Articles | Volume 16, issue 12
https://doi.org/10.5194/gmd-16-3565-2023
https://doi.org/10.5194/gmd-16-3565-2023
Development and technical paper
 | 
28 Jun 2023
Development and technical paper |  | 28 Jun 2023

PySubdiv 1.0: open-source geological modeling and reconstruction by non-manifold subdivision surfaces

Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann

Related authors

About the Trustworthiness of Physics-Based Machine Learning – A Considerations for Geomechanical Applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2932,https://doi.org/10.5194/egusphere-2024-2932, 2024
Short summary
Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023,https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
GeoINR 1.0: an implicit neural network approach to three-dimensional geological modelling
Michael Hillier, Florian Wellmann, Eric A. de Kemp, Boyan Brodaric, Ernst Schetselaar, and Karine Bédard
Geosci. Model Dev., 16, 6987–7012, https://doi.org/10.5194/gmd-16-6987-2023,https://doi.org/10.5194/gmd-16-6987-2023, 2023
Short summary
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022,https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021,https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary

Related subject area

Solid Earth
Three-dimensional analytical solution of self-potential from regularly polarized bodies in a layered seafloor model
Pengfei Zhang, Yi-an Cui, Jing Xie, Youjun Guo, Jianxin Liu, and Jieran Liu
Geosci. Model Dev., 17, 8521–8533, https://doi.org/10.5194/gmd-17-8521-2024,https://doi.org/10.5194/gmd-17-8521-2024, 2024
Short summary
A fast surrogate model for 3D Earth glacial isostatic adjustment using Tensorflow (v2.8.0) artificial neural networks
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024,https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydro-mechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-160,https://doi.org/10.5194/gmd-2024-160, 2024
Revised manuscript accepted for GMD
Short summary
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary

Cited articles

Börner, J. H., Bär, M., and Spitzer, K.: Electromagnetic methods for exploration and monitoring of enhanced geothermal systems – a virtual experiment, Geothermics, 55, 78–87, https://doi.org/10.1016/j.geothermics.2015.01.011, 2015. 
Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B.: Polygon mesh processing, CRC press, https://doi.org/10.1201/b10688, 2010. 
Cashman, T. J.: NURBS-compatible subdivision surfaces, BCS Learning & Development Limited, ISBN 1906124825, 9781906124823, 2010. 
Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S., and Sausse, J.: Surface-based 3D modeling of geological structures, Math. Geosci., 41, 927–945, https://doi.org/10.1007/s11004-009-9244-2, 2009. 
De Kemp, E. A.: Visualization of complex geological structures using 3-D Bézier construction tools, Comput. Geosci., 25, 581–597, https://doi.org/10.1016/S0098-3004(98)00159-9, 1999. 
Download
Short summary
In this work, we propose a flexible framework to generate and interact with geological models using explicit surface representations. The essence of the work lies in the determination of the flexible control mesh, topologically similar to the main geological structure, watertight and controllable with few control points, to manage the geological structures. We exploited the subdivision surface method in our work, which is commonly used in the animation and gaming industry.