselection triangle for northern European
winter applications (Fig. 10b) than for central European sum-
mer applications. Individual members chosen to represent
models also differ between the DJF NEU and JJA CEU cases
due to spread being case-specific. Of the 35 possible subsets
that minimize the CMIP6 DJF NEU cost function, no subsets
satisfy all three recommendation criteria as developed for
JJA CEU applications. This is primarily due to models with
performance ranks of 28 to 34 either being highly indepen-
dent (e.g., no. 30 MIROC-ES2L-r9i1p1f2, no. 31 MIROC6-
r12i1p1f1) or unique in projected climate outcome (e.g.,
no. 28 E3SM-1-1-r1i1p1f1, no. 34 CAS-ESM2-0-r3i1p1f1;
see Fig. S11c). In this instance, we therefore chose to relax
the performance threshold to consider models with a rank at
or above 31 out of 34 to recommend five subsets. For CMIP6
DJF NEU applications, three simulations, CNRM-CM6-1-
r5i1p1f2, CESM2-WACCM-r2i1p1f1, and MIROC-ES2L-
r9i1p1f2, are included in all recommendations. When per-
formance is given more priority (Fig. 10b blue regions), the
three are joined by AWI-CM-1-1-MR-r1i1p1f1 and a simu-
lation with a MetUM-HadGEM3-GA7.1 atmosphere, either
HadGEM3-GC31-MM-r2i1p1f3 or KACE-1-0-G-r3i1p1f1.
This suggests again that a subset with the large model
families individually represented is a good starting point
for downstream applications. When priority shifts towards
independence and spread (Fig. 10b green regions), sub-
sets tend to include the models with the greatest CMIP6
DJF NEU mid-century positive and negative precipitation
changes (E3SM-1-1-r1i1p1f1 and MIROC6-r12i1p1f1, re-
spectively). Though not included in a recommended subset
primarily because of performance concerns, CAS-ESM2-0-
r3i1p1f1 may also be of interest to some users in search of a
CMIP6 DJF NEU worst-case scenario; the simulation warms
by 7.82 ◦C between the 1995–2014 and 2041–2060 base pe-
riods (Fig. S12b).
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Figure 10. Ternary diagrams of the five-model subselection for CMIP6 (a) JJA CEU and (b) DJF NEU applications. Each model is repre-
sented by an individual member, listed in the legend. Similarly to Fig. 9, each case is shown alongside a subset recommendation triangle. Of
the CMIP6 JJA CEU case’s 45 possible subsets, 6 are recommended based on a performance rank threshold of 23 out of 34. For the CMIP6
DJF NEU case, 5 of 35 possible subsets are recommended based on a performance rank threshold of 31 out of 34.

Table 3. Recommended CMIP6 five-model subset by case and primary user priority.

CMIP6 JJA CEU applications

Performance AWI-CM-1-1-MR-r1i1p1f1, HadGEM3-GC31-MM-r1i1p1f3, MRI-ESM2-0-r1i1p1f1, TaiESM1-r1i1p1f1, GFDL-ESM4-r1i1p1f1
Independence AWI-CM-1-1-MR-r1i1p1f1, HadGEM3-GC31-MM-r1i1p1f3, MRI-ESM2-0-r1i1p1f1, TaiESM1-r1i1p1f1, MIROC-ES2L-r1i1p1f2
Spread AWI-CM-1-1-MR-r1i1p1f1, GFDL-ESM4-r1i1p1f1, CMCC-ESM2-r1i1p1f1, CanESM5-r16i1p1f1, UKESM1-0-LL-r1i1p1f2

CMIP6 DJF NEU applications

Performance AWI-CM-1-1-MR-r1i1p1f1, HadGEM3-GC31-MM-r2i1p1f3, CNRM-CM6-1-r5i1p1f2, CESM2-WACCM-r2i1p1f1, MIROC-ES2L-r9i1p1f2
Independence CNRM-CM6-1-r5i1p1f2, CESM2-WACCM-r2i1p1f1, E3SM-1-1-r1i1p1f1, MIROC-ES2L-r9i1p1f2, MIROC6-r12i1p1f1
Spread AWI-CM-1-1-MR-r1i1p1f1, KACE-1-0-G-r3i1p1f1, CNRM-CM6-1-r5i1p1f2, CESM2-WACCM-r2i1p1f1, MIROC-ES2L-r9i1p1f2

6 Summary, discussion, and conclusion

In this study, we developed and demonstrated a method,
ClimSIPS, to flexibly select subsets from multi-model en-
sembles based on the degree to which a user prioritizes model
independence, model performance, and spread in projected
climate outcomes. During the development of the ClimSIPS,

we tested sensitivities and made several refinements to the
definition of model dependence in ClimWIP, a performance
and independence weighting strategy pioneered in Knutti
et al. (2017), which identifies model similarities via the ab-
solute values of historical period, global-scale climatologi-
cal SAT and SLP predictor fields. Described in Part I, re-
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finements included lengthening predictor climatological av-
eraging periods from 1980–2014 to 1905–2005 and design-
ing predictor spatial fingerprints to explicitly reduce predic-
tor spread within models (e.g., amongst initial-condition en-
semble members) while preserving predictor spread between
models. Computed separately for SAT and SLP in CMIP5
and CMIP6, the fingerprints spatially masked the 15% of
grid points where ensemble-wide internal variability (defined
as the median of the standard deviations within 12 CMIP6
and five CMIP5 initial-condition ensembles) was at a maxi-
mum and the 15% of grid points where the traditional rep-
resentation of between-model spread (defined as the stan-
dard deviation across an ensemble comprised of one ensem-
ble member per model) was at a minimum. An advantage of
using climatological SAT and SLP fingerprints rather than
unmasked global fields to define model dependence was that
masking helps to future-proof against between-model con-
vergence should model developers decide to tune, in partic-
ular, the absolute value of global mean surface temperature
in models (Mauritsen et al., 2012; Hourdin et al., 2017). The
potential for between-model convergence is cited as one of
the primary drawbacks of using model output to determine
dependence (Annan and Hargreaves, 2017; Brands, 2022b).
Additionally, climatological SAT and SLP fingerprints al-
layed a concern that computing RMSE distance between
models does not require the overall collection of intermem-
ber distances to meet the formal mathematical definition of
metric space (Abramowitz et al., 2019). We found that inter-
member distances within both CMIP ensembles did satisfy
metric criteria, with all sets of three models upholding the
triangle inequality of dist(A,B) <= dist(A,C) + dist(C,B).
Intermember distances could therefore be both understood
as distances and visualized in low-dimensional space.

Updates made to CMIP intermember distances assisted
in our effort to make discrete delineations along the spec-
trum of dependence for three categories: single-model en-
sembles, model families, and individuals. First and most de-
pendent were single-model ensembles comprised of multiple
initial-condition ensemble members, followed by those com-
prised of both perturbed-physics and initial-condition ensem-
ble members. Next were model families, which we defined
as self-contained groups in which all models were within a
median intermember distance threshold and were closer to
each other than to the rest of the ensemble. We were able
to support all family designations with model descriptions
and metadata and found our designations to be broadly con-
sistent with other model output and metadata-based depen-
dence definitions (Brands, 2022b). In CMIP6, model fam-
ilies emerged when models shared atmospheric components
(e.g., MetUM-HadGEM3-GA7.1 or ECHAM6.3), developed
from a shared atmospheric component (e.g., NCAR’s CAM),
or were variants from the same (e.g., GFDL, EC-EARTH,
or INM) or closely collaborating (e.g., CNRM and IPSL)
modeling centers. In CMIP5, similar model families were
present but with fewer models per family and fewer mem-

bers per model than in CMIP6. Beyond model families, the
last and most independent entities in the CMIP were in-
dividuals or uniquely named models represented by a sin-
gle simulation. The three categories formed a new “repre-
sentative democracy” within the CMIP, allowing us to ex-
plore how a stricter independence definition than the tradi-
tional one model, one vote requirement constrained distri-
butions of ECS in CMIP5/6. By applying the new one fam-
ily, one vote independence constraint, we saw CMIP6’s bi-
modal ECS distribution shift and skew towards lower values
of ECS, with the median and the 75th percentile each shifted
down by 0.43 ◦C to 3.44 and 4.29 ◦C, respectively. CMIP5
ECS, in contrast, maintained its raw distributional form un-
der the one family, one vote independence constraint. In-
creased representation of certain model families from CMIP5
to CMIP6 explained part of the distributional difference in
ECS between the two ensembles; restricting family over-
representation reduced the median difference in CMIP5 and
CMIP6 ECS by over 60%. We thus concluded that the in-
creased ECS uncertainty range documented in CMIP6 is, in
part, due to the fact that near-identical but differently named
models appeared more frequently in CMIP6, and those mod-
els tended to have ECS values above 4.5 ◦C. Crucially, this
conclusion could be drawn without any commentary on the
quality of CMIP6 models; it simply rested on levels of model
representation within the ensemble.

Leveraging the model dependence definition developed in
Part I, we demonstrated ClimSIPS for summer and winter
European case studies in Part II of this study. Performance
was defined in terms of historical biases of concern rather
than by historical strengths of unclear merit; we required
models to effectively simulate annual climatologies of Eu-
ropean SAT, North Atlantic SST, and Southern Hemisphere
midlatitude SWCRE, in addition to local summer PR and
SWCRE climatologies, for central European summer appli-
cations, and local winter PR and regional-scale winter SLP
climatologies for northern European winter applications. We
found that most models are similarly (and not significantly)
biased with respect to observations for the chosen climato-
logical fields. However, in each case, a minority of mod-
els had aggregated distances from the observed that were
large enough relative to their peers to cast doubt on the pro-
jected future European climate states they simulated. These
projected future climate states served as the basis of spread,
which we defined using each model’s JJA CEU or DJF NEU
SAT and PR change between present (1995–2014) and mid-
century (2041–2060) mean states. Because spread within the
CMIP depended on how a model with multiple ensemble
members was represented, we explored subselection by en-
semble mean and by an ensemble member selected to max-
imize ensemble spread overall. Depending on user needs,
both spread representation strategies may be of interest, the
former for studies requiring general model recommendations
and the latter for studies in need of specific simulations that
project unique climate outcomes.
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Subsets were then selected via a cost function, which was
optimized for sets of models that were more independent,
higher-performing, and more diverse in mid-century SAT and
PR change. Computationally, the cost function was mini-
mized with respect to all possible model combinations for
each value α and β, parameters that determine the relative
importance of independence, performance, and spread. Re-
sults were summarized in subselection triangles, ternary con-
tour diagrams that showed which subset minimized the cost
function for each value of α and β. On average, subselection
of three to five models from CMIP6 yielded around 20–45
possible subsets for a user to consider; as a guide, we offered
recommendations of the model subsets that met additional
qualitative independence, performance, and spread criteria.
Recommended subsets were comprised of models that did
not come from the same model family, all exceeded a perfor-
mance threshold, and populated different quadrants of SAT–
PR change space. Among the recommendations, the CMIP6
subsets of five individual spread-maximizing members that
best prioritized independence, performance, or spread in our
European case studies are listed below in Table 3.

This study is meant to serve as a starting point for CMIP6
subselection, introducing a flexible subselection framework
users can employ to decide for themselves which set of mod-
els best suits their specific needs. Subsets we recommended
here are not the definitive answer for every climate applica-
tion, but the method allows us to be transparent about our
choices and to explore the sensitivity of the result to those
choices. By design, independence, performance, and spread
metrics determine which models are selected by the cost
function, and our defined metrics may be too general for
some applications (e.g., hydrological modeling at the catch-
ment scale). However, a strength of ClimSIPS is that it can
incorporate any quantitative definition of independence, per-
formance, and spread. The only requirements for use in the
ClimSIPS cost function are that each model’s performance
metric is represented by a scalar and that independence and
spread metrics are defined between model pairs.

A potential limitation of ClimSIPS for some applications
is high computational demand. Computing the cost function
for all possible model combinations at each α and β step
(required to avoid incurring massive storage costs) may be-
gin to become computationally burdensome when larger sub-
sets are sought from larger selection pools. In our CMIP6
case studies, the 34-choose-3 subselection computed the
cost function 299 200 000 times (5984 possible combinations
×50000 α and β steps), which took approximately 68 min
to run on a single core. The 34-choose-5 subselection iter-
ated over more than 16 billion cost function values, which,
run in parallel, took approximately 2 h to run on 24 cores.
Not evaluated here, the 34-choose-10 subselection, with the
cost function computed 6.6 trillion times, would take consid-
erably longer, an estimated 3 weeks to run, even in parallel
on 48 cores. We contend that computational expense could
limit some open use of the method, but users have several op-

tions that can alleviate the combinatorial explosion problem.
First, the size of the selection pool can be reduced by pre-
filtering models that are highly dependent or low-performing
or have convergent projected outcomes before computing the
cost function. We intentionally did not pre-filter by indepen-
dence, performance, or spread here though because filtering
is highly subjective and would be a disservice to users inter-
ested in subselecting from the whole ensemble. Second, users
can compute the cost function for fewer values of α and β.
This simplifying step will reduce the complexity of the subs-
election triangle but potentially at the expense of some model
combination minima.

In conclusion, ClimSIPS and its underpinning dependence
definition provide users with a way to make systematic and
informed choices about the models they use. The method
consolidates independence, performance, and spread consid-
erations simultaneously for the first time and provides as
output a transparent representation of the trade-offs between
these three priorities. Such approaches are essential as CMIP
archives grow and manual model selection becomes increas-
ingly unfeasible.

Code and data availability. The code to generate figures in
the main text and Supplement is available as a collec-
tion of Python scripts at https://github.com/almerrifield/CMIP_
subselection/releases/tag/v1.0 (last access: 29 December 2022)
under https://doi.org/10.5281/zenodo.7492727 (Merrifield, 2022).
Pre-processed input files for CMIP_subselection are available upon
request. The ClimSIPS package is available at https://github.com/
almerrifield/ClimSIPS/releases/tag/1.0.1 (last access: 19 July 2023)
under https://doi.org/10.5281/zenodo.8165835 and is a part of
the ETH Research Collection under https://doi.org/10.3929/ethz-b-
000599363 (Merrifield and Könz, 2023). Both CMIP_subselection
and ClimSIPS are made available under a GNU GPLv3 license.
Pre-processed input files are provided for the ClimSIPS European
case studies in the manuscript through the ETH Research Collection
(https://doi.org/10.3929/ethz-b-000599312; Merrifield, 2023).
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