Articles | Volume 16, issue 7
https://doi.org/10.5194/gmd-16-1909-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1909-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving the representation of shallow cumulus convection with the simplified-higher-order-closure–mass-flux (SHOC+MF v1.0) approach
Maria J. Chinita
CORRESPONDING AUTHOR
Joint Institute for Regional Earth System Science and Engineering, University of California Los Angeles,
Los Angeles, California, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Mikael Witte
Joint Institute for Regional Earth System Science and Engineering, University of California Los Angeles,
Los Angeles, California, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Department of Meteorology, Naval Postgraduate School, Monterey, California, USA
Marcin J. Kurowski
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Joao Teixeira
Joint Institute for Regional Earth System Science and Engineering, University of California Los Angeles,
Los Angeles, California, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Kay Suselj
Joint Institute for Regional Earth System Science and Engineering, University of California Los Angeles,
Los Angeles, California, USA
Running Tide Technologies, Inc., Portland, Maine, USA
Georgios Matheou
Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, USA
Peter Bogenschutz
Lawrence Livermore National Laboratory, Livermore, California, USA
Related authors
Mark A. Smalley, Mikael K. Witte, Jong-Hoon Jeong, and Maria J. Chinita
EGUsphere, https://doi.org/10.5194/egusphere-2024-1098, https://doi.org/10.5194/egusphere-2024-1098, 2024
Preprint archived
Short summary
Short summary
Evaporation of rain leads to cooler and sometimes moister surface conditions (cold pools), which can lead to further convection that alters convective, cloud, precipitation, and radiation properties. We introduce a new method of measuring cold pools, which accounts for the seasonal and daily changes in dry air turbulence in which the cold pool signatures are embedded. We then apply it to 8 years of observations in the north midlatitude Atlantic Ocean.
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 18, 4483–4495, https://doi.org/10.5194/amt-18-4483-2025, https://doi.org/10.5194/amt-18-4483-2025, 2025
Short summary
Short summary
This study explores the potential of a hypothetical spaceborne radar to observe water vapor within clouds.
Juan Socuellamos, Matthew Lebsock, Raquel Rodriguez Monje, Marcin Kurowski, Derek Posselt, and Robert Beauchamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-4248, https://doi.org/10.5194/egusphere-2025-4248, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Using simulated airborne and spaceborne W-band (94 GHz) and G-band (239 GHz) radar observations, this article presents an optimal estimation framework that includes dual-frequency reflectivity and differential absorption measurements to obtain more accurate drizzle retrievals. We demonstrate that an improvement of more than one order of magnitude in the retrieval of the drizzle mixing ratio, droplet concentration, and mass-weighted diameter can be achieved compared to W-band only results.
Jishi Zhang, Jean–Christophe Golaz, Matthew Vincent Signorotti, Hsiang–He Lee, Peter Bogenschutz, Minda Monteagudo, Paul Aaron Ullrich, Robert S. Arthur, Stephen Po–Chedley, Philip Cameron–smith, and Jean–Paul Watson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3947, https://doi.org/10.5194/egusphere-2025-3947, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We ran a convection-permitting model with regional mesh refinement (3.25 km and 800 m) to simulate present-day wind and solar capacity factors over California, coupling it to an energy generation model. The high-resolution models captured realistic seasonal and diurnal cycles, with wind markedly better than a 25 km model and solar outperforming a 3 km operational forecast. We highlight the critical role of resolution, modeling assumptions, and data reliability in renewable energy assessment.
Scarlet R. Passer, Mikael K. Witte, and Patrick Y. Chuang
Atmos. Meas. Tech., 18, 3819–3831, https://doi.org/10.5194/amt-18-3819-2025, https://doi.org/10.5194/amt-18-3819-2025, 2025
Short summary
Short summary
One important property of a cloud is the concentration of cloud drops. This property is relevant to how the cloud interacts with sunlight and how easily the cloud forms precipitation. Measuring this property from satellite observations is one important source of data, but it does require making some assumptions. This study evaluates the accuracy of satellite-derived drop concentration by a comparison with aircraft measurements.
Jishi Zhang, Peter Bogenschutz, Mark Taylor, and Philip Cameron-Smith
EGUsphere, https://doi.org/10.5194/egusphere-2025-2223, https://doi.org/10.5194/egusphere-2025-2223, 2025
Short summary
Short summary
We pushed a global cloud-resolving model to a novel 100 m resolution setup over the San Francisco Bay Area using a regionally refined mesh. The model captured fine-scale air motions over complex terrain and coastal regions at large-eddy scales with fully comprehensive global modeling configuration, enabled by scale-aware turbulence parameterization. Performance tests demonstrated that GPU acceleration can make such high-resolution simulations feasible within practical timeframes.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Marcin J. Kurowski, Matthew D. Lebsock, and Kevin M. Smalley
EGUsphere, https://doi.org/10.5194/egusphere-2025-714, https://doi.org/10.5194/egusphere-2025-714, 2025
Short summary
Short summary
This study explores how clouds respond to pollution throughout the day using high-resolution simulations. Polluted clouds show stronger daily changes: thicker clouds at night and in the morning but faster thinning in the afternoon. Pollution reduces rainfall but enhances drying, deepening the cloud layer. While the pollution initially brightens clouds, the daily cycle of cloudiness slightly reduces this brightening effect.
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
Atmos. Meas. Tech., 18, 981–1011, https://doi.org/10.5194/amt-18-981-2025, https://doi.org/10.5194/amt-18-981-2025, 2025
Short summary
Short summary
Satellite remote sensing retrievals of cloud droplet size are used to understand clouds and their interactions with aerosols and radiation but require many simplifying assumptions. Evaluation of these retrievals is typically done by comparing against direct measurements of droplets from airborne cloud probes. This paper details an evaluation of proxy airborne remote sensing droplet size retrievals against several cloud probes and explores the impact of key assumptions on retrieval agreement.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
João Teixeira, R. Chris Wilson, and Heidar Th. Thrastarson
Atmos. Chem. Phys., 24, 6375–6383, https://doi.org/10.5194/acp-24-6375-2024, https://doi.org/10.5194/acp-24-6375-2024, 2024
Short summary
Short summary
This paper presents direct evidence from space (solely based on observations) that CO2 increase leads to the theoretically expected effects on longwave spectral radiances. This is achieved by using a methodology that allows us to isolate the CO2 effects from the temperature and water vapor effects. By searching for ensembles of temperature and water vapor profiles that are similar to each other but have different values of CO2, it is possible to estimate the direct effects of CO2 on the spectra.
Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang
Geosci. Model Dev., 17, 3687–3731, https://doi.org/10.5194/gmd-17-3687-2024, https://doi.org/10.5194/gmd-17-3687-2024, 2024
Short summary
Short summary
We developed a regionally refined climate model that allows resolved convection and performed a 20-year projection to the end of the century. The model has a resolution of 3.25 km in California, which allows us to predict climate with unprecedented accuracy, and a resolution of 100 km for the rest of the globe to achieve efficient, self-consistent simulations. The model produces superior results in reproducing climate patterns over California that typical modern climate models cannot resolve.
Mark A. Smalley, Mikael K. Witte, Jong-Hoon Jeong, and Maria J. Chinita
EGUsphere, https://doi.org/10.5194/egusphere-2024-1098, https://doi.org/10.5194/egusphere-2024-1098, 2024
Preprint archived
Short summary
Short summary
Evaporation of rain leads to cooler and sometimes moister surface conditions (cold pools), which can lead to further convection that alters convective, cloud, precipitation, and radiation properties. We introduce a new method of measuring cold pools, which accounts for the seasonal and daily changes in dry air turbulence in which the cold pool signatures are embedded. We then apply it to 8 years of observations in the north midlatitude Atlantic Ocean.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023, https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Short summary
Models that are used to simulate and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper, we develop a novel framework that increases the horizontal and vertical resolutions only for areas of the globe that contain stratocumulus, hence reducing the model runtime while providing better results.
Kevin M. Smalley, Matthew D. Lebsock, Ryan Eastman, Mark Smalley, and Mikael K. Witte
Atmos. Chem. Phys., 22, 8197–8219, https://doi.org/10.5194/acp-22-8197-2022, https://doi.org/10.5194/acp-22-8197-2022, 2022
Short summary
Short summary
We use geostationary satellite observations to track pockets of open-cell (POC) stratocumulus and analyze how precipitation, cloud microphysics, and the environment change. Precipitation becomes more intense, corresponding to increasing effective radius and decreasing number concentrations, while the environment remains relatively unchanged. This implies that changes in cloud microphysics are more important than the environment to POC development.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022, https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Short summary
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field in a way that
smears2-D maps of imaging spectroscopy vapour retrievals. In simulations we show how this smearing is
towardsor
away fromthe Sun, so calculating
across the solar direction allows sub-kilometre information about water vapour's spatial scaling to be calculated. This could be tested by airborne campaigns and used to obtain new information from upcoming spaceborne data products.
Siraput Jongaramrungruang, Georgios Matheou, Andrew K. Thorpe, Zhao-Cheng Zeng, and Christian Frankenberg
Atmos. Meas. Tech., 14, 7999–8017, https://doi.org/10.5194/amt-14-7999-2021, https://doi.org/10.5194/amt-14-7999-2021, 2021
Short summary
Short summary
This study shows how precision error and bias in column methane retrieval change with different instrument specifications and the impact of spectrally complex surface albedos on retrievals. We show how surface interferences can be mitigated with an optimal spectral resolution and a higher polynomial degree in a retrieval process. The findings can inform future satellite instrument designs to have robust observations capable of separating real CH4 plume enhancements from surface interferences.
Richard J. Roy, Matthew Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-6443-2021, https://doi.org/10.5194/amt-14-6443-2021, 2021
Short summary
Short summary
This study describes the potential capabilities of a hypothetical spaceborne radar to observe water vapor within clouds.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021, https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
Short summary
Modern and upcoming hyperspectral imagers will take images with spatial resolutions as fine as 20 m. They can retrieve column water vapour, and we show evidence that from these column measurements you can get statistics of planetary boundary layer (PBL) water vapour. This is important information for climate models that need to account for sub-grid mixing of water vapour near the surface in their PBL schemes.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Peter A. Bogenschutz, Shuaiqi Tang, Peter M. Caldwell, Shaocheng Xie, Wuyin Lin, and Yao-Sheng Chen
Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, https://doi.org/10.5194/gmd-13-4443-2020, 2020
Short summary
Short summary
This paper documents a tool that has been developed that can be used to accelerate the development and understanding of climate models. This version of the model, known as a the single-column model, is much faster to run than the full climate model, and we demonstrate that this tool can be used to quickly exploit model biases that arise due to physical processes. We show examples of how this single-column model can directly benefit the field.
Cited articles
Beljaars, A., Balsamo, G., Bechtold, P., Bozzo, A., Forbes, R., Hogan, R.
J., Köhler, M., Morcrette, J. J., Tompkins, A. M., Viterbo, P., and
Wedi, N.: The Numerics of Physical Parametrization in the ECMWF Model,
Front. Earth Sci., 6, 1–18, https://doi.org/10.3389/feart.2018.00137, 2018.
Betts, A. K.: Non-precipitating cumulus convection and its parameterization,
Q. J. Roy. Meteor. Soc., 99, 178–196,
https://doi.org/10.1002/qj.49709941915, 1973.
Blackadar, A. K.: The vertical distribution of wind and turbulent exchange
in a neutral atmosphere, J. Geophys. Res., 67, 3095–3102, 1962.
Bogenschutz, P. A. and Krueger, S. K.: A simplified PDF parameterization of
subgrid-scale clouds and turbulence for cloud-resolving models, J. Adv.
Model. Earth Sy., 5, 195–211, https://doi.org/10.1002/jame.20018, 2013.
Bogenschutz, P. A., Tang, S., Caldwell, P. M., Xie, S., Lin, W., and Chen, Y.-S.: The E3SM version 1 single-column model, Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, 2020.
Böing, S. J., Jonker, H. J. J., Siebesma, A. P., and Grabowski, W. W.:
Influence of the subcloud layer on the development of a deep convective
ensemble, J. Atmos. Sci., 69, 2682–2698,
https://doi.org/10.1175/JAS-D-11-0317.1, 2012.
Brient, F., Couvreux, F., Villefranque, N., Rio, C., and Honnert, R.:
Object-Oriented Identification of Coherent Structures in Large Eddy
Simulations: Importance of Downdrafts in Stratocumulus, Geophys. Res. Lett.,
46, 2854–2864, https://doi.org/10.1029/2018GL081499, 2019.
Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J. C.,
Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng, C.
H., Neggers, R. A. J., Siebesma, A. P., and Stevens, B.: Large-eddy
simulation of the diurnal cycle of shallow cumulus convection over land, Q. J. Roy. Meteor. Soc., 128, 1075–1093,
https://doi.org/10.1256/003590002320373210, 2002.
Caldwell, P. M., Terai, C. R., Hillman, B., Keen, N. D., Bogenschutz, P.,
Lin, W., Beydoun, H., Taylor, M., Bertagna, L., Bradley, A. M., Clevenger,
T. C., Donahue, A. S., Eldred, C., Foucar, J., Golaz, J. C., Guba, O.,
Jacob, R., Johnson, J., Krishna, J., Liu, W., Pressel, K., Salinger, A. G.,
Singh, B., Steyer, A., Ullrich, P., Wu, D., Yuan, X., Shpund, J., Ma, H. Y.,
and Zender, C. S.: Convection-Permitting Simulations With the E3SM Global
Atmosphere Model, J. Adv. Model. Earth Sy., 13, e2021MS002544,
https://doi.org/10.1029/2021MS002544, 2021.
Cheng, A. and Xu, K. M.: Simulation of shallow cumuli and their transition
to deep convective clouds by cloud-resolving models with different
third-order turbulence closures, Q. J. Roy. Meteor. Soc., 132, 359–382,
https://doi.org/10.1256/qj.05.29, 2006.
Cheng, A. and Xu, K. M.: Simulation of boundary-layer cumulus and
stratocumulus clouds using a cloud-resolving model with low- and third-order
turbulence closures, J. Meteorol. Soc. Japan, 86A, 67–86,
https://doi.org/10.2151/jmsj.86A.67, 2008.
Chinita, M.: Code for SHOC+MF_v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.7011628, 2022a.
Chinita, M.: Data for SHOC+MF_v1.0, Zenodo [data set], https://doi.org/10.5281/zenodo.7011652, 2022b.
Chinita, M. J., Matheou, G., and Teixeira, J.: A joint probability
density-based decomposition of turbulence in the atmospheric boundary layer,
Mon. Weather Rev., 146, 503–523, https://doi.org/10.1175/MWR-D-17-0166.1, 2018.
Chinita, M. J., Matheou, G., and Miranda, P. M. A.: Large-eddy simulation of
very stable boundary layers. Part I: Modeling methodology, Q. J. Roy. Meteor. Soc., 148, 1805–1823, https://doi.org/10.1002/qj.4279,
2022a.
Chinita, M. J., Matheou, G., and Miranda, P. M. A.: Large-eddy simulation of
very stable boundary layers. Part II: Length scales and anisotropy in
stratified atmospheric turbulence, Q. J. Roy. Meteor. Soc., 148, 1824–1839,
https://doi.org/10.1002/qj.4280, 2022b.
Chung, D. and Matheou, G.: Large-eddy simulation of stratified turbulence.
Part I: A vortex-based subgrid-scale model, J. Atmos. Sci., 71, 1863–1879,
https://doi.org/10.1175/JAS-D-13-0126.1, 2014.
Chung, D., Matheou, G., and Teixeira, J.: Steady-state large-eddy
simulations to study the stratocumulus to shallow cumulus cloud transition,
J. Atmos. Sci., 69, 3264–3276, https://doi.org/10.1175/JAS-D-11-0256.1,
2012.
Cohen, Y., Lopez-Gomez, I., Jaruga, A., He, J., Kaul, C. M., and Schneider,
T.: Unified Entrainment and Detrainment Closures for Extended
Eddy-Diffusivity Mass-Flux Schemes, J. Adv. Model. Earth Sy., 12,
e2020MS002162, https://doi.org/10.1029/2020MS002162, 2020.
Couvreux, F., Hourdin, F., and Rio, C.: Resolved versus parametrized
boundary-layer plumes. Part I: A parametrization-oriented conditional
sampling in large-eddy simulations, Bound.-Lay. Meteorol., 134, 441–458,
https://doi.org/10.1007/s10546-009-9456-5, 2010.
Couvreux, F., Bazile, E., Rodier, Q., Maronga, B., Matheou, G., Chinita, M.
J., Edwards, J., van Stratum, B. J. H., van Heerwaarden, C. C., Huang, J.,
Moene, A. F., Cheng, A., Fuka, V., Basu, S., Bou-Zeid, E., Canut, G., and
Vignon, E.: Intercomparison of Large-Eddy Simulations of the Antarctic
Boundary Layer for Very Stable Stratification, Bound.-Lay. Meteorol.,
176, 369–400, https://doi.org/10.1007/s10546-020-00539-4, 2020.
Deardorff, J. W.: The Counter-Gradient Heat Flux in the Lower Atmosphere and
in the Laboratory, J. Atmos. Sci., 23, 503–506, https://doi.org/10.1175/1520-0469(1966)023<0503:tcghfi>2.0.co;2, 1966.
E3SM Project, DOE: Energy Exascale Earth System Model v2.0. (Computer Software), DOE [software], https://doi.org/10.11578/E3SM/dc.20210927.1, 2021.
Firl, G. J. and Randall, D. A.: Fitting and analyzing les using multiple
trivariate Gaussians, J. Atmos. Sci., 72, 1094–1116,
https://doi.org/10.1175/JAS-D-14-0192.1, 2015.
Fitch, A. C.: An improved double-Gaussian closure for the subgrid vertical
velocity probability distribution function, J. Atmos. Sci., 76, 285–304,
https://doi.org/10.1175/JAS-D-18-0149.1, 2019.
Golaz, J. C., Larson, V. E., and Cotton, W. R.: A PDF-based model for
boundary layer clouds. Part I: Method and model description, J. Atmos. Sci.,
59, 3540–3551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2, 2002.
Golaz, J. C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M.
A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J.
G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J.,
Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H. Y., Lin, W.,
Lipscomb, W. H., Ma, P. L., Mahajan, S., Maltrud, M. E., Mametjanov, A.,
McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch,
P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A. F.,
Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J.,
Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang,
H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang,
Y., Yoon, J. H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang,
K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM Coupled Model
Version 1: Overview and Evaluation at Standard Resolution, J. Adv. Model. Earth Sy., 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019.
Han, J. and Bretherton, C. S.: TKE-based moist eddy-diffusivity mass-flux
(EDMF) parameterization for vertical turbulent mixing, Weather Forecast.,
34, 869–886, https://doi.org/10.1175/WAF-D-18-0146.1, 2019.
Han, J. and Pan, H. L.: Revision of convection and vertical diffusion
schemes in the NCEP Global Forecast System, Weather Forecast., 26, 520–533,
https://doi.org/10.1175/WAF-D-10-05038.1, 2011.
Han, J., Witek, M. L., Teixeira, J., Sun, R., Pan, H. L., Fletcher, J. K.,
and Bretherton, C. S.: Implementation in the NCEP GFS of a hybrid
eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with
dissipative heating and modified stable boundary layer mixing, Weather
Forecast., 31, 341–352, https://doi.org/10.1175/WAF-D-15-0053.1, 2016.
Holtslag, A. A. M. and Boville, B. A.: Local versus nonlocal boundary-layer
diffusion in a global climate model, J. Climate, 6, 1825–1842,
https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2, 1993.
Holtslag, A. A. M. and Moeng, C.-H.: Eddy diffusivity and countergradient
transport in the convective atmospheric boundary layer, J. Atmos. Sci., 48, 1690–1698,
https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2, 1991.
Kohler, M., Ahlgrimm, M., and Beljaars, A.: Unified treatment of dry
convective and stratocumulus-topped boundary layers in the ECMWF model, Q. J. Roy. Meteor. Soc., 137, 43–57, https://doi.org/10.1002/qj.713, 2011.
Kurowski, M. J., Suselj, K., and Grabowski, W. W.: Is Shallow Convection
Sensitive to Environmental Heterogeneities?, Geophys. Res. Lett., 46,
1785–1793, https://doi.org/10.1029/2018GL080847, 2019a.
Kurowski, M. J., Thrastarson, H. T., Suselj, K., and Teixeira, J.: Towards
unifying the planetary boundary layer and shallow convection in CAM5 with
the eddy-diffusivity/mass-flux approach, Atmosphere, 10, 484,
https://doi.org/10.3390/atmos10090484, 2019b.
Lamaakel, O. and Matheou, G.: Galilean invariance of shallow cumulus
convection large-eddy simulations, J. Comput. Phys., 427, 110012,
https://doi.org/10.1016/j.jcp.2020.110012, 2021.
Matheou, G.: Turbulence Structure in a Stratocumulus Cloud, Atmosphere, 9, 392,
https://doi.org/10.3390/atmos9100392, 2018.
Matheou, G. and Chung, D.: Large-eddy simulation of stratified turbulence.
Part II: Application of the stretched-vortex model to the atmospheric
boundary layer, J. Atmos. Sci., 71, 4439–4460,
https://doi.org/10.1175/JAS-D-13-0306.1, 2014.
Matheou, G. and Teixeira, J.: Sensitivity to physical and numerical aspects
of large-eddy simulation of stratocumulus, Mon. Weather Rev., 147,
2621–2639, https://doi.org/10.1175/MWR-D-18-0294.1, 2019.
Matheou, G., Chung, D., and Teixeira, J.: On the synergy between numerics
and subgrid scale modeling in LES of stratified flows: Grid convergence of a
stratocumulus-topped boundary layer., in: Eighth Int. Symp. on Stratified Flows, Vol. 1, San Diego,
CA, NASA Jet Propulsion Laboratory, http://hdl.handle.net/2014/46171 (last access: 20 March 2023), 2016.
Morinishi, Y., Lund, T. S., Vasilyev, O. V, and Moin, P.: Fully Conservative
Higher Order Finite Difference Schemes for Incompressible Flow, J. Comput.
Phys., 143, 90–124, https://doi.org/10.1006/jcph.1998.5962,
1998.
Neggers, R. A. J.: A dual mass flux framework for boundary layer convection.
Part II: Clouds, J. Atmos. Sci., 66, 1489–1506,
https://doi.org/10.1175/2008JAS2636.1, 2009.
Olson, J. B., Kenyon, J. S., Angevine, W. A., Brown, J. M., Pagowski, M.,
and Sušelj, K.: A Description of the MYNN-EDMF Scheme and the Coupling
to Other Components in WRF–ARW, NOAA Technical Memorandum OAR GSD-61,
https://doi.org/10.25923/n9wm-be49, 2019.
Richtmyer, R. and Morton, K.: Difference methods for initial value
problems, 2nd edn., Wiley-Interscience, New York, 405 pp., 1967.
Rio, C. and Hourdin, F.: A thermal plume model for the convective boundary
layer: Representation of cumulus clouds, J. Atmos. Sci., 65, 407–425,
https://doi.org/10.1175/2007JAS2256.1, 2008.
Romps, D. M. and Kuang, Z.: Nature versus nurture in shallow convection, J.
Atmos. Sci., 67, 1655–1666, https://doi.org/10.1175/2009JAS3307.1, 2010.
Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G.,
Schär, C., and Siebesma, A. P.: Climate goals and computing the future
of clouds, Nat. Clim. Change, 7, 3–5, https://doi.org/10.1038/nclimate3190,
2017.
Sherwood, S. C., Bony, S., and Dufresne, J. L.: Spread in model climate
sensitivity traced to atmospheric convective mixing, Nature, 505, 37–42,
https://doi.org/10.1038/nature12829, 2014.
Siebesma, A., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C. H.,
Sanchez, E., Stevens, B., and Stevens, D. E.: A large eddy simulation
intercomparison study of shallow cumulus convection, J. Atmos. Sci., 60,
1201–1219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003.
Siebesma, A. P. and Cuijpers, J. W. M.: Evaluation of parametric assumptions
for shallow cumulus convection, J. Atmos. Sci., 52, 650–666,
https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2, 1995.
Siebesma, A. P., Soares, P. M. M., and Teixeira, J.: A combined
eddy-diffusivity mass-flux approach for the convective boundary layer, J.
Atmos. Sci., 64, 1230–1248, https://doi.org/10.1175/JAS3888.1, 2007.
Siebesma, P. and Teixeira, J.: An advection-diffusion scheme for the
convective boundary layer: Description and 1D-results, in: Proc. 14th Symp. on Boundary Layers and Turbulence, Aspen, CO,
Amer. Meteor. Soc., 133–136, 2000.
Soares, P. M. M., Miranda, P. M. A., Siebesma, A. P., and Teixeira, J.: An
eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus
convection, Q. J. Roy. Meteor. Soc., 130, 3365–3383,
https://doi.org/10.1256/qj.03.223, 2004.
Stevens, B.: Quasi-steady analysis of a PBL model with an Eddy-diffusivity
profile and nonlocal fluxes, Mon. Weather Rev., 128, 824–836,
https://doi.org/10.1175/1520-0493(2000)128<0824:QSAOAP>2.0.CO;2, 2000.
Suselj, K., Teixeira, J., and Chung, D.: A unified model for moist
convective boundary layers based on a stochastic eddy-diffusivity/mass-flux
parameterization, J. Atmos. Sci., 70, 1929–1953,
https://doi.org/10.1175/JAS-D-12-0106.1, 2013.
Suselj, K., Hogan, T. F., and Teixeira, J.: Implementation of a stochastic
eddy-diffusivity/mass-flux parameterization into the Navy Global
environmental model, Weather Forecast., 29, 1374–1390,
https://doi.org/10.1175/WAF-D-14-00043.1, 2014.
Suselj, K., Kurowski, M. J., and Teixeira, J.: A unified
eddy-diffusivity/mass-flux approach for modeling atmospheric convection, J.
Atmos. Sci., 76, 2505–2537, https://doi.org/10.1175/JAS-D-18-0239.1, 2019a.
Suselj, K., Kurowski, M. J., and Teixeira, J.: On the factors controlling
the development of shallow convection in eddy-diffusivity/mass-flux models,
J. Atmos. Sci., 76, 433–456, https://doi.org/10.1175/JAS-D-18-0121.1,
2019b.
Suselj, K., Teixeira, J., Kurowski, M. J., and Molod, A.: Improving the
representation of subtropical boundary layer clouds in the NASA GEOS model
with the eddy-diffusivity/mass-flux parameterization, Mon. Weather Rev.,
149, 793–809, https://doi.org/10.1175/MWR-D-20-0183.1, 2021.
Takahashi, H., Luo, Z. J., and Stephens, G.: Revisiting the Entrainment
Relationship of Convective Plumes: A Perspective From Global Observations,
Geophys. Res. Lett., 48, e2020GL092349, https://doi.org/10.1029/2020GL092349, 2021.
Tan, Z., Kaul, C. M., Pressel, K. G., Cohen, Y., Schneider, T., and
Teixeira, J.: An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified
Representation of Subgrid-Scale Turbulence and Convection, J. Adv. Model. Earth Sy., 10, 770–800,
https://doi.org/10.1002/2017MS001162, 2018.
Teixeira, J. and Cheinet, S.: A simple mixing length formulation for the
eddy-diffusivity parameterization of dry convection, Bound.-Lay. Meteorol., 110, 435–453,
https://doi.org/10.1023/B:BOUN.0000007230.96303.0d, 2004.
Teixeira, J. and Siebesma, P.: A mass flux/K-diffusion approach to the
parameterization of the convective boundary layer: Global model results,
in: Proc. 14th Symp. on Boundary Layers and Turbulence, Aspen, CO,
Amer. Meteor. Soc., 231–234, 2000.
Teixeira, J., Ferreira, J. P., Miranda, P. M. A., Haack, T., Doyle, J.,
Siebsema, A. P., and Salgado, R.: A new mixing-length formulation for the
parameterization of dry convection: Implementation and evaluation in
mesoscale model, Mon. Weather Rev., 132, 2698–2707,
https://doi.org/10.1175/MWR2808.1, 2004.
Teixeira, J., Stevens, B., Bretherton, C. S., Cederwall, R., Doyle, J. D.,
Golaz, J. C., Holtslag, A. A. M., Klein, S. A., Lundquist, J. K., Randall,
D. A., Siebesma, A. P., and Soares, P. M. M.: Parameterization of the
atmospheric boundary layer: A view from just above the inversion, B. Am.
Meteorol. Soc., 89, 453–458, https://doi.org/10.1175/BAMS-89-4-453, 2008.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization
in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800, 1989.
Witek, M. L., Teixeira, J., and Matheou, G.: An Integrated TKE-based eddy
diffusivity/mass flux boundary layer closure for the dry convective boundary
layer, J. Atmos. Sci., 68, 1526–1540,
https://doi.org/10.1175/2011JAS3548.1, 2011.
Witte, M. K., Herrington, A., Teixeira, J., Kurowski, M., Chinita, M. J.,
Storer, R. L., Suselj, K., Matheou, G., and Bacmeister, J.: Augmenting the
double-Gaussian representation of atmospheric turbulence and convection via
a coupled stochastic multi-plume mass flux scheme, Mon. Weather Rev., 150, 2339–2355,
https://doi.org/10.1175/MWR-D-21-0215.1, 2022.
Wu, E., Yang, H., Kleissl, J., Suselj, K., Kurowski, M. J., and Teixeira,
J.: On the parameterization of convective downdrafts for marine
stratocumulus clouds, Mon. Weather Rev., 148, 1931–1950,
https://doi.org/10.1175/MWR-D-19-0292.1, 2020.
Yoshimura, H., Mizuta, R., and Murakami, H.: A spectral cumulus
parameterization scheme interpolating between two convective updrafts with
semi-lagrangian calculation of transport by compensatory subsidence, Mon.
Weather Rev., 143, 597–621, https://doi.org/10.1175/MWR-D-14-00068.1, 2015.
Short summary
Low clouds are one of the largest sources of uncertainty in climate prediction. In this paper, we introduce the first version of the unified turbulence and shallow convection parameterization named SHOC+MF developed to improve the representation of shallow cumulus clouds in the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM). Here, we also show promising preliminary results in a single-column model framework for two benchmark cases of shallow cumulus convection.
Low clouds are one of the largest sources of uncertainty in climate prediction. In this paper,...