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Abstract. A statistical model called the sea level simula-
tor v1.0 is introduced. The model integrates mean sea level
change and sea level extremes into a joint probabilistic
framework that is useful for coastal spatial planning. Given
a user-defined planning period, the model can estimate the
flood risk as a function of height above the current mean sea
level. These flood risk estimates are derived through Monte
Carlo simulations of a very large number of planning peri-
ods. The derived flood risk is contingent on user-assigned
probabilities for future greenhouse gas emission pathways,
and the model is thus also useful for quantifying the depen-
dence of flood risk on such pathways and their probabilities.
Moreover, the simulator can quantify whether flood risk is
dominated by sea level extremes or mean sea level rise and
how this depends on the length of the planning period. The
code, written in MATLAB, is parallelized and lightweight
enough that it can be run on an ordinary PC. The code is eas-
ily adaptable to include new locations, new mean sea level
projections and similar model developments. The flood risk
estimates derived from the simulator are well suited to tackle
adaptation and decision problems. Applications for construc-
tion of coastal protection and land development in coastal ar-
eas have been demonstrated in the past. The paper gives an
in-depth technical description of the model. Example simu-
lations from a Swedish nuclear site are also given, and the
capabilities of the simulator are discussed. The main aim of
the paper is to work as a technical reference for the first pub-
lic release of the sea level simulator.

1 Introduction

Mean sea level change alters the probability of coastal flood-
ing in communities around the world. The globally averaged
mean sea level rose by about 20 cm during the period 1901—
2018. However, much larger changes are projected for the
current century in all future emission scenarios investigated
in the Intergovernmental Panel on Climate Change Sixth As-
sessment Report (IPCC, AR6) (Fox-Kemper et al., 2021).
Mean sea level change projected for the 21st century is, in
fact, so sizeable that extreme sea levels that are expected to
be reached on average only once in a century with the cur-
rent mean sea level could in many places be reached on a
yearly basis even before the end of the current century (Op-
penheimer et al., 2019; Hieronymus and Kalén, 2020). The
probability of coastal flooding is thus expected to increase
dramatically in many places, unless effective protection is
put in place, as a consequence of mean sea level rise. Even
though mean sea level rise is the root cause of this problem,
the time dependence of mean sea level change is rarely accu-
rately accounted for in current coastal spatial planning (Hi-
eronymus, 2021; Hieronymus and Kalén, 2022). Neither is,
generally speaking, the uncertainty encompassed in proba-
bilistic mean sea level projections. In fact, in a survey of 32
European countries by McEvoy et al. (2021), it was found
that probabilistic mean sea level projections were only used
in dedicated sea level planning in a single country and in non-
dedicated planning in another three. Important planning deci-
sions, such as how far above the current mean sea level new
building and infrastructure can be erected, are instead typi-
cally based on arbitrary rules. In many places, the minimum
distance above the current mean sea level where new build-
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ings can be erected is determined by adding a high mean sea
level projection most often for the year 2100 to a high return
level for temporary sea level extremes (Arns et al., 2017).
Sometimes an additional safety margin of arbitrary amount is
also added to the two other components. The risk that build-
ings erected at such a distance from the current mean sea
level could become flooded during their expected lifetime is
presumably small. That is, as long as the level is derived from
a sum of unlikely mean and extreme sea levels and the ex-
pected lifetime of the structure does not exceed the length of
the mean sea level projection used. However, in real terms the
risk is not quantified and therefore essentially unknown. This
is of course a great obstacle, for example, for producing real-
istic cost—benefit analyses that could underpin coastal spatial
planning.

The sea level simulator framework introduced by Hierony-
mus (2021) and further developed by Hieronymus and Kalén
(2022) rids the planner of much of the ambiguity inherent in
these arbitrary levels. This is done by combining mean sea
level projections and sea level extremes into a joint proba-
bilistic framework. From this framework, flood risk can then
be calculated as a function of height above the current mean
sea level. This information can, in turn, be used to derive
levels where new buildings can be erected that are based on
the planners risk level preference. The modeled risk is con-
tingent on probabilities given to different emission scenarios
and the length of the planning period. The planning period in
this context can be, for example, the lifetime of a structure
or the period over which the structures current value can be
discounted to a suitably low level. Essentially, the sea level
simulator is a tool for answering questions such as the fol-
lowing: if a house is built x m above the current mean sea
level, what is the risk that it will be flooded at least once
during the next y years. Answering that question requires no
other data then those which are used to calculate the more
arbitrary levels in use today. Essentially, what the sea level
simulator does is to utilize these data in a better way and
to formalize the underlying assumptions in a more rigorous
manner. The latter point is of great importance. The assump-
tions we make about, for example, the expected lifetime of a
structure or the probability of a given emission scenario com-
ing to pass greatly affect the estimated risk of flooding. An-
other strength of the sea level simulator is that the influence
that such assumptions have on flood risk can be quantified in
a straightforward manner. Thus, the simulator not only gives
us probabilistic assessments of flood risk but it can also in-
form us about how these assessments depend on our basic as-
sumptions about, for example, probabilities given to different
future emission pathways or model projections of melt from
the Antarctic ice sheet.

The simulator uses two separate data sources in its calcu-
lations: mean sea level projections (Fox-Kemper et al., 2021;
Hieronymus and Kalén, 2020; NASA, 2022) and time se-
ries of yearly sea level maximum relative to the mean sea
level (Dangendorf et al., 2016; Sérkka et al., 2017; Ménnikus
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et al., 2020). Any mean sea level projection can be used, but
so far only those from the IPCC (Oppenheimer et al., 2019;
Fox-Kemper et al., 2021) have been used in practice. Both
the mean sea level projections and the time series of annual
maximum sea level are fitted to continuous probability dis-
tribution functions. Sea level maxima relative to the current
mean sea level can then be simulated throughout planning pe-
riods by drawing yearly sea level maxima and mean sea level
projections randomly from their respective distributions. The
basic idea behind the simulator is to make vast quantities of
such simulations from which frequencies of high sea levels
in future periods can be determined.

The first study that utilized the simulator (Hieronymus,
2021) was a case study for Stockholm that showcased many
of its potential applications, e.g. uncertainty quantifications
and adaptation and decision problems. The second study (Hi-
eronymus and Kalén, 2022) focused on how the length of
the planning period affects whether flood risk is dominated
by mean sea level rise or sea level extremes and how such
knowledge could be utilized by coastal spatial planners. In
the present paper, focus is put more on the technical aspects
of the simulator. New updates to the simulator are also dis-
cussed, in particular the following:

— implementation of parallel computing

implementation of new mean sea level scenarios

better uncertainty quantifications for sea level extremes

more realistic time dependence in the mean sea level
projections.

All of these improvements were absent in the simulator used
by Hieronymus (2021) and Hieronymus and Kalén (2022).
Moreover, the current paper is also intended to be the main
technical reference for the first public release of the sea level
simulator. This model has been given the version number 1.0
and is available free of charge, and warranty, to all through
Hieronymus (2023).

2 Model description
2.1 An overview of the sea level simulator

The sea level simulator v1.0 is written in MATLAB. The pro-
gram consists of one main script and some support scripts
used to set up the model. It uses the statistics and parallel
computing toolbox from MathWorks, as well as some rou-
tines from the free MATLAB toolbox Cupid (https://github.
com/milleratotago/Cupid, last access: 9 December 2022).
The Cupid routines needed by the simulator are distributed
together with the simulator code. The parallel computing
toolbox is only needed to speed up the computation, and run-
ning without it is essentially a matter of switching a parfor
statement in the programs main loop into a for statement.
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The program simulates a large number of planning pe-
riods by randomly drawing time-dependent mean sea level
changes and yearly sea level maxima. The standard setting is
107 such periods that last between 2021 and 2150. The time
frame is chosen so that it complies with the length of the
mean sea level projections from Fox-Kemper et al. (2021).
The probability of flooding as a function of height above the
current mean sea level is evaluated not just for the full pe-
riod but also for all shorter planning periods in 10-year incre-
ments. That is, by modeling the planning period 2020-2150
we also get the probabilities for the 2020-2030 planning pe-
riod, the 2020-2040 planning period and so on, which is vir-
tually free of any additional computational cost. Apart from
information about the highest joint sea level (i.e., caused by
both mean sea level rise and sea level extremes) experienced
within the planning period, information is also stored about
the heights of the mean sea level and the sea level extreme
components individually. The latter information is important
to gauge potential impacts and to produce more informed
risk assessments as was discussed by Hieronymus and Kalén
(2022).

2.2 Step-by-step simulations and treatment of
uncertainty

A schematic of the simulator is shown in Fig. 1a. The first
piece of data needed to run a simulation is a time series of
annual sea level maxima from a tide gauge. This time series
could, of course, also come from a numerical ocean model,
a machine learning model or any other model that reliably
captures high-frequency sea level variability. What frequency
and quality that are needed naturally depends on the location
and the application, but most often hourly data should suf-
fice. This annual maximum time series is then used to fit a
generalized extreme value (GEV) distribution (Coles, 2001);
see Fig. 1b. This is done using the gevfit routine from MAT-
LAB?’s statistics toolbox. In earlier versions of the simulator
(Hieronymus, 2021; Hieronymus and Kalén, 2022), only the
maximum likelihood estimate of the GEV parameters was
used to characterize the tide gauge. That is, in earlier versions
there was no uncertainty in which GEV distribution the sim-
ulator used. Extreme sea level uncertainty was consequently
only owing to the fact that each planning period had its yearly
sea level maxima drawn randomly from the GEV distribu-
tion that was thought to best characterize the tide gauge in
question. In this release, uncertainty is also introduced into
the GEV parameters, which is signified by the slot machine
connecting the first two modules of the schematic in Fig. 1a.
The GEV parameter uncertainty is turned on by setting the
ext_par_uncert variable equal to one.

The uncertainty in the GEV parameters is modeled in the
same way as maximum-likelihood-based confidence inter-
vals on return levels are estimated with MATLAB (Math-
works, 2020). Here we calculate the location, scale and shape
of parameters that define the GEV distributions that give rise
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to the upper and lower bounds on 1000-year return level
confidence intervals. This calculation is done for confidence
levels between 0.01 and 0.99, using a resolution in confi-
dence of 0.01. In total we get 199 sets of GEV parameters,
which spans approximately the quantile range from 0.005
to 0.995 of plausible GEV distributions for the tide gauge.
In each modeled planning period, one of these parameter
triplets is chosen randomly, thus introducing stochasticity
into the choice of GEV distribution used to model the an-
nual sea level maxima at the site. In practice, a uniformly
distributed random number from the interval [0, 1] is drawn
every planning period to give the quantile for the GEV pa-
rameters. The yearly sea level maxima for the planning pe-
riod are then drawn randomly from the randomly selected
GEV distribution. The draw of the yearly maxima is signi-
fied by the second one-armed bandit seen from the left in
Fig. la.

Certain users might prefer to use peak over threshold
rather than block maxima statistics and consequently to
model extremes with a generalized Pareto (GP) instead of a
GEV distribution. In v1.0 of the sea level simulator, there is
no such option available. The main reason for this is that the
GP approach requires more user-defined parameters, such as
a threshold and a separation timescale between events that
should be long enough that the events can be considered in-
dependent. Good guidance on how to choose these parame-
ters is hard to give. The GEV approach has a similar parame-
ter to the GP separation timescale, namely, the block length.
However, using a block length of 1 year is more or less stan-
dard practice (Arns et al., 2013), and using longer blocks is
often impracticable owing to insufficient length of most sea
level time series (Hieronymus and Hieronymus, 2023). Nev-
ertheless, for a user wanting to use the GP approach only
minor code changes are needed, and MATLAB’s statistics
toolbox contains the necessary gpfit and gprnd routines.

A further issue worthy of note regarding the extreme sea
level distributions used by the simulator are that these are
unaffected by climate change and time. That is, the GEV dis-
tributions used are independent of both time and Shared So-
cioeconomic Pathway (SSP). This is simply because of lack
of knowledge about how the GEV parameters might change
through time under given SSPs. However, if such knowledge
was available, it would be easy to include climate-change-
induced trends in annual sea level maximum as a perturbation
to the mean sea level projections. This can be done without
any code changes to the simulator. How the mean sea level
projections are made is discussed further down in this sec-
tion.

In the next module a SSP is chosen randomly. Five differ-
ent SSP-radiative-forcing combos are available from Fox-
Kemper et al. (2021) and NASA (2022): SSP1-1.9, SSP1-
2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 (Fig. 1¢). The num-
bers after the dash indicate the radiative forcing (in W m_z)
in the year 2100 compared to a preindustrial baseline.
Each SSP-radiative-forcing combo is assigned a probabil-
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Figure 1. Schematic view of the sea level simulator with insets showing some of the data the simulator depends on. Panel (a) shows
schematically how a planning period is simulated by going through a chain of modules from left to right. The large arrow below indicates
that this cycle is repeated many times (i.e., that many planning periods are simulated). The slot machines signify that a stochastic process
is involved in going from one module to the next. Panel (b) shows the GEV fit and the observed annual maxima, panel (¢) shows mean sea
level projections for different SSPs, panel (d) indicates that some SSPs have multiple mean sea level projections and panel (e) shows some

quantiles of the mean sea level projection for SSP1-2.6.

ity (p1, ..., ps) of coming to pass, and these probabilities are
chosen so that Z? p = 1. The next step is to pick a distri-
bution for the projected mean sea level. Here only scenarios
SSP1-2.6 and SSP5-8.5 have more than one option (Fig. 1d).
These two scenarios also have low confidence projections,
where the contribution from the Greenland and Antarctic ice-
sheets to sea level rise is taken from some of the highest pro-
jections in the published scientific literature (Bamber et al.,
2019; DeConto et al., 2021). The uncertainty introduced by
having more than one mean sea level distribution per emis-
sion scenario is similar in nature to the uncertainty intro-
duced to the GEV parameters. That is, in both cases there
is uncertainty both in the underlying distributions and in the
random numbers drawn from the chosen distributions. The
contributions to sea level rise from other components such
as thermosteric expansion and melting glaciers are the same
in the low confidence as in the main projections. In practice
the lottery over climate scenario and sea level projection is
combined into one joint lottery in the code. This is done be-
cause only two climate scenarios have multiple projections
and such an implementation is a little faster. That is, the lot-
teries in the third and fourth modules in Fig. 1 are imple-
mented in the code as a single lottery over the available dis-
tributions of projected future mean sea levels. Just as for the
GEV parameters, this random process is modeled by draw-
ing a uniformly distributed random number from the interval
[0, 1].

This random number maps to a mean sea level projec-
tion through the user-defined probability range for the projec-
tions. Note that neither the sea level projections nor the SSPs
have been attributed probabilities by their makers. However,
for the SSPs, at least, some estimates of suitable probabilities
have been derived using integrated assessment models (see,

Geosci. Model Dev., 16, 2343-2354, 2023

Table 1. Probabilities given to the different mean sea level projec-
tions and the probability range in which the different projection are
applied.

Mean sea level distribution ~ Probability  Probability range
SSP1-1.9 0.05 [0, 0.05]
SSP1-2.6 0.155 (0.05, 0.2050]
SSP1-2.6 (low confidence) 0.01 (0.2050, 0.2150]
SSP2-4.5 0.5 (0.2150, 0.7150]
SSP3-7.0 0.22 (0.7150, 0.9350]
SSP5-8.5 0.064 (0.9350, 0.999]
SSP5-8.5 (low confidence)  0.001 (0.999, 1]

for example, Capellan-Pérez et al., 2016; Huard et al., 2022).
An example probability range is shown in Table 1. The ran-
dom number used for drawing the mean sea level projection
is independent of that used to pick the GEV distribution.
The distributions of mean sea level projections are avail-
able every 10 years (Fox-Kemper et al., 2021; NASA, 2022).
Thus, for each mean sea level projection there is one distri-
bution for 2030, one for 2040 and so on. To get consistent
mean sea level projections, a quantile is chosen randomly for
each modeled planning period, and this quantile of the cho-
sen mean sea level projection is extracted from the mean sea
level distributions from each time step. Linear interpolation
is then done to get a mean sea level projection with yearly
resolution (Fig. 1e). Having mean sea level projections for
every 10 years is another improvement over the earlier ver-
sions of the simulator. Those versions used only one distribu-
tion for the year 2100 per emission scenario, and uncertainty
was set to grow linearly with time from zero at the start of
the planning period to its end value in 2100 (Hieronymus,
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2021; Hieronymus and Kalén, 2022). Similarly to the ear-
lier stochastic processes, the mean sea level quantile is also
chosen by drawing a uniformly distributed random number
from the interval [0, 1]. This random number is independent
of those determining the GEV quantile and mean sea level
projection used.

The IPCC mean sea level distributions are discreet. For
use with the simulator, they are therefore approximated by
continuous skew-normal distributions. The three parameters
defining the skew-normal distributions are chosen so that the
sum of the squared differences between the continuous skew-
normal distribution and the discreet IPCC distribution is min-
imized at the 5th, 17th, 50th, 83rd and 95th percentiles. These
differences are very small, typically within a centimeter, for
all mean sea level distributions except those for SSP5-8.5 low
confidence for years 2100-2150, where we cannot get a good
approximation for both the 83rd and 95th percentiles at the
same time with the skew-normal distribution. In fact, many
different continuous distributions (e.g., Gaussian, exponen-
tial, Weibull and exponentially modified Gaussian) have been
tested without finding a good fit. For these distributions, the
difference between 50th percentile and the 83rd percentile
is very much larger than that between the 83rd and the 95th
percentile, suggesting that SSP5-8.5 low confidence for these
years is likely bimodal. In these cases, we have opted to
minimize the sum squared difference at only the 5th, 50th
and 95th percentiles to have a good accuracy at the highest
percentiles. The fitting of the skew-normal distribution pa-
rameters is done using the included script meanseadists.m.
This script can easily be edited for use with different mean
sea level projections. It is also worth mentioning that mean
sea level projections are site specific, and the projections
used as an example here are for the area on the Swedish
west coast where the Ringhals nuclear power plant is situ-
ated. When setting up the simulator for a new location, it
is thus important to check how well the continuous distribu-
tions, whose parameters are estimated using meanseadists.m,
agree with the discreet originals. This is also diagnosed in the
meanseadists.m routine. Moreover, the Cupid toolbox offers
many alternatives to the skew-normal distribution that one
can easily adapt the code to use. For Swedish conditions, the
skew-normal distribution has proven to give good fits, but
this could conceivably be location dependent.

The sixth module in the diagram adds the mean sea level
projection for the planning period to the annual sea level
maxima modeled for the period. The resulting time series
contains the planning periods annual maxima referenced to
the current mean sea level. It is from this time series that
the planning period sea level maximum and its mean sea
level and extreme sea level components are extracted. These
variables are saved in the form of discreet probability den-
sity functions (PDFs). The grid resolution of these PDFs is
set by the parameter nr_res, which has a standard value of
500. This means that 500 equidistant grid points are used to
resolve the planning period’s sea level maximum. For each
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Figure 2. Runtime plotted against number of cores for the sea level
simulator v1.0. In the experiment shown, 10° planning periods are
simulated. The experiment is done on a laptop using a Intel Core
i5-8265U CPU at 1.60 GHz x8. The ideal runtime is computed as
the runtime on one core divided by the number of cores used.

planning period, one is added to the grid point whose value
is closest to the simulated sea level maximum. When all it-
erations are done, the result is normalized by the number of
planning periods modeled to get PDFs from the derived his-
tograms. The loop between the different modules in Fig. 1a
is repeated for the desired number of planning periods. In the
examples that follow, 107 planning periods are modeled in
each experiment. The statistics produced by the simulator are
thus planning period probabilities rather than the commonly
used yearly probabilities. For example, a relative frequency
of 107 means that 1 in 10000 planning periods contain a
sea level of this height. The term planning period probabil-
ity is therefore used here instead of the more commonly used
terms yearly probability and return period. The reason for
this is that the yearly probability or return period of a given
sea level changes throughout the planning period, while the
planning period probability is stationary.

2.3 Parallel computing performance

As was mentioned in the Introduction, multiple planning pe-
riods are simulated in parallel. The scaling of runtime vs.
number of cores, shown in Fig. 2, is very close to the ideal.
Thus, without parallel computing the program will be much
slower. The close-to-ideal scaling holds only for physical
cores, at least on the test machine. Using hyper-treading to
run on up to four virtual cores together with the four physi-
cal cores only affected the runtime in a minor way. There is,
however, a good workaround for those who do not have the
parallel toolbox but require a large number of planning peri-
ods to be simulated. The problem of simulating planning pe-
riods is, in fact, embarrassingly parallel. Therefore, the pro-
gram can be run on multiple computers, and the results can
be averaged afterwards.

3 Example simulations

In the examples that follow, the sea level simulator has been
set up to model annual maximum water levels at the Swedish
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Ringhals nuclear power station. Ringhals is situated in Var-
berg municipality on the Swedish west coast. The sea outside
Ringhals is called the Kattegat. It is a shallow sea situated
between the Baltic Sea and Skagerak to the south and north
and Sweden and Denmark to the east and west. The Kattegat
has weak tides and strong stratification. The strong stratifica-
tion is a consequence of less saline Baltic Sea water meeting
more saline North Sea water, yielding a hydrography well
described by a two-layer system (Leppéranta and Myrberg,
2009; Lehmann et al., 2022). The main examples shown are
for a model run with scenario probabilities according to Ta-
ble 1. One run is also done where the low confidence projec-
tions are given a probability of occurrence equal to zero. In
this case, their former probabilities are instead added to the
main SSP2-2.6 and SSP5-8.5 projections so that the proba-
bilities for all projections sum to one.

Figure 3 shows the cumulative distribution of the sea level
maximum relative to the current mean sea level for three dif-
ferent lengths of the planning period. It is readily evident
from the figure that in the two longest planning periods it
is the mean sea level change that gives rise to the highest sea
levels, while temporary sea level extremes are responsible for
the highest sea levels in the shortest planning period. This is
consistent with earlier work at other Swedish locations, us-
ing an older version of the sea level simulator (Hieronymus,
2021; Hieronymus and Kalén, 2022). The dominance of the
mean sea level contribution over that from the extremes is
here exacerbated compared to earlier work because of the
inclusion of the SSP5-8.5 low confidence projection. In this
simulation, that scenario is given a probability of occurrence
equal to 1073, and both the mean and the mean+extreme
panel of the plot are dominated by this scenario at frequen-
cies lower than approximately 1073,

Figure 4 shows a simulation where the probabilities given
to the low confidence projections are set to zero. Here, there
is no regime shift for frequencies lower than 1073, and the
low frequencies are more of a natural continuation of the
higher ones. For future developments, it could be useful to in-
corporate other high-end mean sea level projections that are
not quite as disjointed from the main projections as SSP5-8.5
(low confidence). A notable example of such projections are
the recently published high-end projections by van de Wal
et al. (2022). These projections are designed through a com-
munity effort and aim to give physically plausible high-end
projections for two different warming levels. It should be
noted, however, that the range of sea levels projected with-
out the low confidence projections is, in fact, considerably
larger than the high-end projection for 2100 by van de Wal
et al. (2022), which gives 1.6 m of globally average sea level
rise for a global warming of 5 °C. One could thus argue that
the high-end or at least the physically plausible high-end is
already included in the main SSP5-8.5 projection i.e., even
without separate high-end projections.

The influence of the GEV parameter uncertainty on the
joint sea level maximum is sizeable in short planning periods
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but relatively insignificant in long ones. Figure 5 is the same
as Fig. 3, but all extremes are drawn from the same GEV
distribution. That is, the first lottery in Fig. 1 is canceled, and
we assume that the maximum likelihood GEV parameters are
the true ones. Here we find that even though there is a very
significant change in the extreme sea level, the change in the
joint sea level is rather modest in the longer planning periods.
The reason for this behavior is, of course, that the range of the
modeled mean sea levels becomes much larger than the range
of modeled extremes in long planning periods. However, how
long a planning period has to be for the extreme contribution
to become small compared to the mean contribution is a func-
tion of the probabilities given to the emission scenarios and
the length of the time series of yearly maxima used to infer
the GEV parameters. It also seems prudent to point out that
the extreme range simulated with the GEV parameter uncer-
tainty turned on is not necessarily physically plausible. This
range depends on the length of tide-gauge time series and not
on understanding of the local oceanographic conditions. For
locations where only short time series are available, it could
thus be useful to also use data from neighboring tide gauges
(Calafat and Marcos, 2020; Rity et al., 2022) or from nu-
merical ocean models (Sarkka et al., 2017; Hieronymus and
Hieronymus, 2023) to better constrain a plausible range of
GEV parameters.

The simulator can also be used to infer how the outcome
of the different stochastic processes depicted in Fig. 1 af-
fect the planning period’s sea level maximum. This is illus-
trated in Fig. 6, where the average quantiles of the uniformly
distributed random numbers used to model the different un-
certainties are shown as a function of planning period sea
level maximum. The mean projection average quantile can be
mapped to the specific sea level projection used through the
probability range in Table 1. GEV quantiles refer to the mod-
eled uncertainty in the GEV parameters, and higher quan-
tiles give GEV distributions with higher extremes. The GEV
quantile is thus not a direct measure of the height of the ex-
tremes but of the propensity of the GEV distribution to give
high extremes. The figure shows in a quantitative way what
we could already deduce from Fig. 3. Namely, that in the
shortest planing period the highest sea levels are almost inde-
pendent of mean sea level change but are strongly dependent
on GEV parameter uncertainty. In the two longer planning
periods the situation is reversed and the highest sea levels all
occur under a high quantile of the SSP5-8.5 low confidence
projection. Moreover, it is also clear that the highest sea level
in the longer periods occur independently of the GEV quan-
tile in the two longer planning periods.

Figure 7 shows the same diagnostics as Fig. 6, but here
we have given the low confidence projections for SSP1-2.6
and SSP5-8.5 zero probability of occurrence. Qualitatively,
the behavior is the same as when the very high-end mean
sea level projections are included. However, the highest sea
levels are of course significantly lower without the SSP5-8.5
low confidence projection. The effect of excluding the SSP1-
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2.6 low confidence projection is, however, small. Regardless
of whether the high-end projections are included, it is clear
that the switch from high sea levels being dependent on high
GEV quantiles to being dependent on high mean sea level
projections and quantiles occurs within this century at Ring-
hals with the given set of emission scenario probabilities.

https://doi.org/10.5194/gmd-16-2343-2023

The sea level simulator can also output directly the respec-
tive contributions from sea level extremes and mean sea level
rise to joint sea level events. Such a diagnostic is shown in
Fig. 8. The upper panels show the relative density of the ex-
treme and mean sea level contributions to the joint sea level
maxima. The lower panels show the mean of these distri-
butions for three different planning periods. In Fig. 9 the
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same diagnostics are shown for the case with no GEV pa-
rameter uncertainty. Both figures tell the same story about
how the highest joint sea levels go from being dominated
by the extreme contribution in short planning periods to be-
ing dominated by mean sea level rise in long planning peri-
ods. However, the quantification of the respective magnitudes
of the individual components give some added value. Mean
sea level rise and sea level extremes occur on very different
timescales, and it is not necessarily always their sum that is
the only concern. Note that extreme sea levels occur under
severe storms and are likely to be picked up by numerical
weather forecast systems, so warnings can be issued a day
or two in advance. In contrast, multimeter mean sea level
rise would, if it were to occur, be apparent decades in ad-
vance. The set of actions that can be implemented to adapt to
these two different threats are thus very different. Knowledge
of their respective magnitude can thus help inform decision
makers on the best options available.

4 Conclusions

The modeling framework incorporated into the sea level sim-
ulator v1.0 has been presented in detail, and example simula-
tions for a Swedish nuclear site have been discussed. Ear-
lier versions of the sea level simulator have been used in
scientific publications (Hieronymus, 2021; Hieronymus and
Kalén, 2022). However, this publication marks the first pub-
lic release of the source code and is aimed at being a tech-
nical reference publication, while the earlier two papers had
different foci. Moreover, the sea level simulator v1.0 features

https://doi.org/10.5194/gmd-16-2343-2023

several major updates that were not available in earlier code
versions. Most notably, in terms of new scientific content, we
have the new mean sea level projections from Fox-Kemper
et al. (2021) and the implementation of the GEV parame-
ter uncertainty. In technical terms, the parallelization of the
code is the most notable new feature. The code is not exces-
sively numerically expensive to run. Most of the examples
used in this presentation were run on a laptop with an Intel
Core 15-8265U CPU at 1.60 GHz x 8 processor. The frame-
work should thus be possible to implement even for small
municipalities that do not have time on computational clus-
ters as an expense in their yearly budgets.

The code is easily adaptable to new locations and uses
widely available input data of the same kind that is used in
more traditional methods of sea level planning. Essentially,
what is needed to run simulations are a time series of yearly
sea level maxima and at least one mean sea level projection.
Apart from the obvious usage for creating decision support,
the sea level simulator is also extremely well equipped for
making uncertainty quantifications. A feature that has been
further illustrated in a number of examples by Hieronymus
(2021) and Hieronymus and Kalén (2022). Further possible
applications are to embed the sea level simulator into adap-
tation and decision problems. This was exemplified by Hi-
eronymus (2021), who showed that conditioning adaptation
measures on mean sea level rise would be an effective strat-
egy for Stockholm. In the same paper, it was also illustrated
how the simulator could be used to estimate whether it would
be profitable or not to develop land depending on its height
above the current mean sea level.
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The list of possible new applications is extensive. An ob-
vious but yet unexplored possibility would be to use the
simulator to estimate future flood damage costs using in-
formation on the height above sea level and value of exist-
ing infrastructure. Moreover, the statistical framework could
be used to model other hazards where short weather-related
events are superimposed on long-term climate-related trends.
Heat waves would be one such possibility.

In the current implementation, the vast majority of the run-
time is spent making the mean sea level projections for the
planning period. The most time-consuming part is to find the
inverse of the cumulative distribution function of the mean
sea level projections, which gives the mean sea level pro-
jections for the desired quantile. If this part could be sped
up, it would lead to significant decreases in the overall run-
time. Nevertheless, in its current form the simulator is still
fast enough that it can be run on an ordinary PC, and speed
is thus mostly an issue for users who wish to run very many
simulations.

The GEV distributions used to model yearly sea level max-
ima are taken to be independent of time and SSP, which is an
obvious caveat. In the Swedish context, this is likely a fair ap-
proximation given that Hieronymus and Hieronymus (2023)
found trends in yearly sea level maxima to be largely inde-
pendent of representative concentration pathway (RCP), in
a large ensemble of downscaled climate projections. How-
ever, in most locations there is simply no data available on
which SSP-based trends in yearly sea level maxima can be
based. Otherwise, it would be straightforward to add the rel-
evant trend to the already time-dependent mean sea level pro-
jections. Although such an implementation would make the
separation into mean and extreme sea level components less
direct.

Lastly, it seems prudent to mention that both mean sea
level projections (Jevrejeva et al., 2018; Horton et al., 2018;
Le Bars, 2018; Hieronymus, 2020) and extreme sea level es-
timates (Suursaar and Soodir, 2007; Dangendorf et al., 2016;
Wahl et al., 2017) come with very large uncertainties . More-
over, especially mean sea level projections handle inherently
subjective probabilities, can be widely diverging and change
considerably from time to time. The same is true for fu-
ture emission scenario probabilities. The simulator frame-
work does not help constrain these uncertainties. The fidelity
of the simulations is thus a function of the fidelity of the un-
derlying data. However, the simulator is extremely useful to
pinpoint which uncertainties that have the largest influence
on flood risk. It may thus prove useful to direct research ef-
forts into attempts at narrowing the uncertainty ranges that
are the most important for flood risk.

Code and data availability. The  current version of the
model is available from the project website: https:
//github.com/m-hieronymus/the_sea_level_simulator  (last ac-
cess: 9 December 2022) under the MIT license. The exact version
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of the model used to produce the results used in this paper is
archived on Zenodo (https://doi.org/10.5281/zenodo.7519926;
Hieronymus, 2023), as are input data and scripts to run the model
and produce the plots for all the simulations presented in this paper
(Hieronymus, 2023).
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