Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2077-2023
https://doi.org/10.5194/gmd-16-2077-2023
Model evaluation paper
 | 
18 Apr 2023
Model evaluation paper |  | 18 Apr 2023

Evaluating wind profiles in a numerical weather prediction model with Doppler lidar

Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua

Related authors

Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar
Pyry Pentikäinen, Ewan James O'Connor, Antti Juhani Manninen, and Pablo Ortiz-Amezcua
Atmos. Meas. Tech., 13, 2849–2863, https://doi.org/10.5194/amt-13-2849-2020,https://doi.org/10.5194/amt-13-2849-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model
Marika M. Holland, Cecile Hannay, John Fasullo, Alexandra Jahn, Jennifer E. Kay, Michael Mills, Isla R. Simpson, William Wieder, Peter Lawrence, Erik Kluzek, and David Bailey
Geosci. Model Dev., 17, 1585–1602, https://doi.org/10.5194/gmd-17-1585-2024,https://doi.org/10.5194/gmd-17-1585-2024, 2024
Short summary
Quantifying wildfire drivers and predictability in boreal peatlands using a two-step error-correcting machine learning framework in TeFire v1.0
Rongyun Tang, Mingzhou Jin, Jiafu Mao, Daniel M. Ricciuto, Anping Chen, and Yulong Zhang
Geosci. Model Dev., 17, 1525–1542, https://doi.org/10.5194/gmd-17-1525-2024,https://doi.org/10.5194/gmd-17-1525-2024, 2024
Short summary
Benchmarking GOCART-2G in the Goddard Earth Observing System (GEOS)
Allison B. Collow, Peter R. Colarco, Arlindo M. da Silva, Virginie Buchard, Huisheng Bian, Mian Chin, Sampa Das, Ravi Govindaraju, Dongchul Kim, and Valentina Aquila
Geosci. Model Dev., 17, 1443–1468, https://doi.org/10.5194/gmd-17-1443-2024,https://doi.org/10.5194/gmd-17-1443-2024, 2024
Short summary
Energy-conserving physics for nonhydrostatic dynamics in mass coordinate models
Oksana Guba, Mark A. Taylor, Peter A. Bosler, Christopher Eldred, and Peter H. Lauritzen
Geosci. Model Dev., 17, 1429–1442, https://doi.org/10.5194/gmd-17-1429-2024,https://doi.org/10.5194/gmd-17-1429-2024, 2024
Short summary
Evaluation and optimisation of the soil carbon turnover routine in the MONICA model (version 3.3.1)
Konstantin Aiteew, Jarno Rouhiainen, Claas Nendel, and René Dechow
Geosci. Model Dev., 17, 1349–1385, https://doi.org/10.5194/gmd-17-1349-2024,https://doi.org/10.5194/gmd-17-1349-2024, 2024
Short summary

Cited articles

Accadia, C., Zecchetto, S., Lavagnini, A., and Speranza, A.: Comparison of 10-m wind forecasts from a Regional Area Model and QuikSCAT Scatterometer wind observations over the Mediterranean Sea, Mon. Weather Rev., 135, 1945– 1960, https://doi.org/10.1175/MWR3370.1, 2007. a, b
Andersson, E.: How to evolve global observing systems, ECMWF Newsletter, 153, 37–40, https://doi.org/10.21957/9fxea2, 2017. a
Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN), 2013-09-28 to 2022-05-29, ARM Mobile Facility (PVC) Highland Center, Cape Cod MA; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Keeler, E., Coulter, R., Kyrouac, J., and Holdridge, D., ARM Data Center [data set], https://doi.org/10.5439/1021460, 2013. a
Atmospheric Radiation Measurement (ARM) user facility: Doppler Lidar Horizontal Wind Profiles (DLPROFWIND4NEWS), 2014-10-21 to 2022-03-20, ARM Mobile Facility (PVC) Highland Center, Cape Cod MA; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Shippert, T., Newsom, R., and Riihimaki, L., ARM Data Center [data set], https://doi.org/10.5439/1178582, 2014. a
Beck, J., Nuret, M., and Bousquet, O.: Model wind field forecast verification using multiple-Doppler syntheses from a national radar network, Weather Forecast., 29, 331–348, https://doi.org/10.1175/WAF-D-13-00068.1, 2014. a
Download
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with co-located radiosonde profiles, and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.