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Abstract. Due to global warming, the Arctic sea ice extent
(SIE) is rapidly decreasing each year. According to the In-
tergovernmental Panel on Climate Change (IPCC) climate
model projections, the summer Arctic will be nearly sea-
ice-free in the 2050s of the 21st century, which will have
a great impact on global climate change. As a result, ac-
curate predictions of Arctic sea ice are of significant inter-
est. In most current studies, the majority of deep-learning-
based SIE prediction models focus on one-step prediction,
and they not only have short lead times but also limited pre-
diction skill. Moreover, these models often lack interpretabil-
ity. In this study, we construct the Ice temporal fusion trans-
former (IceTFT) model, which mainly consists of the vari-
able selection network (VSN), the long short-term memory
(LSTM) encoder, and a multi-headed attention mechanism.
We select 11 predictors for the IceTFT model, including
SIE, atmospheric variables, and oceanic variables, accord-
ing to the physical mechanisms affecting sea ice develop-
ment. The IceTFT model can provide 12-month SIE directly,
according to the inputs of the last 12 months. We evalu-
ate the IceTFT model from the hindcasting experiments for
2019–2021 and prediction for 2022. For the hindcasting of
2019–2021, the average monthly prediction errors are less
than 0.21 × 106 km2, and the September prediction errors
are less than 0.1×106 km2, which is superior to the models
from Sea Ice Outlook (SIO). For the prediction of September
2022, we submitted the prediction to the SIO in June 2022,
and IceTFT still has higher prediction skill. Furthermore, the
VSN in IceTFT can automatically adjust the weights of pre-
dictors and filter spuriously correlated variables. Based on

this, we analyze the sensitivity of the selected predictors for
the prediction of SIE. This confirms that the IceTFT model
has a physical interpretability.

1 Introduction

Arctic sea ice is one of the vital components of the global
climate system. Due to global warming, the temperature rise
in the Arctic has accelerated. This phenomenon, known as
Arctic amplification, has accelerated the melting of Arctic
sea ice, which may have a potential impact on weather pat-
terns and the climate of the Northern Hemisphere (Liu et al.,
2013; Cohen et al., 2014). According to the Intergovernmen-
tal Panel on Climate Change (IPCC) climate model projec-
tions, the summer Arctic will be nearly sea-ice-free in the
2050s of the 21st century (Stroeve et al., 2012; Overland and
Wang, 2013; Voosen, 2020), which will have a significant
impact on global climate change. Therefore, it is important
to predict the development of Arctic sea ice, which can be an
important reference for studying and predicting global cli-
mate change trends. Over the past few decades, the Arctic
Ocean has been warming (Polyakova et al., 2006), and Arc-
tic sea ice is melting rapidly. The September Arctic sea ice
extent (SIE) declined on average by about 14 % per decade
from 1979 to 2013 and by about 50 % by 2020 (Johannessen
et al., 2020; Ramsayer, 2020). The SIE in September 2020
is the second-lowest value from the National Snow and Ice
Data Center (NSIDC) Sea Ice Index, V3 (SII; Fetterer et al.,
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2017), data (1979–2020). Rapid melting has made accurate
SIE prediction difficult.

SIE is extremely cyclical and always reaches the maxi-
mum in March and the minimum in September (Kwok and
Untersteiner, 2011). It is very difficult to predict the Septem-
ber minimum due to the influence of multiple physical fac-
tors. Figure 1a, b, and c show that the September SIE pre-
diction errors with a lead time of 3 (2,1) months for 2019 to
2021, which are published in the Sea Ice Outlook (SIO) by
Sea Ice Prediction Network (SIPN). Since 2008, the SIPN
has collected September predictions annually, with a lead
time of 1–3 months from global research institutions. And
it represents the current prediction level and community
knowledge of the state and evolution of Arctic sea ice on
sub-seasonal to seasonal (S2S) timescales (Wei et al., 2021).
From Fig. 1, it can be seen that there is still a clear gap be-
tween these predictions and observations. Surprisingly, the
prediction skill did not improve significantly as the predic-
tion lead time was reduced, which is consistent with another
study (Stroeve et al., 2014). According to the SIO, we found
more submissions for statistical approaches and dynamical
models, while there were fewer submissions for machine
learning until 2021. The medians of statistical approaches
and machine learning are relatively close, and they both have
slightly higher skills than dynamical models. However, due
to the complexity of sea ice melt mechanisms, statistical
models cannot capture the non-linear relationships between
variables. As a result, deep learning can learn the features
of the non-linear development of sea ice, which is extremely
promising for sea ice prediction.

In recent years, deep learning methods have been increas-
ingly used to predict sea ice levels. Chi and Kim (2017) first
applied long short-term memory (LSTM) to a 1-month fore-
cast model for the sea ice concentration (SIC) prediction.
Then, they used a recursive approach to make the prediction
model provide 12-month predictions. Kim et al. (2020) pro-
posed a novel 1-month SIC prediction model, using convo-
lutional neural networks (CNNs) that incorporate SIC, atmo-
spheric variables, and oceanic variables. Due to the CNNs
being unable to capture the time series dependence, they
trained 12 models to produce predictions for each month and
confirmed the superiority of these models. Andersson et al.
(2021) proposed the IceNet model that learns from climate
simulations and sea ice observation data. They also trained
multiple models to provide months of predictions. Ren et al.
(2022) proposed a purely data-driven model for daily SIC
prediction called SICNet. They used an iteration method to
obtain a weekly SIC prediction. In these studies, they fo-
cus on one-step models. To produce long-term predictions,
they used a recursive approach, which can result in increas-
ing errors, or they trained more models, which may increase
the cost and time of computation. These studies highlight
that long-term prediction has been less researched than short-
term prediction. This ignores the periodicity of SIE. In addi-
tion, little attention has been paid to the explainability of the

deep learning model. Chi et al. (2021) used ConvLSTM with
a new perceptual loss function to predict SIC. Different vari-
ables were used as inputs of the proposed model for different
channels, which does not provide insight into how the model
utilizes the full channels of the input. These channel data may
have an incomprehensible effect. Although the model in An-
dersson et al. (2021) was pre-trained with climate simula-
tions, the effect on prediction is also unexplained. Compared
to dynamic models, deep learning models are considered to
be a “black box” due to the lack of physical mechanisms.

Our research team constructs deep learning models with
interpretable and high prediction skill, based on the phys-
ical mechanisms of various weather and climate phe-
nomena, which include the El Niño–Southern Oscillation
(ENSO) and North Atlantic Oscillation (NAO; Mu et al.,
2019, 2020, 2021, 2022). In this paper, to improve the long-
term prediction skill for SIE and analyze the effects of vari-
ous factors on SIE, we introduce a new SIE prediction model,
based on the temporal fusion transformer (TFT; Lim et al.,
2021), IceTFT, which is an interpretable model with high
prediction skill. The IceTFT model can directly predict 12-
month SIE through multi-horizon prediction. We select 11
predictors, based on the physical mechanisms and correlation
analysis of Arctic sea ice, which include SIE, atmospheres,
and ocean variables. The variable selection network (VSN)
design in the IceTFT model species adjusts the weights of
the variables by calculating their contribution to the predic-
tion. On this basis, we can conduct sensitivity analysis ex-
periments to quantify the role of predictors on the SIE pre-
diction. The physical mechanisms affecting sea ice develop-
ment can also be identified, which can provide a reference
for selecting assimilation variables for dynamical models. In
addition, we submitted the September prediction of 2022 to
SIO in June 2022. The prediction skill of IceTFT, with a lead
time of 9 months, outperforms most other models.

The contributions of this paper are as follows:

1. The IceTFT model uses LSTM encoders to summarize
past inputs and generate context vectors, so it can di-
rectly provide a long-term prediction of SIE for up to
12 months. And it can predict September SIE 9 months
in advance, which is longer than other studies with lead
times of 1–3 months. IceTFT has the lowest prediction
errors for hindcast experiments from 2019 to 2021 and
the actual prediction of 2022, which was compared with
SIO.

2. The IceTFT model is interpretable. It can automatically
filter out spuriously correlated variables and adjust the
weight of inputs through VSN, thus reducing noise in-
terference in the input data. At the same time, it can
also explore the contribution of different input variables
to SIE predictions and reveal the physical mechanisms
of sea ice development.
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Figure 1. The September SIE prediction errors with a lead time of 3 (2,1) months from June (a) (July b; August c) for 2019–2021, which
are published in the Sea Ice Outlook (SIO) by the Sea Ice Prediction Network (SIPN).

The remainder of the paper proceeds as follows: Sect. 2
introduces the proposed structure model called IceTFT. Sec-
tion 3 deals with the atmospheric and oceanographic vari-
ables we selected. Section 4 introduces the evaluation met-
rics used. Section 5 presents the optimal setting of IceTFT
model. The results of hindcasting experiments from 2019 to
2021 and of prediction for 2022 are presented in Sects. 6 and
7. Section 8 discusses the contribution of the inputs to the SIE
predictions and gives an analysis of the physical mechanisms
through which they affect sea ice.

2 IceTFT model

Deep learning has good performance in time series predic-
tion, but previous research mostly used CNN and ConvL-
STM, which still have high prediction errors. The trans-
former model makes the attention mechanism fully capture
the temporal dependence, and it performs better than the tra-
ditional recurrent neural network (RNN) models (Vaswani
et al., 2017). Based on the transformer model, a temporal
fusion transformer (TFT) was proposed for multi-step pre-
diction (Lim et al., 2021). TFT not only uses a sequence-to-
sequence layer to learn both short-term and long-term tempo-
ral relationships at the local level but also uses a multi-head
attention block to capture long-term dependencies. The VSN
design in the TFT model species adjusts the weights of the
variables and makes it interpretable. It has been verified that
the TFT has small prediction errors in several areas.

The sea ice dataset is a time series with pronounced pe-
riodicity, which has a peak and a trough in a yearly cycle.
These two peaks are usually critical to the prediction. And
sea ice is affected by multiple physical factors, making its
prediction more difficult. We propose the IceTFT model for
SIE prediction, based on TFT, as follows:

1. The original design of TFT used known future data to
support in the prediction of the primary time series data,
since sea ice melting can be affected by various physical
factors, and the various mechanisms responsible for sea

ice variability have not yet been elucidated. To help the
model learn the physical mechanisms underlying SIE,
we modified that part to use atmospheric and oceano-
graphic variables with the all the data at the same time
as SIE.

2. The TFT relies on positional encoding to capture tem-
poral features. When time series data are rolled into the
model, the temporal information of the input data may
be lost. To solve this problem, we set time-static meta-
data to provide temporal features that help the model
better capture the periodicity of sea ice during the train-
ing process.

3. The original TFT uses quantile prediction as a loss func-
tion. Since SIE has decreased in recent years, there is
some mutagenicity in summer. Therefore, the original
design is not appropriate for predicting SIE. We used
the mean square error (MSE) as the loss function to re-
place it.

The IceTFT architecture is shown in Fig. 2. Three types of
datasets are the inputs to IceTFT, which include time-static
metadata, SIE, and other physical variables. And each type
is selected by a VSN to filter out unnecessary noise. The
structures of VSN and the gated residual network (GRN) are
shown in Fig. 3. By using the GRN, the VSN calculates the
weight of each variable contributing to the prediction, allow-
ing the model to focus on the most significant features rather
than overfitting irrelevant features. The VSN can also filter
out spurious correlated variables to improve the accuracy of
SIE predictions. This facilitates the analysis of the physical
mechanisms underlying sea ice development and makes the
IceTFT structure model more interpretable.

We can define the SIE prediction with IceTFT as a multi-
variate spatiotemporal sequence prediction problem, as illus-
trated in Eq. (1).

ŜIE= Fθ (X),
{
TIMEstatic,SIE,VARphysical

}
⊆X, (1)

where Fθ represents the IceTFT model (θ denotes the
trainable parameters in the system). We have experimen-
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Figure 2. The IceTFT architecture is adapted on the basis of the original TFT (Lim et al., 2021). The time-static metadata, historical SIE
data, and other atmospheric and oceanographic variables are all inputs to the IceTFT. The auxiliary data include snowfall (SF), 2 m air
temperature (AT), 2 m surface air specific humidity (SHUM), downward shortwave radiative flux (DSWRF), downward longwave radiation
flux (DLWRF), clear-sky downward longwave flux (CSDLF), clear-sky downward solar flux (CSDSF), upward solar radiation flux (USWRF),
sea surface temperature (SST), precipitation (PRECIP), and river runoff (RUNOFF).

Figure 3. The components in IceTFT. The variable selection network (VSN) is used to select the most useful features. The gated residual
network (GRN) enables efficient information flow by skipping connections and gating layers.
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tally determined the optimal hyperparameters, and the
size of the hidden layers is 160, the batch size is 128,
the number of multi-head self-attentive mechanisms is 4,
the dropout rate is 0.1, the max gradient norm is 0.01,
and the learning rate is 0.001. ŜIE ∈ R1×N is the pre-
diction result for future N months (N = 12), and X ∈

R1×N represents tree-type inputs in the historical N months
(N = 12). And the code source is available at Zenodo
(https://doi.org/10.5281/zenodo.7409157, Luo, 2022). From
Fig. 2, the first type of input, TIMEstatic, is time-static meta-
data calculated by counting days from the beginning of time.
The IceTFT model is designed to use a static covariate en-
coder to integrate static features and to use GRN to gener-
ate different context vectors that are linked to the different
locations. In the IceTFT model, we apply this design to pro-
vide temporal information so that the static covariate encoder
conditions the temporal dynamics through these context vec-
tors and so that the static enhancement layer enhances these
temporal features. The second input is SIE, which is the pri-
mary data for prediction in the IceTFT structure model. The
other inputs, VARphysical, are various physical variables used
to provide atmospheric and oceanographic features. IceTFT
uses an LSTM encoder–decoder to enhance the locality in-
formation of these time series. This has the advantage of cap-
turing anomalies and cycling with them. In addition, IceTFT
uses an interpretable multi-head self-attentive mechanism to
learn long-term features at different time steps. Each head
can learn different temporal features and attend to a common
set of inputs. Finally, to skip additional features, the outputs
are processed by GRN in a position-wise feed-forward layer.

3 Predictors and datasets

As the subject of this research is the prediction of SIE, the
historical data can provide data features for the SIE predic-
tion. SIE is defined as the total area covered by grid cells
with SIC> 15 %, which is a common metric used in sea
ice analysis (Parkinson et al., 1999). The first dataset in the
model is the monthly SIE, provided by the NSIDC Sea Ice
Index, Version 3 (Fetterer et al., 2017). It contains daily and
monthly SIE data in ASCII text files from November 1978 to
the present. The area of this dataset is a region of the Arctic
Ocean (39.23◦ N–90◦ N, 180◦W–180◦ E), and the monthly
SIE is derived from the daily SIE for each month.

Since the development of Arctic sea ice is influenced by
a variety of physical factors such as the atmosphere and the
ocean, we select a number of variables to support the pro-
posed model for SIE prediction to help it learn more physi-
cal mechanisms and improve its prediction skill. Numerous
studies have analyzed the causal relationship between sea ice
and physical variables, due to the fact that fluctuations in sea
ice can be generated by various dynamical and thermody-
namic processes and other factors. Y. Huang et al. (2021)
summarizes recent studies and known atmospheric processes

associated with sea ice and presents the causality graph, as
seen in Fig. 4.

From the study of Y. Huang et al. (2021), the arrows b
and c in Fig. 4 show that the increase in the cloudiness
and water vapor in the Arctic basin is due to local evapo-
ration or enhanced water vapor transport, resulting in an in-
crease in the downward longwave radiation flux (DLWRF;
Luo et al., 2017). The DLWRF dominates surface warming
and enhances sea ice melting in winter and spring (Kapsch
et al., 2016, 2013). The melting of sea ice increases the air
temperature, which in turn increases the DLWRF at the sur-
face (Kapsch et al., 2013). At the same time, solar radiation
may be absorbed by the ocean once the surface albedo is sig-
nificantly reduced by sea ice melting, further accelerating sea
ice melt in late spring and summer (Choi et al., 2014; Kap-
sch et al., 2016). Kapsch et al. (2016) studied the effects of
realistic anomalies in the DLWRF and downward shortwave
radiative flux (DSWRF) on sea ice by applying simplified
forcing in a coupled climate model (arrows e and f in Fig. 4).
In addition, Liu and Liu (2012) conducted numerical exper-
iments with the MIT General Circulation Model (MITgcm),
using a reanalysis dataset to demonstrate that changes in sur-
face air temperature and DLWRF have played a significant
role in the decline in the Arctic sea ice in recent years and
that changes in surface air specific humidity (SHUM) can
regulate the interannual variability in sea ice area. For our
proposed model to learn the atmospheric process, we select
the following variables: 2 m air temperature (AT), DSWRF,
and DLWRF and the SHUM.

In addition, the snow layer can regulate the growth rate of
sea ice because of its highly insulating properties, and the ac-
cumulation of precipitation on the sea ice pack significantly
affects the depth of the snow layer (Sturm et al., 2002). Rain
can melt, compact, and densify the snow layer, reducing the
surface albedo and promoting sea ice melting (Perovich et
al., 2002). The loss of snow on the ice leads to a significant
reduction in the surface albedo over the Arctic Ocean, result-
ing in additional surface ice melt at the surface as more solar
radiation is absorbed (Screen and Simmonds, 2012). Higher
precipitation and snowfall can lead to a thicker snowpack,
which affects sea ice change (Bintanja and Selten, 2014).
Some researchers have studied the correlation between river
runoff and sea ice and found that river runoff has some influ-
ence on sea ice melting (He-Ping et al., 2000; Tong et al.,
2014). Precipitation at high latitudes would also increase
Arctic river discharge, and river flow could have the posi-
tive effect of maintaining thicker ice (Weatherly and Walsh,
1996; arrow i in Fig. 4). Therefore, we also select precipi-
tation (PRECIP), snowfall (SF), and river runoff (RUNOFF)
so that the proposed model can learn these processes.

To improve the interpretability of the model, we also make
it learn some ocean features in addition to atmospheric pro-
cesses. Previous studies demonstrated the effects of sea sur-
face temperature (SST) on Arctic sea ice. Bushuk and Gian-
nakis (2017) found that SST provides an essential source of
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Figure 4. The causality graph derived from the study (Y. Huang et al., 2021) between important atmospheric variables and sea ice over the
Arctic. Note that processes a–d (Pruppacher and Klett, 1978; Wallace and Hobbs, 2006; Liou, 2002; Holton and Hakim, 2013) are well-
known atmospheric processes that can be outlined in several textbooks. Processes e–i (Kapsch et al., 2019; Huang et al., 2017, 2019; Kay
and Wood, 2008; Choi et al., 2014; Overland and Wang, 2010; Watanabe et al., 2006; Rinke et al., 2019; Boisvert et al., 2015, 2018)) are
summaries from recent peer-reviewed publications, and they are the subject of ongoing research. Sea ice here represents sea ice cover and/or
sea ice thickness, GH is the geopotential height, RH is the relative humidity, SLP represents the sea level pressure, u10m and v10m represent
meridional and zonal wind at 10 m, HFLX is the sensible plus latent heat flux, PRECIP is the total precipitation, CW is the total cloud water
path, CC is the total cloud cover, and SW and LW represent the net shortwave and longwave flux at the surface, respectively.

memory for the resurfacing of melt to growth re-emergence.
Liang et al. (2019) supported that additional assimilation of
SST improves the predictive accuracy of SIE and SIT in the
marginal zone of sea ice. Therefore, we also selected SST
variables to provide oceanographic features for the model.

The mean values of each of the above eight variables in
the global region were used as input data for the model, and
we calculated the correlation coefficient between them and
SIE. The results are shown in Table 1. The variables with the
highest correlation coefficient with SIE, as shown in Table 1,
are SST, AT, RUNOFF, and DLWRF, which are shown in
bold. And these variables are all connected to surface evapo-
ration and surface heat in the Arctic hydrological cycle. To
make the model learn more physical mechanisms, we se-
lected clear-sky downward longwave flux (CSDLF), clear-
sky downward solar flux (CSDSF), and upward solar radi-
ation flux (USWRF) these radiative variables. A total of 11
physical variables are listed in Table 1.

All the sources of dataset used in the IceTFT are listed
in Table 1. Except for SST and SF, other data are from
the National Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP-NCAR) Reanaly-
sis 1 dataset (Kalnay et al., 1996). To explore whether the
model depends on the dataset, we also used another re-

analysis dataset to compare. We replaced the data from the
NCEP-NCAR Reanalysis 1 with Japanese 55-year Reanaly-
sis (JRA-55; Japan Meteorological Agency, 2013). The re-
sults of correlation coefficients with the JRA-55 dataset are
similar and not shown in Table 1. The SST data are from the
Optimum Interpolation SST V2 data (B. Huang et al., 2001;
Reynolds et al., 2007), which is provided by the NOAA Na-
tional Centers for Environmental Information (NCEI). The
SF data are from the Boulder monthly means for snowfall
(National Oceanic and Atmospheric Administration Physical
Sciences Laboratory, Boulder Climate and Weather Informa-
tion, 2022).

4 Evaluation metrics

There are three metrics used to evaluate the model per-
formance, namely mean absolute error (MAE), root mean
square error (RMSE), and root mean square deviation
(RMSD), and the equations are as follows. In particular,
RMSD can be used to further investigate the possible reasons
for the discrepancy between the observation and prediction
values of the SIE. In the formulas of the metrics, the range
of n is from 1 to 12, where y and ỹ mean the SIE observa-
tion and prediction, and the subscript i represents ith month
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Table 1. The names, types, sources, units of the 11 physical variables and their correlation coefficients with the SIE. The variables with the
highest correlation coefficient with SIE are SST, AT, RUNOFF, and DLWRF, which are shown in bold.

Types Variables R2 Source Unit

Atmospheric

2 m air temperature (AT) –0.7060 NCEP-NCAR Reanalysis 1 K
2 m specific humidity (SHUM) −0.5965 NCEP-NCAR Reanalysis 1 grams
Downward shortwave radiation flux (DSWRF) 0.4080 NCEP-NCAR Reanalysis 1 W m−2

Downward longwave radiation flux (DLWRF) 0.6638 NCEP-NCAR Reanalysis 1 W m−2

Clear-sky downward solar flux (CSDSF) 0.3684 NCEP-NCAR Reanalysis 1 W m−2

Clear-sky downward longwave flux (CSDLF) −0.6555 NCEP-NCAR Reanalysis 1 W m−2

Upward solar radiation flux (USWRF) 0.4898 NCEP-NCAR Reanalysis 1 W m−2

Oceanographic Sea surface temperature (SST) –0.8756 NOAA Optimum Interpolation SST V2 ◦C

Other
Precipitation (PRECIP) −0.3809 NCEP-NCAR Reanalysis 1 kg m−2 s−1

River runoff (RUNOFF) 0.7590 NCEP-NCAR Reanalysis 1 kg m−2

Snowfall (SF) 0.4452 Boulder monthly means for snowfall inches

ordinal of a year. The RMSD is defined as the average dis-
tance between predictions and observations. It includes bias
and variance components (Zheng et al., 2021). The first com-
ponent is the mean bias of standard deviations, and the sec-
ond can be viewed as the mean variation in the square of the
difference between the standard deviations of the predictions
and the observation, where the R denotes the correlation co-
efficient between y and ỹ. For all the metrics above, a smaller
value means that the model has better performance.

MAE=
1
n

n∑
i=1
|yi − ỹi | (2)

RMSE=

√√√√1
n

n∑
i=1
(yi − ỹi)

2 (3)

bais= (std(y)− std(ỹ))2

variance=
1
n

(
y2
+ ỹ2
− 2yỹR

)
RMSD2

= bais+ variance (4)

5 The optimal IceTFT model

5.1 The slicing method of inputs

To explore the optimal slicing method of inputs, we used
rolling and alignment slicing methods for comparison. Fig-
ure 5a shows the process of rolling. A slice of data consists
of 12 time step inputs and 12 time step labels, and the whole
length is 24. Using the rolling method to move the sliding
window by one time step, we can obtain the next 24 time step
slice data values. The experiment with the rolling method
is named IceTFT-rolling, while the IceTFT-align experiment
uses the alignment method, which is shown in Fig. 5b. The
aligned inputs require that the first time step data value is for
January in each slice of data. With the rolling method, the

Figure 5. The two slicing methods of inputs.

model can only learn location information but loses temporal
features due to the moving time series during training.

Table 2 shows the prediction results for IceTFT model
with different slicing methods. Compared to IceTFT-align
and IceTFT-rolling experiments, the IceTFT-align model had
a slight advantage from the RMSE and RMSD of 2019, but
it had a higher error than the IceTFT-rolling model overall.
This may be due to the fact that the IceTFT-align model did
not contain a sufficient number of samples for training, so
the model cannot learn enough features to predict. It demon-
strates that the rolling method is effective with respect to im-
proving the prediction skill. Moreover, it is difficult to predict
with high confidence for a model with too few training data
points. Therefore, the optimal slicing method of inputs is the
rolling method.

https://doi.org/10.5194/gmd-16-4677-2023 Geosci. Model Dev., 16, 4677–4697, 2023
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Table 2. The three metrics (MAE, RMSE, and RMSD) among two models, with different slicing methods for SIE predictions during 2019–
2021. The smallest prediction errors for each year are shown in bold.

Predictive year 2019 2020 2021

Model name MAE RMSE RMSD MAE RMSE RMSD MAE RMSE RMSD

IceTFT-align 0.2966 0.3403 0.7129 0.4330 0.4915 0.9040 0.5059 0.6058 1.3104

IceTFT-rolling 0.2687 0.3487 0.8206 0.3204 0.4162 0.9023 0.4495 0.5465 1.2125

Figure 6. The prediction errors in the IceTFT with different input
lengths for 2019.

5.2 The input length

To investigate the effect of the input length on the prediction
skill, we chose to set up four sets of comparison experiments
with input lengths of 6,12,18, and 24. Using the 2019 pre-
diction as an example, the results of the monthly errors are
shown in Fig. 6. The results of 2022–2021 are similar and
not shown. As a whole, the prediction errors for the models
with the input lengths of 6 and 24 are significantly higher
than the results for models with other lengths. This is prob-
ably because the time window of 6 is too short to include
both the March maximum and the September minimum in
each epoch. This may affect the model learning for the fea-
tures of the extremes, thus increasing the inaccuracy of the
extremes. However, if the input lengths are too long, then the
correlation between the recent historical SIE sequence and
the future SIE sequence is weakened, increasing the predic-
tion error. In addition, the errors in a model with 18 months
are comparable to a model with 12 months. However, for the
difficult prediction of 2019, i.e., in October, which has a large
slope, the error in a model with 18 months is significantly
higher than one with 12 months. Therefore, for the monthly
prediction of SIE, a reasonable choice for the input length
is 12 months; it probably is because the period of SIE is 12
months.

6 The hindcasting experiment results for 2019–2021

Due to the accelerated Arctic SIE decline in recent years with
the sparse dataset, many researchers (Chi and Kim, 2017;

Table 3. The sets of training, validation, and prediction for three
models.

Model name Training Validation Predictive year

IceTFT-2018 1982–2016 2017–2018 2019–2021

IceTFT-2019 1982–2017 2018–2019 2020–2021

IceTFT-2020 1982–2018 2019–2020 2021

Kim et al., 2020; Chi et al., 2021) suggest that the recent time
period has more useful features than the early period for re-
cent prediction, so they divided more data from the overall
dataset to train. We use all the data before the prediction year
for training and testing. For example, the IceTFT-2018 model
is used to predict SIE from 2019 to 2021, which set the pe-
riod from 1982 to 2016 as the training data and from 2017 to
2018 as the validation data. IceTFT-2019 and IceTFT-2020
have similar settings, and the details of the settings are shown
in Table 3.

Based on the results in Sect. 5, our later models all use
a rolling method to slice the inputs, and the length of the
input is chosen to be 12. In this study, we evaluated the pre-
diction skill of the IceTFT by analyzing the results of the
hindcast experiment results from 2019 to 2021. Due to the
uncertainty in the model, we trained the model 20 times for
each of these runs. Then we recorded the best-predicted re-
sults and the mean predicted results. The mean predicted
results represent the prediction skill of the IceTFT model,
while the best-predicted results represent the performance of
the IceTFT model with respect to capturing the features of
SIE. The results are shown in Table 4.

6.1 Performance of IceTFT for 12-month SIE
predictions

From the information in Table 4, it is shown that the models
can obtain the predicted results with low error through mul-
tiple training. Even though the mean predicted results have a
slightly larger error than the best ones, the average predicted
error in the model for each month is within 0.3× 106 km2.
In 2019 and 2021, the difference between the best and mean
prediction is not significant from the RMSE, which is not
more than 0.04× 106 km2. Compared to the results of these
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2 years, the errors in the mean predicted results increased
in 2020. This is because there is a second record-low SIE for
September 2020. Moreover, due to the predicted period being
too long, relatively speaking, evaluating the prediction skill
of the IceTFT model using MAE as the loss function is dif-
ficult. A low MAE does not mean that the model can predict
all 12 months with low errors. The IceTFT model focuses on
different physical factors during several training periods and
generates predictions with different trends. The model finds
it hard to predict this minimum value accurately in each train-
ing, so the errors in the mean prediction are much higher than
in the best one.

The IceTFT-2019 model had 1 year more training data
available than the IceTFT-2018 model, and that caused the
model to learn some features of recent times. Consequently,
the IceTFT-2019 model has a lower error than the IceTFT-
2018 model for 2020 prediction, and the IceTFT-2020 model
has a lower error than the IceTFT-2019 model for 2021.
These results show that the training data that are closer to the
prediction time are more useful than other data that are fur-
ther away from the moment of prediction. Interestingly, the
IceTFT-2018 model also had a higher accuracy for the 2021
prediction. It may be that the trends of SIE between these 2
years are similar (we discussed the reason in Sect. 8). Ac-
cording to the results in Table 4, the RMSE is slightly higher
than the MAE for these experiments. The RMSE is more sus-
ceptible to outlier influence than MAE. This illustrates that
the model with optimal experimental settings produces 25 %
mean error (monthly at most) from the MAE but generates a
higher error in some months from the RMSE.

From the bar graphs in Fig. 7, there is a clear trend of pre-
dictions for different years, and it also shows the monthly
errors. As can be seen, the predictions of multiple training
sequences form a prediction period in which the vast major-
ity of observations fall within the range. Except for Septem-
ber 2020, the mean predicted results have the same trend as
the observations. In terms of the monthly error in the model
with different settings, all of the experiment runs had high
errors in October or November. In addition, they had another
high error in July, except for 2019. Due to global warming,
it is a challenge to predict SIE in summer. In the melt sea-
son, which is from June to September, the SIE continued to
decline, with a steep slope. The line passing through the ob-
served value of SIE in June and July has the steepest slope. It
demonstrates that the SIE reduced significantly from June to
July. Thus, it is difficult to predict the downturn. And as a re-
sult, the July prediction is higher than the observation with a
higher error. The SIE archive is at a minimum in September,
and sea ice becomes frozen after that time. Similarly, as with
a temperature anomaly or another climate effect, the October
or November prediction is on the high side. For 2021 pre-
dictions in Fig. 7c, the errors in the IceTFT-2018 model are
smaller than the IceTFT-2020 model in the winter but higher
in the summer. Though the IceTFT-2018 model has more ac-
curacy than the IceTFT-2020 model from three metrics, it

Figure 7. The SIE predictions, observations, and the monthly errors
for 2019–2021. The line graph represents the observations and SIE
predictions, corresponding to the y axis on the right; the bar graph
represents the errors, corresponding to the y axis on the left.

produces more error in September. As a result, the metric is
not merely a performance benchmark for prediction. In ad-
dition, the monthly errors did not show a monotonically in-
creasing trend, and they did not become greater as the time
step increased. The model used a direct predicted method to
avoid the superimposition of errors in the recursive approach,
and it improved the accuracy of the predictions. The same
disadvantage exists for dynamic models, in the sense that the
predicted error increases with an increasing prediction pe-
riod. This issue was resolved by the IceTFT model, which
generated longer-term predictions with smaller errors.

To further explore the potential causes for the inaccuracy,
we calculated the RMSD between the detrended quarterly
SIE observations and the predictions for the 2019–2021 pe-
riod. The results are shown in Fig. 8. The RMSD ranges from
0.076 to 0.918×106 km2 in Fig. 8a, and the findings from
the 3 years show a wide spread in the RMSD for each quar-
ter. Figure 8b displays a histogram of the temporal variation
in the squared RMSD, which consists of bias and variance,
according to Eq. (4). It can be seen that there is a very large
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Table 4. The three metrics (MAE, RMSE, and RMSD) among three models for SIE predictions in 2019–2021. The smallest prediction errors
for each year are shown in bold.

Predictive year 2019 2020 2021

Model name MAE RMSE RMSD MAE RMSE RMSD MAE RMSE RMSD

IceTFT-2018
Best 0.1649 0.1942 0.4554 – – – – – –
Mean 0.2126 0.2668 0.4756 0.3016 0.3808 0.6182 0.1990 0.2475 0.5782

IceTFT-2019
Best – – – 0.2007 0.2478 0.4890 – – –
Mean – – – 0.2847 0.3747 0.5894 0.2545 0.3345 0.7759

IceTFT-2020
Best – – – – – – 0.1684 0.2677 0.6689
Mean – – – – – – 0.2577 0.3018 0.7071

Figure 8. Time series of the RMSD between the detrended quarterly SIE on the IceTFT-model over the period 2019–2021. (a) RMSD;
(b) squared RMSD (histogram), consisting of bias and variance; (c) correlation coefficient between predictions and observations; and (d) stan-
dard deviation of predictions (orange line) and observations (blue line).

variance in the spring (January–March or JFM) of 2020 and
2021, which is responsible for the high RMSD in this sea-
son. The correlation coefficients in Fig. 8c also display an
obvious reduction in spring 2020, which is consistent with
the variations in the variance in Fig. 8b. This result indi-
cates that the significantly lower correlation coefficients are
partially responsible for the RMSD peak. Moreover, except
for a few months, the magnitude of the bias is substantially
larger than the variation in Fig. 8b, indicating that the change
in bias is the main factor for the increase in RMSD. Fig-
ure 8d shows the standard deviations of the predictions of the
IceTFT model and observations, and the annual standard de-
viation represents the amplitude of the seasonal cycle of SIE.
The results show that the difference between these 2 stan-
dard deviations is obviously increasing, which contributes
to the larger increase in bias over the same period. Further-

more, this is consistent with the finding in Fig. 7. The IceTFT
has large model errors when the SIE trend is more volatile
(i.e., when the slope is larger), such as in July and Octo-
ber. The biases are larger for the season containing these 2
months. This suggests that IceTFT does not fully capture the
signals from the historical data and does not reflect the sea-
sonal variability in the SIE. Thus, we can improve the pre-
dictive model by focusing on the seasonal variability in the
predictions to reduce the RMSD.

6.2 Comparisons with SIO

We evaluated the performance of the IceTFT model for the
September prediction, in terms of the hindcasting experi-
ments and actual prediction experiments, and collected the
contributions submitted to SIO in recent years. For the hind-
casting experiments, Fig. 9 presents the errors in September
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Figure 9. The prediction errors in the different contributions in SIO
for 2019–2021. These predictions are from the SIO reports (Sea Ice
Outlook, 2019a, b, c, 2020a, b, 2021c, a, b, c, d).

in different models from 2019 to 2021. The types and the data
used in the SIO contributions are listed in Appendix A. Com-
pared to the other models, the IceTFT model has the lowest
error in prediction over the 3 years. Machine learning always
leads to a lower error after repeated training in hindcasting
experiments. As can be seen, the best results of the IceTFT
model have the smallest errors, but the errors increased a lot
in the mean results. The mean prediction indicates that the
prediction skill of the model is relatively stable. In addition
to 2020, the mean prediction of the IceTFT model is superior
to the other models. To make a small error for an anoma-
lous minimum in the mean prediction, the model must have
a lower bound for its predictions during the multiple train-
ing processes. This is challenging to achieve, as the model
is limited by the historical SIE data. Furthermore, the errors
in all models are smaller, relative to 2019 (green histogram
in Fig. 9). The September observation reached its second-
lowest value in 2020, and the anomaly caused the errors to
increase (orange histograms are longer than the blue ones).
While the extremely low anomalies continue to influence the
2021 predictions, the prediction error in most models has in-
creased (see the blue histogram in Fig. 9). Although the pre-
diction error is greater than that of 2020, the IceTFT model
is not influenced by anomalies from the previous year and
focuses only on the physical factors that influence the devel-
opment of sea ice in that year.

6.3 Impacts of datasets on predictions

To investigate whether the prediction results of IceTFT are
affected by the source of input data, we replaced the data
from the NCEP-NCAR Reanalysis 1 in Table 1 with JRA-
55. The same experiments were conducted. Different data
sources may be associated with different observation errors,
but the physical trends embedded in these data are similar.
The IceTFT model can automatically adjust the weights of
the input data during the training process by adaptively learn-
ing the features, according to the forecast errors. The labeled
data with different errors can affect the prediction error cal-
culated by the IceTFT model and thus have a large impact
on the prediction skill. Theoretically speaking, the predic-
tion skill of the IceTFT model is limited by the source of the
labeled data and does not depend on the source of the input
data.

However, the results are shown in Table 5. It can be seen
that the best results of the three models are relative to the
original results, which are from Table 4, but the mean pre-
dictions are higher. This indicates that the models can always
obtain optimal predictions after several training epochs in
the hindcast experiments and are not limited to the datasets.
However, the existence of different observation errors in dif-
ferent datasets makes the bias trends of the predictions differ-
ent and therefore makes the mean predictions different. Since
the prediction errors using NCEP-NCAR Reanalysis 1 are a
little smaller, in this paper we still use the original dataset for
the experimental analysis.

7 The actual prediction results for 2022

For the actual prediction, we submitted SIPN to the predic-
tion results of the September prediction in June 2022. Ac-
cording to the conclusions in Sect. 6.1, the closer the training
set is to the prediction time, the higher skill the model has
with respect to prediction. So, we trained the IceTFT-2021
model to predict 2022. As we only use 12 months of data
for 2021, and the prediction was 9 months ahead for Septem-
ber, we did not submit a new prediction for July, August,
and September as well. Figure 10 shows the 2022 SIE pre-
dictions of different models of SIO at different lead times. It
can be seen that the prediction results of the different mod-
els for 2022 are similar to the findings for the previous 3
years, and their prediction skills do not improve with the re-
duction in lead time. In particular, the lead time of the contri-
butions in SIO is up to 3 months, but our proposed model has
a long lead time of up to 9 months. Compared with the 2022
observed SIE, which is 4.869×106 km2, the closer predic-
tions are from the IceTFT, LPHYS2268 – CDDF, and Dmitri
Kondrashov (UCLA). Interestingly, all three of these contri-
butions are based on statistical models or machine learning
methods, where they use SIE instead of SIC to predict SIE
directly. This suggests that using SIE to predict SIE has a
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Table 5. The three metrics (MAE, RMSE, and RMSD) among three models with reanalysis datasets for JRA-55 of SIE predictions for
2019–2021. Except for SST and SF, the other inputs were replaced with JRA-55. The smallest prediction errors for each year are shown in
bold.

Predictive year 2019 2020 2021

Model name MAE RMSE RMSD MAE RMSE RMSD MAE RMSE RMSD

IceTFT-2018
Best 0.1681 0.2214 0.4936 – – – – – –
Mean 0.2891 0.3659 0.7165 0.3616 0.4858 0.8166 0.2255 0.2959 0.6131

IceTFT-2019
Best – – – 0.2676 0.3360 0.6406 – – –
Mean – – – 0.4434 0.6585 1.0836 0.2130 0.2479 0.5458

IceTFT-2020
Best – – – – – – 0.1428 0.1801 0.4272
Mean – – – – – – 0.1951 0.2203 0.4966

smaller error than using SIC and can provide a favorable ref-
erence for the September prediction. For those contributions
based on dynamical models, some of them have larger errors,
and their predictions are erratic. For example, the model of
Sun Nico performs relatively well when compared to predic-
tions from other dynamical models, but it only submit predic-
tions with small errors in June and September, while there are
larger errors in other months. This indicates that the dynami-
cal model has the ability to predict SIE, but there is too much
uncertainty, leading to unstable predictions. As can be seen
from Figs. 9 and 10, our proposed model has higher a predic-
tion skill than the other models, in both hindcast experiments
and real predictions, and it obtains smaller prediction errors
with longer lead times.

8 Interpretability analysis

8.1 Sensitivity experiments

To investigate the contribution of different variables to SIE
prediction in the model, we examined the variable sensitivity
for different prediction times, which is from 2019 to 2021.
Kim et al. (2020) added random Gaussian noises to inputs
and calculated the change in RMSE to evaluate the variable
sensitivity. In this study, we apply this method to compare
the contributions of variables. The equation of IceTFT can
be expanded and simply expressed as Eq. (5), where xi repre-
sents the input variables, wi is the weight of the correspond-
ing variable, and θ̂ values represent the trainable parameter
rather than the weights. We add random Gaussian noises with
a 0 mean and 1 standard deviation to each variable, which, in
turn, can make some changes in the prediction (Eq. 6). Then
we calculate the new RMSE of the model with new inputs
and compare the changes in the RMSE (Eq. 7) in scenarios
where SIE is the observation. Generally speaking, the sen-
sitivity is greater than 1, which means that the variable plus
noise increases the predicted error. However, when the sen-
sitivity is less than 1, it indicates that the change in the vari-
able enhances the accuracy of the predictions. This may be

because there is uncertainty in the original data, and the extra
noise corrects the data in a beneficial direction for prediction.
These particular cases can give us new ideas for improving
the prediction skill. To maintain the same range for all of the
data, values that are less than 1 are taken as the inverse and
marked with a negative sign. Due to the existence of multiple
variables interacting with each other, it is difficult to analyze
their contribution to the prediction. Therefore, this paper only
investigates the sensitivity of the univariate variables.

ŜIE= F
θ̂
(w1x1, . . .,wixi, . . .,wnxn) (5)

ŜIE+1SIEi = Fθ̂ (w1x1, . . .,wixi +1xi, . . .,wnxn),

1xi ∼N(µ,σ
2),µ= 0,σ 2

= 1 (6)

Sensitivity(Varx)=
RMSE(ŜIE+1SIEi ,SIE)

RMSE(ŜIE,SIE)
,

RMSE(ŜIE+1SIEi,SIE) > RMSE(ŜIE,SIE)

−
RMSE(ŜIE,SIE)

RMSE(ŜIE+1SIEi ,SIE)
,

RMSE(ŜIE+1SIEi,SIE) < RMSE(ŜIE,SIE)

(7)

The experiment with 11 variables is denoted as 11var, and
the results are shown in Table 6. The values with higher
sensitivity are in bold. A higher-sensitivity value indicates
that the variable makes a significant contribution to predic-
tions. Multi-variate input of the model may increase the train-
ing time and uncertainty. We selected six variables with the
highest contributions and redo the same experiments to fur-
ther investigate the effects of these physical variables on sea
ice predictions. These variables include SST, AT, DSWRF,
RUNOFF, CSDSF, and USWRF. The experiment with only
6 variables is noted as 6var, and the results of the experiment
are shown in Table 7. To analyze the prediction results after
reducing the model inputs, we also calculated the difference
in the prediction errors between the two experiments, and we
plotted the heatmap, as shown in Fig. 11. Negative values
are shown in blue, indicating that the 6var experiment has a
lower error rate than the 11var. Conversely, the positive val-
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Figure 10. The predictions of models from SIO for the June, July, August, and September estimates of the September 2022 SIE. These
predictions are from the SIO reports (Sea Ice Outlook, 2022a, b, c, d).

Table 6. The variable sensitivity of 11 variables among three models for 2019–2021 in the 11var experiment. The values with higher
sensitivity are shown in bold.

Model Pred. year SST AT DLWRF DSWRF PRECIP RUNOFF CSDLF CSDSF USWRF SHUM SF

IceTFT-2018 2019 1.193 1.208 1.485 1.319 1.157 −1.002 1.079 2.416 1.219 1.084 1.091

IceTFT-2019 2020 1.046 1.001 1.073 1.207 −1.001 2.097 1.354 1.285 1.700 −1.010 −1.011

IceTFT-2020 2021 2.432 2.677 1.016 3.548 1.083 1.350 1.077 2.748 2.836 1.322 1.065

ues are shown in red, indicating a lower error rate for the
11var experiment with 11 physical factors.

8.2 Analysis of the physical mechanisms on the years

From the Table 6, we can see that the sensitivity of the pre-
dictors is not exactly the same in different years, and the VSN
in the IceTFT can automatically adjust their weights to make
the model produce an optimal prediction. The variables with
a high sensitivity to the predictions are SST, AT, DSWRF,
RUNOFF, CSDSF, and USWRF. Most of these variables are
related to radiation, and shortwave radiation has a greater im-

pact than longwave radiation. This finding is consistent with
other studies in Fig. 4, where surface air temperature and ra-
diative fluxes influence sea surface temperature and thus sea
ice melting. While DLWRF is highly correlated in Table 1
but has a low-sensitivity value in Table 6, this indicates that
this variable is not the cause of the sea ice change but may be
the effect due to the presence of other variables. Other stud-
ies have shown that latent heat exchange causes more water
vapor and clouds to be present in the atmosphere. This en-
hances the atmospheric greenhouse effect and results in an
increased emission of DLWRF. In addition, the increase in
water vapor and clouds will lead to more PRECIP. Therefore,
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Table 7. The variable sensitivity of six variables among three models for 2019–2021 in the 6var experiment. The values with higher sensitivity
are in bold.

Model Pred. year SST AT DSWRF RUNOFF CSDSF USWRF

IceTFT-2018 2019 1.115 1.078 −1.048 1.217 1.723 1.369

IceTFT-2019 2020 1.285 1.019 1.098 1.746 −1.002 1.237

IceTFT-2020 2021 2.226 1.186 6.214 1.301 3.612 3.594

Figure 11. The deviation accuracy between the IceTFT model with six variables (6var) and the IceTFT model with 11 variables (11var)
(6varerror− 11varerror), with the heatmap values shown within each grid cell. (a) IceTFT-2018 in the 6var experiment, with the deviation
accuracy for 3 years, compared to the 11var experiment. (b) IceTFT-2019 in the 6var experiment, with the deviation accuracy relative to
that in the 11var experiment for 2 years. (c) IceTFT-2020 in the 6var experiment, with the deviation accuracy compared to that of the 11var
experiment.

there is a correlation between DLWRF and PRECIP, and their
sensitivity values change in agreement, meaning that both
have a higher sensitivity in 2019 and are lower in other years.
The positive feedback effect, along with the DLWRF, affects
the development of sea ice (Kapsch et al., 2016). Since the
machine learning model lacks the partial differential equa-
tions of the dynamical model, it cannot simulate the varia-
tion in the clouds with a positive feedback. Therefore, it is
difficult to assist in the SIE prediction, based only on the
data trends in DLWRF. While shortwave radiation is influ-
enced by albedo to regulate the effect on sea ice develop-
ment, the IceTFT model can learn the features of the albedo
changes from the historical data. Therefore, the contribution
of shortwave radiation in the IceTFT model is larger than that
of longwave radiation.

Interestingly, 2020 is a more exceptional year than 2019
and 2021, as it reached the second-lowest value for Septem-
ber on record. SST and AT are less sensitive to 2020 in our
experiments. This provides a new idea for investigating the
factors affecting the 2020 anomaly. This could be because
these 11 variables, which we select, are not the main factors
for the unusually small values of 2020. Another reason is that
these variables were treated as the monthly mean estimates
of global values in the experiments and may have lost their
relevance to the Arctic, leading to some impact on the pre-
diction. Other research has shown that the influence on 2020
SIE is primarily caused by the relaxation of the Arctic dipole
(Liang et al., 2022). Although it can be seen from our experi-

mental results, neither SST nor AT is a major factor affecting
the 2020 SIE prediction, so we will continue to investigate
the reasons affecting the SIE anomaly in the future.

8.3 Analysis of the physical mechanisms on the seasons

From Tables 6 and 7, it can be seen that all six variables had
a high sensitivity in the 11var experiment, but the sensitivity
changed in the 6var experiment. For 2019 prediction in the
IceTFT-2018 model, only two of the six variables were rel-
atively sensitive. This indicates that in the 6var experiment,
the variable selection networks of IceTFT-2018 model have
a greater weighting for the CSDSF and USWRF rather than
the SST and AT. These changes cause more errors in summer
(June–September or JJAS) and autumn (October–December
or OND) but fewer errors in winter (JFM), as can be seen
from the first row of Fig. 11a. The most likely explanation is
that SST, AT, and other variables from Table 6 has a greater
impact on summer and autumn predictions for 2019. And as
can be seen from the second row of Fig. 11a, the 6var exper-
iment has fewer errors (almost monthly) for the 2020 predic-
tions. It is also because SST and AT have a lower sensitiv-
ity in the 6var experiment, and this conclusion is consistent
with the 11var experiment, which suggests that SST and AT
may not be the main factors affecting the 2020 predictions.
In addition, the impact for 2021 predictions is similar to that
for 2019 in the third row of Fig. 11a, and the red areas are
darker in autumn and winter. This demonstrates that the fac-
tors affecting the 2019 predictions are similar to those for
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2021, and SST and AT have a greater impact on 2021 than
on 2019. This also validates the experiment results in Fig. 4,
explaining that the IceTFT-2018 model had higher accuracy
for 2021 predictions.

For the 2020 prediction in IceTFT-2019 model, some of
the selected variables were not sensitive to their predictions
in the 11var experiment, and the high-sensitivity variables
were not fully included. Consequently, their prediction er-
rors have changed significantly in the 6var experiment, ac-
cording to Fig. 11b. From Table 7, the sensitivity of SST
became higher, but that of RUNOFF, DSWRF, and CSDSF
decreased in the 6var experiment. According to the first row
of Fig. 11b, these changes cause more errors than gains, es-
pecially regarding higher errors in winter (JFM), July, and
October. This may be due to the fact that the three variables
with reduced sensitivity have a greater impact on the 2020
predictions. For the 2021 predictions, the more sensitive SST
than for the 11var experiment makes the model in the 6var
experiment improve the prediction skill significantly in sum-
mer (August–September or AS) and autumn (OND). Com-
pared with those high-sensitivity variables of the IceTFT-
2020 model in the 11var experiment from Table 6, AT and
other radiation-related variables are not highly weighted in
the IceTFT-2019 model for the 6var experiment, with in-
creasing 2021 predicted errors in spring (April–June or AMJ)
and winter (JFM), as seen in the second row of Fig. 11b. This
indicates that AT and radiation-related variables may have an
important impact on 2021 predictions in spring and winter.

Similarly, from the results of Tables 6 and 7, the vari-
ables that significantly contributed to the 2021 predictions
in the 11var experiment were still selected in the 6var experi-
ment, but the weights of these sensitive variables have also
changed. Regarding DSWRF, CSDSF, and USWRF, these
radiation-related variables all had high sensitivities for the
IceTFT-2020 model in the 6var experiment, and DSWRF is
much more sensitive than the other two variables. In compar-
ison to the 11var experiment, these variables had comparable
sensitivities. The imbalanced weights led to an increase in the
predicted errors in spring (AMJ) and winter (JFM), which
are similar to the 2021 predictions in IceTFT-2019 and are
shown in Fig. 11b. This suggests that there is some link be-
tween these radiation-related variables that collectively affect
the prediction skill.

Previous research has demonstrated that sea ice melting
is influenced by a complex set of radiative feedback mecha-
nisms (Goosse et al., 2018). Warming Arctic air temperatures
cause sea ice to melt, exposing large amounts of the sea sur-
face and thus reducing albedo. The absorption of solar short-
wave radiation by the ocean raises sea surface temperatures,
which triggers an Arctic amplification effect and creates a
positive feedback mechanism that exacerbates the melting of
sea ice (Perovich et al., 2007; Screen and Simmonds, 2010).
It can be seen that among these processes, AT and SST are
the direct factors that influence the melting of sea ice, while
longwave radiation and shortwave radiation play an indirect

role in this positive feedback mechanism. Consequently, dur-
ing the melting season, a relatively small area of sea ice cover
exposes a large area of sea surface, and warming seawater
affects sea ice melt. Since our model cannot simulate the
process of radiation absorption by the ocean, SST can pro-
vide the IceTFT model with a direct factor affecting the sea
ice melt. However, for the freezing season, when the sea ice
cover is large and the exposed sea surface area is small, the
effect of SST on sea ice melt is relatively small. Instead, heat
fluxes and warming air temperatures from water vapor, cloud
cover, and radiation mechanisms have a greater effect on sea
ice melt (Kapsch et al., 2013; Boisvert and Stroeve, 2015),
thus validating the conclusions of our experiments that SST
is an important factor influencing the prediction from Au-
gust to October, while radiation-related variables and AT are
at play from January to May.

9 Conclusions

In this study, an interpretable long-term prediction model
for the annual predictions of SIE in IceTFT is developed.
It uses a total of 11 variables, including atmospheric vari-
ables, oceanic variables, and SIE, as inputs to provide rele-
vant mechanisms about the sea ice development process. The
IceTFT model can provide the 12-month SIE directly, ac-
cording to the inputs of the last 12 months, thereby avoiding
the need to train multiple models and the error accumula-
tion of iterative prediction. In our experiments, we analyze
the effects on the prediction of the slicing methods for input
data and the length of input. The results show that the rolling
method for slicing data increases the number of datasets,
which improves the accuracy of the prediction. Furthermore,
the 12-month input includes the whole cycle of SIE, and it
is the optimal input length for the prediction. We employ the
metrics of MAE, RMSE, and RMSD to evaluate the accu-
racy of the predictions in the IceTFT model, according to
hindcasting experiments from 2019 to 2021 and prediction
of 2022. The IceTFT model employs the LSTM encoder, a
multi-headed attention mechanism, and a time-static meta-
data to enhance the learning of the temporal dependence of
SIE, so it has a high prediction skill for long-term SIE pre-
diction. In hindcasting experiments, the results show that the
monthly average prediction error in the IceTFT model is less
than 0.21×106 km2. For the SIE minimum prediction, com-
pared to other models in SIO with a lead time of 1–3 months,
the IceTFT model not only has the smallest prediction error,
with a 3-year average SIE minimum prediction error of less
than 0.05×106 km2, but it also provides a 9-month advance
prediction. Moreover, we submitted the September predic-
tion to SIO in June 2022, and the IceTFT model has a sim-
ilarly high prediction skill. Finally, we conducted a sensitiv-
ity analysis of the variables to investigate the physical fac-
tors that affect the SIE predictions through the VSN design,
which can adjust the weights of inputs. The results indicate
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that the factors affecting the 2020 SIE prediction are different
from those of other years. Except for 2020, for the melt sea-
son, SST has a greater influence on SIE predictions, while for
the freeze season, radiation-related variables have a greater
influence than SST. These sensitivities can help researchers
investigate the mechanisms of sea ice development, and they
also provide useful references for variable selection in data
assimilation or the input of deep learning models.

Appendix A: The data used in SIO contributions

Table A1. The data used in SIO (https://www.arcus.org/sipn/sea-ice-outlook, last access: 25 July 2023) contributions. Please note that the
predictions and model names have been submitted to the SIO website by different external organizations and/or individuals, and therefore
not all references are available for citation.

Contribution name Type Data

NSIDC (Meier) Statistical SIE

IceNet1
Machine learning Climate simulations (CMIP6),

OSI-SAF SIC and ERA5

Sun, Nico Statistical SIC, CryoSat-2 SIT

RASM@NPS (Maslowski et al.) Dynamic model NOAA/NCEP CFSv2, CORE2 reanalysis

NASA GSFC Statistical SIE, SIC

UTokyo (Kimura et al.) Statistical SIC

Lamont (Yuan and Li)
Statistical SIC, sea surface temperature (ERSST),

surface air temperature, GH300, vector winds
at GH300 (NCEP/NCAR reanalysis)

ANSO IAP-LASG
Dynamic model Wind components (U and V ), temperature (T )

in atmosphere and potential temperature

Climate Prediction Center Dynamic model SIC, Climate Forecast System Reanalysis (CFSR)

CPOM UCL (Gregory et al.) Statistical SST (ERA5 reanalysis)

CPOM Statistical Ice area covered by melt ponds

University of Washington/APL Dynamic model SIC, CryoSat-2 SIT, SST

FIO-ESM (Shu et al.) Dynamic model SST, sea level anomaly (SLA)

Met Office (Blockley et al.) Dynamic model FOAM/NEMOVAR, MO-NWP/4DVar, SIC

PolArctic Machine learning SIE

AWI consortium (Kauker et al.)
Dynamic model SIC, CryoSat-2 SIT,

NCEP-CFSR, NCEP-CFSv2

NMEFC of China (Li and Li) Statistical SIE, SIC

Wu, Tallapragada, and Grumbine
Dynamic model NCEP SIC analysis for the CFSv2, NCEP GFS,

GFDL MOM4, modified GFDL SIS

McGill team (Brunette et al.)
Statistical Sea level pressure (SLP), area of ice

exported through the Fram Strait
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Table A1. Continued.

Model Type Data

ARCUS team (Wiggins et al.)
Dynamic model CryoSat-2 SIT, SIC, and SST (MERRA-2

atmospheric reanalysis)

ASIC, NIPR Statistical SIC, ice thickness, ice age, mean ice divergence

ArCS II Kids Heuristic SIC

Cawley, Gavin Statistical SIE

CSU-REU21
Statistical ERA5, Pan-Arctic Ice Ocean Modeling

and Assimilation System (PIOMAS)

EMC/NCEP (UFS) Dynamic model NSIDC NASA Team Analysis

GFDL/NOAA (Bushuk et al.)
Dynamic model Towards 3-D temperature, wind,

and humidity data (CFSR), OISST

HEU Group (Zhao et al.) Statistical SIC

Horvath et al. Statistical SIE, ERA5

Kondrashov, Dmitri (UCLA) Statistical SIE

KOPRI (Chi et al.) Machine learning SIC

LPHYS2268 – CDDF Statistical Sea ice volume (SIV), SIT

METNO-SPARSE-ST (Wang et al.) Statistical SIE

MetService (Yizhe Zhan)
Statistical SIE, top of atmosphere (TOA),

reflected solar radiation (RSR)

NCEP-EMC (Wu et al.) Dynamic model NCEP SIC Analysis for the CFSv2

NCAR/CU (Kay/Bailey/Holland) Heuristic Mitch Bushuk GFDL (for a synthesis project)

NSIDC Hivemind Heuristic SIE

Simmons, Charles
Statistical Moana Loa monthly CO2 concentrations,

Northern Hemisphere snow area, SIC

Slater–Barrett (NSIDC) Statistical SIC

SYSU/SML-KNN Machine learning SIE, SIC

SYSU/SML-MLM
Statistical SIC, SST, surface air temperature (SAT),

surface net radiation flux (NR)

UPenn-UQAM group Statistical SIE, SIC

UKMO-OIT Heuristic –

UQAM (VARCTIC) Statistical SIC, SIV
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Code and data availability. The source code of the IceTFT is
available at https://doi.org/10.5281/zenodo.7409157 (Luo, 2022).
The NCEP-NCAR Reanalysis 1 data are available from https:
//psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (last access:
20 March 2023) Kalnay et al. (1996), which have been pro-
vided by the National Oceanic and Atmospheric Adminis-
tration (NOAA) Physical Sciences Laboratory (PSL), Boulder
Climate and Weather Information. The JRA-55 (the Japanese
55-year Reanalysis) monthly means and variances are avail-
able at https://doi.org/10.5065/D60G3H5B (Japan Meteorologi-
cal Agency, 2013), and the Boulder monthly means for snow-
fall are available at https://doi.org/10.5281/zenodo.7533097 (Na-
tional Oceanic and Atmospheric Administration Physical Sci-
ences Laboratory, Boulder Climate and Weather Information,
2023). They have been provided by the National Center for
Atmospheric Research (NCAR). The Optimum Interpolation
SST V2 data are available at https://www.ncei.noaa.gov/data/
sea-surface-temperature-optimum-interpolation/ (Reynolds et al.,
2007; B. Huang et al., 2001), which have been provided by
the NOAA National Centers for Environmental Information
(NCEI). The Sea Ice Index, Version 3, data are available at
https://doi.org/10.7265/N5K072F8 (Fetterer et al., 2017), which
have provided by the National Snow and Ice Data Center as part of
the Cooperative Institute for Research in Environmental Sciences
(CIRES) at the University of Colorado, Boulder.
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