Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2077-2023
https://doi.org/10.5194/gmd-16-2077-2023
Model evaluation paper
 | 
18 Apr 2023
Model evaluation paper |  | 18 Apr 2023

Evaluating wind profiles in a numerical weather prediction model with Doppler lidar

Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua

Related authors

Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar
Pyry Pentikäinen, Ewan James O'Connor, Antti Juhani Manninen, and Pablo Ortiz-Amezcua
Atmos. Meas. Tech., 13, 2849–2863, https://doi.org/10.5194/amt-13-2849-2020,https://doi.org/10.5194/amt-13-2849-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024,https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
TorchClim v1.0: a deep-learning plugin for climate model physics
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024,https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024,https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024,https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024,https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary

Cited articles

Accadia, C., Zecchetto, S., Lavagnini, A., and Speranza, A.: Comparison of 10-m wind forecasts from a Regional Area Model and QuikSCAT Scatterometer wind observations over the Mediterranean Sea, Mon. Weather Rev., 135, 1945– 1960, https://doi.org/10.1175/MWR3370.1, 2007. a, b
Andersson, E.: How to evolve global observing systems, ECMWF Newsletter, 153, 37–40, https://doi.org/10.21957/9fxea2, 2017. a
Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN), 2013-09-28 to 2022-05-29, ARM Mobile Facility (PVC) Highland Center, Cape Cod MA; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Keeler, E., Coulter, R., Kyrouac, J., and Holdridge, D., ARM Data Center [data set], https://doi.org/10.5439/1021460, 2013. a
Atmospheric Radiation Measurement (ARM) user facility: Doppler Lidar Horizontal Wind Profiles (DLPROFWIND4NEWS), 2014-10-21 to 2022-03-20, ARM Mobile Facility (PVC) Highland Center, Cape Cod MA; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Shippert, T., Newsom, R., and Riihimaki, L., ARM Data Center [data set], https://doi.org/10.5439/1178582, 2014. a
Beck, J., Nuret, M., and Bousquet, O.: Model wind field forecast verification using multiple-Doppler syntheses from a national radar network, Weather Forecast., 29, 331–348, https://doi.org/10.1175/WAF-D-13-00068.1, 2014. a
Download
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with co-located radiosonde profiles, and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.