Articles | Volume 16, issue 9
https://doi.org/10.5194/gmd-16-2343-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2343-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
Magnus Hieronymus
CORRESPONDING AUTHOR
Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, Norrköping, Sweden
Related authors
Seuri Basilio Kuosmanen and Magnus Hieronymus
EGUsphere, https://doi.org/10.5194/egusphere-2025-1257, https://doi.org/10.5194/egusphere-2025-1257, 2025
Short summary
Short summary
We studied the annual maximum sea levels for the coastal regions in the Baltic Sea and parts of the North Sea. The study aimed to reduce the quantified uncertainty and produce estimates at locations with no tide gauges data. Comparing four statistical models and a baseline model, we concluded that the spatial hierarchical models, which leverages spatial dependency, reduced the uncertainty for higher/lower probability events compared to the other models for locations with or without observations.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Seuri Basilio Kuosmanen and Magnus Hieronymus
EGUsphere, https://doi.org/10.5194/egusphere-2025-1257, https://doi.org/10.5194/egusphere-2025-1257, 2025
Short summary
Short summary
We studied the annual maximum sea levels for the coastal regions in the Baltic Sea and parts of the North Sea. The study aimed to reduce the quantified uncertainty and produce estimates at locations with no tide gauges data. Comparing four statistical models and a baseline model, we concluded that the spatial hierarchical models, which leverages spatial dependency, reduced the uncertainty for higher/lower probability events compared to the other models for locations with or without observations.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Cited articles
Arns, A., Wahl, T., Haigh, I., Jensen, J., and Pattiaratchi, C.: Estimating
extreme water level probabilities: A comparison of the direct methods and
recommendations for best practise, Coastal Eng., 81, 51–66,
https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013. a
Arns, A., Dangendorf, S., Talke, J. J. S., Bender, J., and Pattiaratchi, C.:
Sea-level rise induced amplification of coastal protection design heights,
Sci. Rep.-UK, 7, 40171, https://doi.org/10.1038/srep40171, 2017. a
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.:
Ice sheet contributions to future sea-level rise from structured expert
judgment, P. Natl. Acad. Sci. USA, 116,
11195–11200, https://doi.org/10.1073/pnas.1817205116, 2019. a
Calafat, F. M. and Marcos, M.: Probabilistic reanalysis of storm surge extremes
in Europe, P. Natl. Acad. Sci. USA, 117, 1877–1883,
https://doi.org/10.1073/pnas.1913049117, 2020. a
Capellán-Pérez, I., Arto, I., Polanco-Martínez, J. M.,
González-Eguinob, M., and Neumann, M. B.: Likelihood of climate change
pathways under uncertainty on fossil fuel resource availability, Energy
Environ. Sci., 9, 2482–2496, https://doi.org/10.1039/C6EE01008C, 2016. a
Coles, S.: An introduction to statistical modeling of extreme values, Springer,
Berlin, 1st edn., https://doi.org/10.1007/978-1-4471-3675-0, 2001. a
Dangendorf, S., Arns, A., Pinto, J. G., Ludwig, P., and Jensen, J.: The
exceptional influence of storm `Xaver' on design water levels in the German
Bight, Environ. Res. Lett., 11, 054001,
https://doi.org/10.1088/1748-9326/11/5/054001, 2016. a, b
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez,
N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li, D.,
and Dutton, A.: The Paris Climate Agreement and future sea-level rise
from Antarctica, Nature, 593, 83–89, https://doi.org/10.1038/s41586-021-03427-0,
2021. a
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021. a, b, c, d, e, f, g
Hieronymus, M.: Nonlinear Interactions and Some Other Aspects of Probabilistic
Sea Level Projections, Water, 12, 3212,
https://doi.org/10.3390/w12113212, 2020. a
Hieronymus, M.: The sea level simulator v1.0, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7519926, 2023. a, b, c
Hieronymus, M. and Hieronymus, F.: A Novel Machine Learning Based Bias
Correction Method and Its Application to Sea Level in an Ensemble of
Downscaled Climate Projections, Tellus A, 75, 129–144, https://doi.org/10.16993/tellusa.3216, 2023. a, b, c
Hieronymus, M. and Kalén, O.: Sea-level rise projections for Sweden based
on the new IPCC special report: The ocean and cryosphere in a changing
climate, Ambio, 49, 1587–1600, https://doi.org/10.1007/s13280-019-01313-8, 2020. a, b
Horton, B. P., Kopp, R. E., Garner, A. J., Hay, C. C., Khan, N. S., Roy, K.,
and Shaw, T. A.: Mapping Sea-Level Change in Time, Space, and Probability,
Annu. Rev. Environ. Res., 43, 481–521,
https://doi.org/10.1146/annurev-environ-102017-025826, 2018. a
Huard, D., Fyke, J., Capellán-Pérez, I., Matthews, H. D., and Partanen,
A.-I.: Estimating the Likelihood of GHG Concentration Scenarios From
Probabilistic Integrated Assessment Model Simulations, Earth's Future, 10,
e2022EF002715, https://doi.org/10.1029/2022EF002715, 2022. a
Jevrejeva, S., Frederikse, T., Kopp, R. E., Jackson, G. L. C. L. P., and van de
Wal, R. S. W.: Probabilistic Sea Level Projections at the Coast by 2100,
Surv. Geophys., 40, 1673–1696,
https://doi.org/10.1007/s10712-019-09550-y, 2018. a
Le Bars, D.: Uncertainty in Sea Level Rise Projections Due to the Dependence
Between Contributors, Earth's Future, 6, 1275–1291,
https://doi.org/10.1029/2018EF000849, 2018. a
Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.-H., Hüssy, K., Liblik, T., Meier, H. E. M., Lips, U., and Bukanova, T.: Salinity dynamics of the Baltic Sea, Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, 2022. a
Leppäranta, M. and Myrberg, K.: Physical Oceanography of the Baltic Sea,
Springer-Verlag, Berlin, Heidelberg, 1st edn.,
https://doi.org/10.1007/978-3-540-79703-6, 2009. a
Männikus, R., Soomere, T., and Viŝka, M.: Variations in the mean,
seasonal and extreme water level on the Latvian coast, the eastern Baltic
Sea, during 1961–2018, Estuarine, Coast. Shelf Sci., 245,
106827, https://doi.org/10.1016/j.ecss.2020.106827, 2020. a
Mathworks: Modelling Data with the Generalized Extreme Value Distribution,
https://se.mathworks.com/help/stats/modelling-data-with-the-generalized-extreme-value-distribution.html;jsessionid=17f81cdc87516b88ba9364595cd6 (last access: 9 December 2022),
2020. a
McEvoy, S., Haasnoot, M., and Biesbroek, R.: How are European countries
planning for sea level rise?, Ocean Coast. Manag., 203, 105512,
https://doi.org/10.1016/j.ocecoaman.2020.105512, 2021. a
NASA: Sea level projections from the IPCC 6th Assessment Report (AR6),
https://podaac.jpl.nasa.gov/announcements/2021-08-09-Sea-level-projections-from-the-IPCC-6th-Assessment-Report (last access: 9 December 2022),
2022. a, b, c
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019. a, b
Räty, O., Laine, M., Leijala, U., Särkkä, J., and Johansson, M. M.: Bayesian hierarchical modeling of sea level extremes in the Finnish coastal region, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2021-410, in review, 2022. a
Suursaar, Ü. and Sooäär, J.: Decadal variations in mean and
extreme sea level values along the Estonian coast of the Baltic Sea, Tellus
A, 59, 249–260,
https://doi.org/10.1111/j.1600-0870.2006.00220.x, 2007. a
van de Wal, R. S. W., Nicholls, R. J., Behar, D., McInnes, K., Stammer, D.,
Lowe, J. A., Church, J. A., DeConto, R., Fettweis, X., Goelzer, H., Haasnoot,
M., Haigh, I. D., Hinkel, J., Horton, B. P., James, T. S., Jenkins, A.,
LeCozannet, G., Levermann, A., Lipscomb, W. H., Marzeion, B., Pattyn, F.,
Payne, A. J., Pfeffer, W. T., Price, S. F., Seroussi, H., Sun, S., Veatch,
W., and White, K.: A High-End Estimate of Sea Level Rise for Practitioners,
Earth's Future, 10, e2022EF002751,
https://doi.org/10.1029/2022EF002751, 2022. a, b
Wahl, T., Haigh, I. D., Nicholls, R. J., Arns, A., Dangendorf, S., Hinkel, J.,
and Slangen, A. B.: Understanding extreme sea levels for broad-scale coastal
impact and adaptation analysis, Nat. Commun., 8, 16075, https://doi.org/10.1038/ncomms16075, 2017. a
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
A statistical model called the sea level simulator is presented and made freely available. The...