Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4677-2023
https://doi.org/10.5194/gmd-16-4677-2023
Model description paper
 | 
18 Aug 2023
Model description paper |  | 18 Aug 2023

IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning

Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang

Related authors

Simulation, precursor analysis and targeted observation sensitive area identification for two types of ENSO using ENSO-MC v1.0
Bin Mu, Yuehan Cui, Shijin Yuan, and Bo Qin
Geosci. Model Dev., 15, 4105–4127, https://doi.org/10.5194/gmd-15-4105-2022,https://doi.org/10.5194/gmd-15-4105-2022, 2022
Short summary
ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler
Bin Mu, Bo Qin, and Shijin Yuan
Geosci. Model Dev., 14, 6977–6999, https://doi.org/10.5194/gmd-14-6977-2021,https://doi.org/10.5194/gmd-14-6977-2021, 2021
Short summary
Optimal Precursors Identification for North Atlantic Oscillation using CESM and CNOP Method
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-27,https://doi.org/10.5194/npg-2020-27, 2020
Revised manuscript not accepted
Short summary
A Parallel Hybrid Intelligence Algorithm for Solving Conditional Nonlinear Optimal Perturbation to Identify Optimal Precursors of North Atlantic Oscillation
Bin Mu, Jing Li, Shijin Yuan, Xiaodan Luo, and Guokun Dai
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-25,https://doi.org/10.5194/npg-2019-25, 2019
Revised manuscript not accepted
Short summary
A novel approach for solving CNOPs and its application in identifying sensitive regions of tropical cyclone adaptive observations
Linlin Zhang, Bin Mu, Shijin Yuan, and Feifan Zhou
Nonlin. Processes Geophys., 25, 693–712, https://doi.org/10.5194/npg-25-693-2018,https://doi.org/10.5194/npg-25-693-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Assessing the climate impact of an improved volcanic sulfate aerosol representation in E3SM
Ziming Ke, Qi Tang, Jean-Christophe Golaz, Xiaohong Liu, and Hailong Wang
Geosci. Model Dev., 18, 4137–4153, https://doi.org/10.5194/gmd-18-4137-2025,https://doi.org/10.5194/gmd-18-4137-2025, 2025
Short summary
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025,https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary
ICON-HAM-lite 1.0: simulating the Earth system with interactive aerosols at kilometer scales
Philipp Weiss, Ross Herbert, and Philip Stier
Geosci. Model Dev., 18, 3877–3894, https://doi.org/10.5194/gmd-18-3877-2025,https://doi.org/10.5194/gmd-18-3877-2025, 2025
Short summary
Process-based modeling framework for sustainable irrigation management at the regional scale: integrating rice production, water use, and greenhouse gas emissions
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev., 18, 3799–3817, https://doi.org/10.5194/gmd-18-3799-2025,https://doi.org/10.5194/gmd-18-3799-2025, 2025
Short summary

Cited articles

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4, 2021. a, b
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat, Nature, 509, 479–482, 2014. a
Boisvert, L. N. and Stroeve, J. C.: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder, Geophys. Res. Lett., 42, 4439–4446, 2015. a
Boisvert, L., Wu, D., Vihma, T., and Susskind, J.: Verification of air/surface humidity differences from AIRS and ERA-Interim in support of turbulent flux estimation in the Arctic, J. Geophys. Res.-Atmoss., 120, 945–963, https://doi.org/10.1002/2014JD021666, 2015. a
Boisvert, L. N., Webster, M. A., Petty, A. A., Markus, T., Bromwich, D. H., and Cullather, R. I.: Intercomparison of precipitation estimatesover the Arctic Ocean and its peripheral seas from reanalyses, J. Climate, 31, 8441–8462, https://doi.org/10.1175/JCLI-D-18-4850125.1, 2018. a
Download
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Share