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Abstract. Satellite remote sensing of PM2.5 (fine particulate
matter) mass concentration has become one of the most pop-
ular atmospheric research aspects, resulting in the develop-
ment of different models. Among them, the semi-empirical
physical approach constructs the transformation relationship
between the aerosol optical depth (AOD) and PM2.5 based
on the optical properties of particles, which has strong phys-
ical significance. Also, it performs the PM2.5 retrieval inde-
pendently of the ground stations. However, due to the com-
plex physical relationship, the physical parameters in the
semi-empirical approach are difficult to calculate accurately,
resulting in relatively limited accuracy. To achieve the op-
timization effect, this study proposes a method of embed-
ding machine learning into a semi-physical empirical model
(RF-PMRS). Specifically, based on the theory of the phys-
ical PM2.5 remote sensing (PMRS) approach, the complex
parameter (VEf, a columnar volume-to-extinction ratio of
fine particles) is simulated by the random forest (RF) model.
Also, a fine-mode fraction product with higher quality is
applied to make up for the insufficient coverage of satel-
lite products. Experiments in North China (35◦–45◦N, 110◦–
120◦E) show that the surface PM2.5 concentration derived by
RF-PMRS has an average annual value of 57.92 µg m−3 vs.
the ground value of 60.23 µg m−3. Compared with the orig-
inal method, RMSE decreases by 39.95 µg m−3, and the rel-

ative deviation is reduced by 44.87 %. Moreover, validation
at two Aerosol Robotic Network (AERONET) sites presents
a time series change closer to the true values, with an R
of about 0.80. This study is also a preliminary attempt to
combine model-driven and data-driven models, laying the
foundation for further atmospheric research on optimization
methods.

1 Introduction

Epidemiological studies have indicated that PM2.5 (fine par-
ticulate matter with an aerodynamic equivalent diameter no
greater than 2.5 µm) can adversely affect human health, such
as increasing the risk of diabetes and respiratory diseases
(Bowe et al., 2018; Pope III et al., 2002; Xu et al., 2013), and
accurate surface PM2.5 concentration is the basis of air pollu-
tion health-related research. Satellite remote sensing has the
advantages of high resolution and global coverage (Ma et al.,
2014; Wu et al., 2020; He et al., 2022), including variables
strongly associated with PM2.5 such as aerosol optical depth
(AOD). Therefore, it has become a mainstream method for
fine-particle estimation (Zhang et al., 2021).

There are three main satellite-based ways of retrieving
PM2.5.
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1. Chemical transport models-based method.

This method calculates a scaling factor η between AOD
and PM2.5 simulated by atmospheric chemical transport
models (CTMs) (Lyu et al., 2022; Xiao et al., 2022) and
then transfers the proportional relationship to satellite
AOD data when calculating surface PM2.5 concentra-
tion (Geng et al., 2015; Van Donkelaar et al., 2006).
However, the assumption of a constant factor between
simulated and observed values has large spatiotemporal
limitations.

2. Univariate/multivariate regression.

This kind of data-driven method establishes a statistical
model between AOD, auxiliary variables, and ground
PM2.5 observations. Machine learning is a common tool
for such regression methods due to its powerful non-
linear fitting ability between multiple variables (Irrgang
et al., 2021), but the regression algorithms in machine
learning are affected by the distribution and density of
ground stations (Gupta and Christopher, 2009; Li et al.,
2017).

3. Semi-empirical physical approach.

Taking the physical theory as the basis, surface PM2.5 is
derived through an empirical formula constructed from
AOD and some PM-related key parameters, including
an important empirical parameter related to the optical
properties (S). The process steps are explicit and inde-
pendent of ground station observations. Meanwhile, this
approach has stronger physical interpretability than the
previous two methods with a large space for optimiza-
tion.

Due to the complexity of the physical parameters, many
studies have optimized the semi-empirical physical ap-
proach. Based on 355 nm band radar observations, Raut
and Chazette (2009) introduced a specific extinction cross-
section to simplify the expression of S, and PM2.5 concen-
tration was estimated. Kokhanovsky et al. (2009) constructed
a particle-effective radius model, which can obtain the parti-
cle concentrations throughout the atmospheric column. Fur-
thermore, Zhang and Li (2015) proposed the physical PM2.5
remote sensing (PMRS) method. It replaced S by defining a
volume-to-extinction ratio of fine particles (VEf) and used a
quadratic polynomial of fine-mode fraction (FMF) to simu-
late VEf, showing certain advantages (Li et al., 2016; Zhang
et al., 2020).

However, the above semi-physical empirical models have
some shortcomings. Firstly, the satellite data used in the
models are blocked by clouds and fog in some areas; thus
high-coverage and high-precision products need to be exca-
vated and applied. Secondly, there are still large uncertainties
in estimating physical parameters (such as a simple polyno-
mial fit to S in the PMRS method), and their expressions need

to be improved. To date, machine learning (ML) has devel-
oped rapidly (He et al., 2021). It can detect complex nonlin-
ear relationships of multiple data and model their interaction
(Yuan et al., 2020; Lee et al., 2022). This provides an idea
for improving the accuracy of physical parameter acquisition
so as to estimate high-precision PM2.5 through semi-physical
empirical models.

According to this idea, our study proposes an optimized
semi-empirical physical model (RF-PMRS) based on the
PMRS theory, which attempts to explore the possibility of
combining physical models and ML. To be specific, we cre-
atively embed ML (the random forest model) into the PMRS
method to simulate the physical parameter (i.e., VEf) derived
from FMF and related variables, thus optimizing the previ-
ous polynomial expression. Moreover, to further improve the
PM2.5 retrieval accuracy, the physical–deep learning FMF
(Phy-DL FMF) dataset generated by a hybrid retrieval algo-
rithm of ML and physical mechanisms is introduced. Ulti-
mately, we comprehensively validate the performance of the
PM2.5 obtained by our optimized approach.

The remainder of our article is as follows. Section 2 de-
scribes the experimental datasets. Section 3 illustrates the
specific derivation process of the proposed method. Sec-
tion 4 analyzes the evaluation results. Some supporting ex-
periments are discussed in Sect. 5. The final part provides
the conclusion.

2 Data

2.1 AERONET data

The Aerosol Robotic Network (AERONET) is a federa-
tion of ground-based sun–sky radiometer networks, provid-
ing worldwide remote sensing aerosol data for more than
25 years (Holben et al., 1998). The current revision of the
dataset is Version 3 (Giles et al., 2017). Due to its high qual-
ity, the data from AERONET have been regarded as theo-
retical true values to evaluate satellite-based products in re-
lated studies (Chen et al., 2020; Gao et al., 2016; Wang et
al., 2019). AOD, FMF, and volume size distribution products
with Level 2.0 (quality-assured) are applied to calculate the
true values of the physical parameters and then to implement
our modeling purpose (not involved in PM2.5 calculations).
A total of nine AERONET sites corresponding to four typ-
ical aerosol types participate in the training. Table 1 shows
the specific information.

2.2 MODIS AOD

MCD19A2, the Moderate Resolution Imaging Spectrora-
diometer (MODIS) Collection 6 Level 2 gridded (L2G) land
AOD product (Lyapustin and Wang, 2015), is selected in this
study. It is derived from the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) algorithm, which can im-
prove the accuracy of cloud detection and aerosol retrieval
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Table 1. Data information on nine AERONET sites classified by aerosol types. Location indicates the latitude and longitude, where a
negative number means a southern latitude and a western longitude. Two sites in bold font participate in the PM2.5 validation experiment.
GSFC: Goddard Space Flight Center.

Aerosol type Site Location (lat, long) Training period Isolated-validation period

Urban–industrial

Beijing 39.98◦, 116.38◦ 2001–2017 2018–2019
Beijing-CAMS 39.93◦, 116.32◦ 2012–2017 2018–2019
XiangHe 39.75◦, 116.96◦ 2004–2017 –
Ascension Island −7.98◦, −14.41◦ 2010–2017 2018–2019
Capo Verde 16.73◦, −22.94◦ 2010–2017 2018

Biomass burning CUIABA MIRANDA −15.73◦, −56.07◦ 2010–2017 2018–2019

Desert dust
GSFC 38.99◦, −76.84◦ 2010–2017 2018–2019
Mexico City 19.33◦, −99.18◦ 2010–2017 –

Oceanic Solar Village 24.91◦, 46.40◦ 2010–2013 –

(Lyapustin et al., 2011). Moreover, this new advanced algo-
rithm jointly combines MODIS Terra and Aqua into a single
sensor (Lyapustin et al., 2014). The product is produced daily
with a 1 km resolution, including aerosol parameters such as
470 and 550 nm AOD, quality assurance (QA), and uncer-
tainty factors.

The processing of MCD19A2 data (in Hierarchical Data
Format, HDF) is mainly divided into five steps: AOD–QA
band extraction, best-quality AOD selection, Terra–Aqua
data synthesis, missing information reconstruction, and mo-
saic. Finally, the daily AOD distribution in GeoTiff format is
obtained.

2.3 Phy-DL FMF dataset

The original global land FMF products have poor data in-
tegrity and low accuracy. To enhance their reliability, Yan
et al. (2022) have released a satellite-based dataset called
Phy-DL FMF, which integrates physical and deep learning
methods. Specifically, it selects the FMF data obtained by
a physical method (i.e., lookup-table-based spectral decon-
volution algorithm, LUT-SDA) as the optimization target
(Yan et al., 2017). Then it combines the Phy-based FMF
into a deep learning model along with multiple auxiliary
data such as satellite observations for the final Phy-DL re-
sults. Note that the process is trained with AERONET data
as the ground truth. The product has a spatial resolution of
1◦ and covers 2001 to 2020 (daily scale). In the compari-
son experiment against the ground FMF, Phy-DL FMF shows
a higher accuracy (R = 0.78, RMSE= 0.100) than MODIS
FMF (R = 0.37, RMSE= 0.282) (Yan et al., 2022).

2.4 Meteorological data

The meteorological data are obtained from the ERA5
dataset, including the values of planetary boundary layer
height (PBLH) and relative humidity (RH). As the fifth-
generation reanalysis product released by the European

Center for Medium-Range Weather Forecasts (ECMWF),
ERA5 provides atmospheric data at 0.25◦ every hour based
on the data assimilation principle (Hersbach et al., 2018). It
should be noted that RH is not archived directly in ERA5
and thus should be calculated by 2 m temperature T and dew
point temperature Td (refer to https://confluence.ecmwf.int/
display/CKB/ERA-Interim:+documentation#ERAInterim:
documentation-Computationofnear-surfacehumidityandsnowcover,
last access: 20 July 2023):

RH= 100×
es(Td)

es(T )
, (1)

where es(t) represents the saturation vapor pressure related
to a temperature t in degrees Celsius (Simmons et al., 1999)
of

es(t)= 6.112× exp
(

17.67× t
t + 243.5

)
. (2)

2.5 Ground PM2.5 measurements

The North China (NC) region is chosen as the main ex-
perimental validation area for the final PM2.5 calcula-
tions. The near-surface hourly PM2.5 values are obtained
from the China National Environmental Monitoring Centre
(CNEMC). Nowadays, over 1600 ground-based monitors are
working continuously and a total of 232 stations (in 2017)
participate in this work. Figure 1 displays the site distribu-
tions of the NC region.

3 Methods

Based on the basic physical properties of atmospheric
aerosols, the semi-physical empirical approach starts from
the integration of PM mass concentration and AOD. Then it
combines several key factors related to PM2.5 to derive the
in situ PM2.5 concentration through multiple remote sensing
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Figure 1. The location of PM2.5 ground monitoring stations in the
NC region (35–45◦, 110–120◦). The red points represent the PM2.5
stations.

variables (Koelemeijer et al., 2006). The overall empirical
relationship can be represented as

PM2.5 = AOD
ρ

H · f (RH)
S, (3)

where ρ denotes the particle density andH denotes the atmo-
spheric boundary layer height. f (RH) represents the hygro-
scopic growth factor related to relative humidity (RH). S is
an optical characteristic parameter that should be simulated.

3.1 PMRS method

3.1.1 The expression of VEf

To illustrate S more precisely, PMRS defines the columnar
volume-to-extinction ratio of fine particles (i.e., VEf), which
can be regarded as the basis of our optimization method. So
Eq. (3) is transformed into

PM2.5 = AOD
ρ

H · f (RH)
VEf. (4)

Related to particle size, aerosol extinction, and other proper-
ties, VEf can be expressed as

VEf =
Vf,column

AODf
,AODf = AOD ·FMF, (5)

where AODf is the fine-particle AOD and FMF is the fine-
mode fraction. Vf,column can be expressed by the vertical in-
tegral of particle volume size distributions (PVSDs) within a
certain aerodynamic diameter range of

Vf,column =

Dp,c∫
0

V (Dp)dDp, (6)

where Dp,c represents the cutting diameter, the empirical
value of 2.0 µm is chosen based on previous literature (Hand
and Kreidenweis, 2002; Hänel and Thudium, 1977), and
V (Dp) represents the PVSD corresponding to the geometric
equivalent diameter (Dp).

3.1.2 Specific process and limitations

The PMRS method is developed from Eq. (4). Based on
satellite AOD, the near-surface PM2.5 can be obtained
through multistep transformation. Figure 2a shows its spe-
cific process. Each arrow refers to a step, respectively,
size cutting (output: AODf), volume visualization (output:
Vf,column), bottom isolation (output: Vf, fine-particle volume
near the ground), particle drying (output: Vf,dry, dry Vf), and
PM2.5 weighting. The overall expression is as follows:

PM2.5 = AOD
FMF ·VEf · ρf,dry

PBLH · f0(RH)
, (7)

f0(RH)=
(

1−
RH
100

)−1

, (8)

where FMF denotes the fine-mode fraction, ρf,dry denotes the
dry mass density of PM2.5, and PBLH represents the planet
boundary layer height. f0(RH) represents the approximation
of f (RH) in Eq. (4), as expressed in Eq. (8). Considering
the aerosol types in different regions, PMRS fits VEf to a
quadratic polynomial relation of FMF (Zhang and Li, 2015):

VEf = 0.2887FMF2
− 0.4663FMF+ 0.356

(0.1≤ FMF≤ 1.0). (9)

PMRS has strong physical significance; the calculation
steps are well-defined and site-independent. Zhang and
Li (2015) tested the performance of PMRS on 15 stations,
and the validation results had an uncertainty of 34 %. Com-
pared with the ground value of the city of Jinhua in China, a
31.3 % relative error was generated in Li et al. (2016). More-
over, Zhang et al. (2020) applied it to the PM2.5 change anal-
ysis and prediction experiments in China over 20 years. How-
ever, there may be a more complex nonlinear relationship
between VEf and FMF, not just a simple quadratic formula.
Since VEf is related to the aerosol type, adding other spa-
tiotemporal variables may optimize the fitting process. Ad-
ditionally, high-quality FMF data are the basic guarantee for
the estimated PM2.5 quality. In a word, to further improve the
physical method, a better nonlinear model between VEf and
related variables from reliable datasets needs to be explored.

3.2 Optimization method: RF-PMRS

Therefore, to overcome the above disadvantages, an op-
timized method called RF-PMRS is proposed. Figure 2b
shows the process of our method, while optimizations for
FMF and VEf are described separately below.
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Figure 2. Surface PM2.5 estimation flow of RF-PMRS. (a) The five steps of the PMRS method. Gray boxes are the intermediate outputs, blue
boxes are the input data, and orange boxes denote the variables to be optimized. (b) The specific optimization of RF-PMRS: FMF dataset
replacement and VEf simulation by the RF model.

1. FMF dataset selection.

We introduce the Phy-DL FMF dataset into the PMRS
method to improve the accuracy of size-cutting results.
In terms of performance, it exhibits higher accuracy and
wider space–time coverage than satellite products (Yan,
2021). See the Data section for details.

2. VEf simulation based on ML.

The main idea is to establish an ML model between the
VEf truth obtained from multiple AERONET sites and
related variables, thus improving the subsequent VEf
simulation accuracy (Fig. 3).

– Step 1: VEf calculation.
The VEf true values are calculated concerning
Eqs. (5)–(6). Due to the spatiotemporal variability
in different aerosol types, we calculate the VEf val-
ues at nine AERONET stations around the world
(Table 1) to train a universal model. The first step
in Fig. 3 shows their distribution characteristics.
Among them, Beijing and Beijing-CAMS sites are
highlighted since they participate in the subsequent
point validation experiment.

– Step 2: VEf-related variable selection.
According to the theory, FMF is selected as the
most important modeling variable. Previous stud-
ies have also shown that the FMF–VEf relationship

has a good single-value correspondence, which is
not affected by AOD. Compared with AODf and
Vf,column, FMF is a better indicator for estimation
(Zhang and Li, 2015). In addition, considering the
spatiotemporal heterogeneity of VEf, the latitude
(lat), longitude (long), and data time (month, day)
of each site are added to the training.

– Step 3: RF model establishment.

From step 2, VEf can be expressed as

VEf = f (FMF, lat, long,month,day). (10)

We optimize the VEf expression based on the ran-
dom forest (RF) algorithm. RF is made up of mul-
tiple decision trees that can build high-accuracy
models based on fewer variables (Ho, 1995; Yang
et al., 2020). This ensemble ML method randomly
samples the training dataset to form multiple sub-
sets, and random combinations of features are se-
lected in node splitting (Belgiu and Drăguţ, 2016).
The specific process is to (1) generate training sub-
sets, (2) build an optimal model, and (3) calculate
the result (Fig. 3 shows its flowchart). Note that
the station FMF values (S−FMF) from AERONET
sites are used when training.

– Step 4: accuracy validation.

https://doi.org/10.5194/gmd-16-4137-2023 Geosci. Model Dev., 16, 4137–4154, 2023
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Figure 3. Specific steps for simulating VEf based on ML in our RF-PMRS method. The map used in step 1 is from NASA Visible Earth (https:
//visibleearth.nasa.gov/images/57752/blue-marble-land-surface-shallow-water-and-shaded-topography, last access: 15 June 2023). The red
points in step 1 represent the distribution of the nine AERONET sites, and the two yellow quadrangles in the zoom-in view highlight the
Beijing (BJ) and Beijing-CAMS (BC) sites.

The VEf estimation is also based on Eq. (10), where
f is the optimal relationship after RF parameter ad-
justment, and Phy-DL FMF is applied to realize the
extension of model results from the point to the sur-
face. A 10-fold cross-validation (CV) (Rodriguez et
al., 2009) and isolated validation (IV) are used to
evaluate model performance (for details of the val-
idation methods, see Appendix A1).

3. PM2.5 value estimation and evaluation

Then, we calculate PM2.5 according to the correspond-
ing process (Eq. 7). The variables (in Sect. 2.2 to 2.4)
are spatially matched to ground sites at their respec-
tive resolutions. Based on UTC, the PM2.5 validation
is conducted on a daily scale in 2017. Because of the
effective quantity of the AERONET public dataset and
MODIS data, we choose 2017 as the representative year.
Note that we select the measured empirical value of
ρf,dry (i.e., 1.5 g cm−3) for the NC region from Gao et
al. (2007).

The statistical indicators used in the evaluation include
the correlation coefficient (R), mean bias (MB), rela-
tive mean bias (RMB), root mean square error (RMSE),
and mean absolute error (MAE). In addition, the relative
predictive error (RPE) is added to validate the accuracy
of the RF-based VEf model. See Appendix A2 for spe-
cific information on these indicators.

4 Experiment results

Three main experiments are conducted to verify the proposed
RF-PMRS method, and the specific information is shown in
Table 2.

4.1 RF model performance for training VEf

The simulation model of VEf is trained based on the data in
Table 1. Specifically, the 10-fold CV result is used to deter-
mine the optimal combination of parameters for the model
(see Appendix A3 for the adjustment of the model parame-
ters). Considering that the completeness of the training data

Geosci. Model Dev., 16, 4137–4154, 2023 https://doi.org/10.5194/gmd-16-4137-2023
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Table 2. A brief information summary of the experiments conducted in our study.

Experiment Object Region Period Timescale

Model performance for VEf Global scale CV: training period in Table 1 Daily
training VEf (nine AERONET sites) IV: isolated-validation period

in Table 1
(see Appendix A1)

Accuracy evaluation of PM2.5 Two AERONET sites: 2017 Daily
PMRS and RF-PMRS Beijing, Beijing-CAMS

Generalization performance PM2.5 North China region 2017 Daily
of RF-PMRS

Table 3. Performance statistics of the RF model for training VEf. N represents the number of data, and VEf has no unit.

R RMSE RPE MAE N

Cross-validation (CV) 0.974 0.076 32.9 % 0.034 6463
Isolated validation (IV) 0.975 0.067 29.8 % 0.037 814

will optimize the generalization performance of the model,
the experiment fine-tunes the model based on all the original
datasets (the training period of Table 1) under the optimal pa-
rameters, and then the final RF model is constructed. This is
also the most common method for ML model construction.
Next, the IV experiment provides independent time valida-
tion of the final model.

Table 3 shows the CV and IV results to, respectively,
demonstrate the internal and external accuracy of the final
RF model. It can be seen that RF can capture the complex
relationship between VEf and related variables well. R is as
high as 0.974 (0.975), RMSE and MAE are both small, and
RPE is around 30 %, which suggests the desired estimation
accuracy. Overall, the CV results represent the great perfor-
mance of the RF model for extracting information, i.e., the
relationship of multisource data to VEf. In the meantime, the
statistical results in the CV and IV experiments are similar,
indicating that the RF model has no obvious overfitting phe-
nomenon.

4.2 Accuracy evaluation of PMRS and RF-PMRS at
AERONET stations

The purpose of RF-PMRS is to construct an optimal model
from the obtained point matching data pairs and generalize it
to the space–time continuous surface data for VEf derivation.
In the subsequent experiments in Sect. 4.2 and 4.3, the VEf
values are obtained by introducing the Phy-DL FMF dataset
(surface data) to the final RF model. At the same time, the
Phy-DL FMF data are also applied to the PM2.5 calculation
process (FMF variable in Eq. 7) for a wide range of PM2.5
concentration.

Then, the experiment compares PM2.5 results of PMRS
and RF-PMRS at the Beijing (BJ) and Beijing-CAMS (BC)

AERONET sites in 2017. Here, RF-PMRS simulates VEf
based on RF and replaces the polynomial of the PMRS
method. Note that the results of the two sites are compared
with their respective nearest ground PM2.5 stations (distances
of 3.64 and 3.91 km, respectively, in line with the represen-
tative range of ground stations in previous studies; Shi et
al., 2018). Figure 4 displays the time series of PM2.5 val-
ues for different models at two sites. The blue line fits the
red line better than the gray one, confirming that the PM2.5
results of RF-PMRS are closer to the true values. Within
the range of the black circles at positions 1 and 2, the vari-
ation in RF-PMRS results has better consistency with the
ground truth, while the PMRS results show dislocation and
excessive growth. The overall performance of the RF-PMRS
estimations can signify the effectiveness of our proposed
method framework. As observed in the red boxes at posi-
tions 3 and 4, both models have a certain degree of devi-
ation, which is found to be consistent with the time regu-
larity of the AOD high values. Meanwhile, Fig. B1 (in Ap-
pendix B) plots the bias time series between PMRS and RF-
PMRS and in situ values. As can be seen, the bias of the op-
timization method (RF-PMRS) is stably distributed around
zero, which greatly reduces the numerical uncertainty. It is
worth noting that our method has mitigated the apparent
overestimation of the original model (PMRS) well in the
case of above-normal aerosol loadings. Furthermore, the av-
erage PM2.5 values from ground stations, PMRS, and RF-
PMRS are compared. As for the two sites, the RF-PMRS re-
sults are satisfactory. As depicted in Fig. 5, the RF-PMRS
and station mean values are close, with a difference of 4.82
(BJ) and 2.73 µg m−3 (BC), suggesting a good estimation.
Nevertheless, the PMRS results have deviations greater than
40 µg m−3, and overestimation exists at both sites. It can be

https://doi.org/10.5194/gmd-16-4137-2023 Geosci. Model Dev., 16, 4137–4154, 2023
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inferred that, in our proposed method, the optimization of
VEf can greatly improve the PM2.5 estimation accuracy.

To visually compare the optimization effect, Fig. 6 plots
the PM2.5 bias distribution patterns for two methods. From
the boxplot, the average PM2.5 bias of RF-PMRS is close to
zero (less than 5 µg m−3), which is greatly lower than that
of PMRS. Moreover, PMRS PM2.5 has a larger deviation
range, which manifests in two aspects. One is the maximum
bias; specifically, it has exceeded 100 µg m−3 at the BC site.
The other is the overall distribution of the data bias; the BJ
site ones are mostly distributed below 0, indicating an ob-
vious overestimation. As for RF-PMRS, the above circum-
stances are not obviously reflected in it. In addition, as can be
seen from the indicators, the RMSE and MAE of RF-PMRS
PM2.5 decrease by about half in comparison with PMRS. The
experiment has confirmed that the RF-PMRS PM2.5 values
have a strong linear relationship with the ground truth at both
sites, with R around 0.8 (0.82 at BJ and 0.78 at BC). Such a
large optimization effect is attributed to the VEf expression
replacement to the fitted RF model.

4.3 Generalization performance of RF-PMRS

Then, we estimate PM2.5 based on PMRS and RF-PMRS
within North China in 2017 (Fig. 1 exhibits the distribution
pattern of the validation stations). Table 4 shows the accu-
racy statistics. It can be seen that RF-PMRS greatly reduces
the bias (about 44.87 %), with an MB of about 2.31 µg m−3.
Similar to the results at the sites, the RF-PMRS method can
derive PM2.5 concentration with practically no overestima-
tion (underestimation). Although there is not much differ-
ence in the R values of the two models (R of RF-PMRS is
only improved by 0.01), RMSE and MAE decrease by about
39.96 and 18.86 µg m−3, respectively. As a result, the opti-
mized method deserves to be considered excellent.

Meanwhile, the PM2.5 scatterplots are presented below.
As depicted in Fig. 7, there are sufficient estimated samples
(28 305) in the NC region, which guarantees the credibility of
our validation results. In general, the RF-PMRS PM2.5 val-
ues are distributed around the 1 : 1 reference line evenly, with
a slightly higher R of 0.70 compared to that of the original
method. The slope of the linear fitting relationship reaches
0.82, which indicates that the proposed method greatly re-
duces the overestimation of PMRS with a linear slope of
1.46. Although the overall performance of the RF-PMRS es-
timations maintains an excellent level, defects do remain. To
be specific, in areas with high PM2.5 concentration (espe-
cially greater than 150 µg m−3), RF-PMRS results exist with
a slight underestimation. It may be caused by the relatively
small number of high-value PM2.5 points (only 1319 out of
28 305), which makes it difficult to adequately reflect the fit-
ting effect of the method.

As for RF-PMRS, the deviation is reduced to a large ex-
tent, so the maps of the probability density function based
on the bias of PMRS and RF-PMRS are further drawn. Fig-

ure 8 visualizes the probability densities within different bias
ranges. In terms of distribution characteristics, the overall
bias of RF-PMRS from the value of 0 (solid black line) is
small. About the curve shape, it is high and narrow, mani-
festing in the fact that the bias has a lower standard devi-
ation (SD) and is more prone to appear around the mean.
However, PMRS shows a more discrete distribution pattern,
and there are many outliers outside the range of greater than
600 µg m−3. Simultaneously, as can be concluded from the
three boxes, within the bias range of ±20 and ±40 µg m−3,
the data numbers of RF-PMRS results increase by 8.32 % and
12.81 %, respectively. Outside the range of±100 µg m−3, the
number decreases by 9.10 %. Therefore, as far as the accu-
racy is concerned, RF-PMRS results have lower bias and bet-
ter stability.

In addition to the above general performance comparison
in Sect. 4.3, Fig. 9 presents the annual average RMSE spa-
tial distribution of PMRS and RF-PMRS PM2.5 at NC sta-
tions. The two methods show a large deviation in the middle
and southeast, and the RMSE map of PMRS has more red
points. However, RF-PMRS can weaken this phenomenon
very well since its RMSE representative colors are generally
light. In particular, the proportion of dark-red sites (RMSE
greater than 60 µg m−3) decreases from 65.44 % (PMRS) to
4.15 % (RF-PMRS). In the areas where the ground stations
are clustered, the deviation also reduces significantly.

In a word, the above analysis demonstrates that compared
with the simple quadratic polynomial relationship (Eq. 9),
the established RF model in RF-PMRS can more accurately
capture the relationship between VEf and multiple variables,
thereby improving the PM2.5 estimation accuracy.

5 Discussion

5.1 Accuracy comparison of PMRS using MODIS
FMF and Phy-DL FMF

To confirm the superiority of the Phy-DL FMF data adopted
in our method framework, the experiment takes the BJ and
BC sites as examples (in 2017) and then compares the PM2.5
accuracy and the number of effective days calculated by
PMRS based on different FMF values. Table 5 presents the
overall day-level results. Here, “DOY” means the day of
the year and “valid” means that all variables related to the
PM2.5 calculation are valid. As can be seen, after the FMF
replacement, the number of valid DOYs grows (an increase
of 113 d), which illustrates that the number of effective PM2.5
concentrations has gone up by about 5 times. Moreover, the
accuracy has been significantly enhanced, with R having in-
creased by about 0.30 and RMSE and MAE having decreased
by 26.14 % and 16.47 %, accordingly. On the whole, Phy-DL
FMF contributes to the improvement in PMRS results, signi-
fying the first step in optimization of the proposed RF-PMRS
method is effective.
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Figure 4. Three PM2.5 time series at the Beijing (BJ) and Beijing-CAMS (BC) sites under their respective DOYs in 2017. Here, DOY (valid)
means the day of the year with valid AOD, FMF, and other PM2.5-related data. Gray, blue, and red lines represent PM2.5 values of PMRS,
RF-PMRS, and the stations (STA), respectively. The red boxes and black circles select a specific period for analysis.

Table 4. Validation results of PMRS and RF-PMRS PM2.5 in North China.

Method R MB (µg m−3) RMB (%) RMSE (µg m−3) MAE (µg m−3)

PMRS 0.69 −29.34 48.71 79.98 44.72
RF-PMRS 0.70 2.31 3.84 40.02 25.86

5.2 Performance compared with other ML models

Different machine learning models are suitable for diverse
research data, and decision tree (DT) models can better fit
experiments with fewer variables, such as this study. For
comparison, except for RF, the extremely randomized tree
(ERT) (Geurts et al., 2006) and gradient boosting decision
tree (GBDT) (Friedman, 2001) models have also been estab-
lished. The results of training VEf based on the above three
DT models are presented in Tables 6 and 7. By contrast, RF

performs best in CV and IV experiments, as indicated by the
multiple accuracy indicators. Although the ERT and GBDT
models are comparable to RF in some indicators, there ex-
ists a certain degree of overfitting in the above two models,
which is manifested in the fact that their IV results are clearly
worse than their respective CV ones. Thus, the RF model is
applied to our study.
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Figure 5. Annual average PM2.5 values from the stations (left), RF-PMRS (middle), and PMRS (right) at the BJ and BC sites.

Figure 6. Boxplots of (a) RF-PMRS and (b) PMRS PM2.5 bias at the BJ and BC sites. The upper (lower) black line of each box represents
the largest (smallest) value, the upper (lower) blue border represents the upper (lower) quartile, and the red line denotes the median. The
yellow, orange, and gray symbols are the MB, RMSE, and MAE of the corresponding PM2.5 concentration.

5.3 Feature importance of the embedded RF model

Additionally, the feature importance of RF is calculated to
evaluate the contribution of model predictors to VEf simu-
lation. Figure B2 (in Appendix B) shows the results by nor-

malization (taking 100 as the total). Without a doubt, FMF
accounts for the largest proportion, about 76.4 %, which is
consistent with the analysis when selecting the VEf-related
variables (see Sect. 3.2). The contribution of spatiotemporal
variables is about 1/3 of FMF, which indirectly affirms the
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Figure 7. Validation scatterplots of PM2.5 results from (a) PMRS and (b) RF-PMRS. Dashed red lines are 1 : 1 reference lines, and solid
blue lines stand for the linear fits. The right legends show the point densities (frequency) represented by different colors.

Figure 8. Probability density functions of PMRS (yellow) and RF-PMRS (green) PM2.5 bias. The dotted red, blue, and gray lines indicate
the bias boundaries of ±20, ±40, and ±100 µg m−3, respectively. µ and σ represent the mean value and standard deviation of each data
point.

credibility of RF feature learning. Also, it provides a basis
for further uncertainty optimization of VEf and PM2.5 accu-
racy.

5.4 Advantages and disadvantages

5.4.1 Advantages of the RF-PMRS method

From the perspective of model parameter optimization, this
paper embeds RF to replace the subprocess parameter of
the semi-empirical physical model. As a result, the proposed
method, RF-PMRS, reduces the uncertainty in the complex
physical parameter (i.e., VEf) based on the estimation steps
of strong physical significance and realizes the coupling of
machine learning and the model mechanism. The proposed

method does not rely on the PM2.5 values of ground stations
and is not affected by the station density and distribution
mode, which can estimate the PM2.5 concentration indepen-
dently.

Meanwhile, as for the method, we construct the VEf model
based on RF using high-precision point data and extend it to
surface data for PM2.5 estimations. The experimental results
demonstrate the overall performance of the model (Sect. 4.1)
and its applicability in North China (Sect. 4.2 to 4.3), show-
ing that the method has certain universality from the point
scale to the surface scale.

1. The overall performance of the model is high. We use
the ground data of nine AERONET sites around the
world to train the RF model and simulate the VEf val-
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Figure 9. RMSE of the yearly average PM2.5 concentration values between different models and ground stations (a PMRS PM2.5, b RF-
PMRS PM2.5). Note that the top red color of the RMSE legend indicates RMSE values equal to or greater than 60 µg m−3.

Table 5. Validation results of the PMRS method using different FMF data. The valid DOY refers to the number of days for which the AOD,
FMF, and other data are not missing when calculating PM2.5. Note that since the valid days of the two schemes are different, the MB and
RMB are not compared.

Valid DOYs R RMSE (µg m−3) MAE (µg m−3)

PMRS with MODIS FMF 30 0.38 63.01 35.64
PMRS with Phy-DL FMF 143 0.68 46.54 29.77

Table 6. Cross-validation results for comparison of the decision tree
models for training VEf. N represents the number of data, and VEf
has no unit.

CV results

R RMSE RPE MAE N

RF 0.974 0.076 0.330 0.034
6463ERT 0.972 0.079 0.343 0.035

GBDT 0.973 0.078 0.339 0.036

Table 7. Isolated-validation results in comparison of the decision
tree models for training VEf. The indicators are the same as those
in Table 6.

IV results

R RMSE RPE MAE N

RF 0.975 0.067 0.299 0.037
814ERT 0.967 0.076 0.340 0.042

GBDT 0.969 0.074 0.331 0.040

ues; the site distribution is relatively uniform, and the
number of training data is sufficient. Table 1 shows a
total of 6463 data matching pairs in the training period,
which is enough to establish a credible RF model. Ta-
ble 3 results show that in IV experiments, the accuracy
of the model is good and can be generalized in different
periods. For VEf, the model shows both high internal
accuracy (CV) and external accuracy (IV), so it can be
generalized in regions with different aerosol types.

2. In the subsequent PM2.5 estimation, the model displays
high applicability in North China. From the perspec-
tive of model construction, the four aerosol types are
the classification basis of the training data, and compre-
hensive modeling can improve the generalization per-
formance. Also, the addition of spatiotemporal variables
can increase the model applicability in North China.
On the other hand, the number of stations used in an
area does not determine the regional accuracy of the
established model, which can be derived from our re-
sults. Compared with the PM2.5 ground measurements
in the NC region, the relative deviation of the RF-PMRS
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PM2.5 is only 2.31 µg m−3, which confirms that RF can
represent the relationships within North China.

5.4.2 Limitations on the scope of the validation region

However, there are still some shortcomings, mainly mani-
fested in the scope of the validation region. Due to limited
experimental data, we only conduct experiments in North
China (the main aerosol type is urban–industrial). The main
reasons are as follows.

1. Insufficient ρf,dry value.

As the empirical value in the semi-physical empirical
model, the ρf,dry value is often obtained by field mea-
surements and induction. The insufficient ρf,dry values
hinder the derivation of PM2.5 in other regions, and
more research results are needed.

2. Disclosure limits on global PM2.5 ground measure-
ments.

Accurate and sufficient in situ PM2.5 values allow for
the verification of estimated PM2.5 results.

3. Fewer public AERONET sites.

Therefore, only the BJ and BC sites in North China are
used for representative point-scale validation.

5.4.3 Data differences and uncertainty analysis

In the RF-PMRS method, the VEf model constructed by
high-precision site data is generalized to surface data for val-
idation, and the data types involved are as follows.

1. AERONET AOD vs. MODIS AOD.

Two types of AOD are used for different experimen-
tal steps, among which AERONET AOD is applied to
calculate the true values of VEf for establishing the
RF simulation model. The RF model construction is a
step of PM2.5 estimation (as the VEf variable in Eq. 7).
MODIS AOD is satellite AOD data, the most commonly
used remote sensing data for large-scale retrieval of
PM2.5. It is an important variable for PM2.5 estimation
in RF-PMRS (as the AOD variable in Eq. 7). Thus, there
is no error in the PM2.5 calculation caused by AOD cat-
egory replacement.

As for uncertainty, AERONET AOD provides truth val-
ues for calculating VEf, which theoretically has negli-
gible uncertainty, and the simulation accuracy of VEf
represents its influence on estimating PM2.5 to a certain
extent. It is generally considered that MODIS AOD has
guaranteed quality and sufficient accuracy to be used di-
rectly.

2. S-FMF vs. Phy-DL FMF.

S-FMF is obtained directly from the AERONET mon-
itoring sites and is one of the variables of the RF

model (as the FMF variable in Eq. 10). In the point-
to-surface extension, Phy-DL FMF is introduced into
the RF model to replace S-FMF, and the 2017 VEf val-
ues are obtained. The basis of the above replacement is
that the accuracy of Phy-DL FMF is relatively consis-
tent with that of S-FMF (Yan et al., 2022). Moreover,
Phy-DL FMF data are applied to the PM2.5 estimation
steps (as the FMF variable in Eq. 7) for a wider range of
validation experiments. The results show that the PM2.5
concentration estimated by RF-PMRS has high accu-
racy, proving the credibility of Phy-DL FMF.

3. FMF uncertainty.

Different surface data sources may affect the PM2.5 re-
sults, introducing some uncertainty. Section 5.1 com-
pares the PM2.5 accuracy using two FMF data in 2017.
The data missing time for MODIS FMF and Phy-DL
FMF in North China are different, which can be found
in the statistics on their respective available days (re-
ferred to as valid DOYs). There are far more valid
days based on Phy-DL FMF than MODIS FMF (143
and 31 d), demonstrating the superiority of Phy-DL
FMF. Although the specific validation time of two FMF
varies, the overall accuracy of the PM2.5 estimation
(which can be regarded as the average accuracy over the
year) shows that the Phy-DL FMF increases R to 0.68
(MODIS FMF: 0.38) with low uncertainty.

4. ρf,dry uncertainty.

As introduced earlier, the ρf,dry value is often ob-
tained by field measurements. In our study, we select
1.5 g cm−3 as the ρf,dry value for North China. There
are certain variations in the empirical values of different
regions, and there will be errors (uncertainty) between
the values in Beijing and other places in the NC region.
However, our experimental area is not large, and we
use 1.5 g cm−3 to represent ρf,dry of the whole region,
which has been applied in previous articles (Zhang and
Li, 2015; Li et al., 2016).

5. Uncertainty between variable resolutions.

In most experiments, the lowest resolution of all data
will be taken as the unified resolution when obtain-
ing data values. The different data may lose some spa-
tial details during the upsampling–downsampling pro-
cess, which brings uncertainty to the estimation results.
In the RF-PMRS method, there is no such uncertainty
problem. We set 1◦ as the unified spatial unit and take
the longitude and latitude of each cell’s center as the
reference longitude and latitude. The variables in the
Data section are spatially matched to ground sites at
their respective resolutions, and the space–time match-
ing method has been described in the Methods section.
So, all kinds of data uncertainties only exist in their in-
strument measurement or statistical release.
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Overall, RF-PMRS shows excellent estimation perfor-
mance in North China, and the accuracy of surface
PM2.5 estimation based on remote sensing data is guar-
anteed. Next, with the improvement in related experi-
mental data, we will verify our proposed method in a
broader range and continuously optimize it from all as-
pects.

6 Conclusions

Among various satellite remote sensing methods for PM2.5
retrieval, the semi-empirical physical approach has strong
physical significance and clear calculation steps and derives
the PM2.5 mass concentration independently of in situ ob-
servations. However, the parameters of optical properties
are difficult to express, requiring them to be optimized.
Hence, the study proposes a method (RF-PMRS) that em-
beds machine learning in a physical model to obtain sur-
face PM2.5: (1) based on the PMRS method, select the Phy-
DL FMF product with a combined mechanism, and (2) use
the RF model to fit the parameter VEf, rather than a simple
quadratic polynomial. In the point-to-surface validation, RF-
PMRS shows great optimized performance. Experiments at
two AERONET sites show that R reaches up to 0.8. In North
China, RMSE decreases by 39.95 µg m−3 with a 44.87 % re-
duction in relative deviation. In the future, we will further
explore the combination of an atmospheric mechanism and
machine learning and then research the PM2.5 retrieval meth-
ods with physical meaning and higher accuracy.

Appendix A: Supplementary description

A1 The 10-fold cross-validation and isolated validation

The sample-based 10-fold cross-validation method is applied
to tune the model parameters and test the internal accuracy
of our model. The original dataset is randomly divided into
10 parts, 9 of which are used as the training set for model fit-
ting, with the remaining 1 used for prediction; then the cross-
validation process is repeated for 10 rounds until each data
point has been used as the test set.

At the same time, when verifying the RF-based VEf
model, the dataset in the period that did not participate in
the training in Table 1 is used for isolated validation.

A2 Statistical indicators

R =

m∑
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)
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2
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2

y
,

where m is the total number of observations; i is the number
of measurements; yi is the ith observation; fi is the corre-
sponding estimation result; and y and f are the averages of
all observations and estimates, respectively.

A3 Parameter adjustments of the RF model

The four parameters of RF are adjusted; i.e., the correlation
coefficient r changes with the (a) number of trees, (b) max-
imum depth, (c) maximum number of features when split-
ting, and (d) minimum number of split samples. Experiments
show that the maximum depth varies greatly in a small range.
To prevent overfitting, the four parameters of RF are adjusted
to 60, 10, 2, and 8. It can ensure high accuracy while improv-
ing training efficiency.
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Appendix B: Figures

Figure B1. The time series of PMRS and RF-PMRS PM2.5 bias at the Beijing and Beijing-CAMS sites under their respective DOYs in 2017.
The orange line represents the bias between the PM2.5 values of PMRS and the stations, while the blue one indicates the PM2.5 difference
between RF-PMRS and the stations.

Figure B2. The predictor importance results (normalized) of the RF model for training VEf.
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