Articles | Volume 16, issue 14
https://doi.org/10.5194/gmd-16-4137-2023
https://doi.org/10.5194/gmd-16-4137-2023
Development and technical paper
 | 
24 Jul 2023
Development and technical paper |  | 24 Jul 2023

An optimized semi-empirical physical approach for satellite-based PM2.5 retrieval: embedding machine learning to simulate complex physical parameters

Caiyi Jin, Qiangqiang Yuan, Tongwen Li, Yuan Wang, and Liangpei Zhang

Related authors

A global daily seamless 9 km vegetation optical depth (VOD) product from 2010 to 2021
Die Hu, Yuan Wang, Han Jing, Linwei Yue, Qiang Zhang, Lei Fan, Qiangqiang Yuan, Huanfeng Shen, and Liangpei Zhang
Earth Syst. Sci. Data, 17, 2849–2872, https://doi.org/10.5194/essd-17-2849-2025,https://doi.org/10.5194/essd-17-2849-2025, 2025
Short summary
Seamless mapping of long-term (2010–2020) daily global XCO2 and XCH4 from the Greenhouse Gases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and CAMS global greenhouse gas reanalysis (CAMS-EGG4) with a spatiotemporally self-supervised fusion method
Yuan Wang, Qiangqiang Yuan, Tongwen Li, Yuanjian Yang, Siqin Zhou, and Liangpei Zhang
Earth Syst. Sci. Data, 15, 3597–3622, https://doi.org/10.5194/essd-15-3597-2023,https://doi.org/10.5194/essd-15-3597-2023, 2023
Short summary
SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022
Qiang Zhang, Qiangqiang Yuan, Taoyong Jin, Meiping Song, and Fujun Sun
Earth Syst. Sci. Data, 14, 4473–4488, https://doi.org/10.5194/essd-14-4473-2022,https://doi.org/10.5194/essd-14-4473-2022, 2022
Short summary
Fusing MODIS and AVHRR products to generate a global 1-km continuous NDVI time series covering four decades
Xiaobin Guan, Huanfeng Shen, Yuchen Wang, Dong Chu, Xinghua Li, Linwei Yue, Xinxin Liu, and Liangpei Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-156,https://doi.org/10.5194/essd-2021-156, 2021
Preprint withdrawn
Short summary
Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019
Qiang Zhang, Qiangqiang Yuan, Jie Li, Yuan Wang, Fujun Sun, and Liangpei Zhang
Earth Syst. Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-2021,https://doi.org/10.5194/essd-13-1385-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary

Cited articles

Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016. 
Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., and Al-Aly, Z.: The 2016 global and national burden of diabetes mellitus attributable to PM2.5 air pollution, Lancet Planet. Health, 2, e301–e312, https://doi.org/10.1016/S2542-5196(18)30140-2, 2018. 
Chen, X., de Leeuw, G., Arola, A., Liu, S., Liu, Y., Li, Z., and Zhang, K.: Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method, Remote Sens. Environ., 249, 112006, https://doi.org/10.1016/j.rse.2020.112006, 2020. 
Friedman, J. H.: Greedy function approximation: a gradient boosting machine, Ann. Stat., 29, 1189–1232, 2001. 
Gao, J., Zhou, Y., Wang, J., Wang, T., and Wang, W. X.: Inter-comparison of WPSTM-TEOMTM-MOUDITM and investigation on particle density, Huan Jing Ke Xue, 28, 1929–1934, https://doi.org/10.3321/j.issn:0250-3301.2007.09.005, 2007. 
Download
Short summary
The semi-empirical physical approach derives PM2.5 with strong physical significance. However, due to the complex optical characteristic, the physical parameters are difficult to express accurately. Thus, combining the atmospheric physical mechanism and machine learning, we propose an optimized model. It creatively embeds the random forest model into the physical PM2.5 remote sensing approach to simulate a physical parameter. Our method shows great optimized performance in the validations.
Share