Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-179-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-179-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Dario Nicolì
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Alessio Bellucci
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
now at: Consiglio Nazionale delle Ricerche, Istituto di Scienze
dell'Atmosfera e del Clima (CNR-ISAC), Bologna 40129, Italy
Paolo Ruggieri
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
now at: Department of Physics and Astronomy, University of Bologna,
Bologna 40126, Italy
Panos J. Athanasiadis
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Stefano Materia
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Daniele Peano
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Giusy Fedele
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Riccardo Hénin
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Silvio Gualdi
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Related authors
No articles found.
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
EGUsphere, https://doi.org/10.5194/egusphere-2023-1406, https://doi.org/10.5194/egusphere-2023-1406, 2023
Short summary
Short summary
Changes in ocean heat transport and surface heat fluxes in recent decades have altered the Arctic Ocean heat budget and caused warming of the upper ocean. Using two eddy-permitting ocean reanalyses, we show that this has important implications for sea ice variability. In the Arctic regional seas, upper ocean heat content acts as an important precursor for sea ice anomalies on sub-seasonal time scales and this link has strengthened since the 2000s.
David Docquier, Stéphane Vannitsem, and Alessio Bellucci
Earth Syst. Dynam., 14, 577–591, https://doi.org/10.5194/esd-14-577-2023, https://doi.org/10.5194/esd-14-577-2023, 2023
Short summary
Short summary
The climate system is strongly regulated by interactions between the ocean and atmosphere. However, many uncertainties remain in the understanding of these interactions. Our analysis uses a relatively novel approach to quantify causal links between the ocean surface and lower atmosphere based on satellite observations. We find that both the ocean and atmosphere influence each other but with varying intensity depending on the region, demonstrating the power of causal methods.
Federico Fabiano, Paolo Davini, Virna Meccia, Giuseppe Zappa, Alessio Bellucci, Valerio Lembo, Katinka Bellomo, and Susanna Corti
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-15, https://doi.org/10.5194/esd-2023-15, 2023
Preprint under review for ESD
Short summary
Short summary
Even after the concentration of greenhouse gases will be stabilized, the climate will continue to adapt, seeking a new equilibrium. We study this long-term stabilization through a set of 1000-year simulations, obtained by suddenly "freezing" the atmospheric composition at different levels. If frozen at the current state, global warming will likely surpass 3 degrees in the long-term. We then study how climate impacts will change after various centuries and how the deep ocean will warm.
Kristian Strommen, Tim Woollings, Paolo Davini, Paolo Ruggieri, and Isla R. Simpson
EGUsphere, https://doi.org/10.5194/egusphere-2023-307, https://doi.org/10.5194/egusphere-2023-307, 2023
Short summary
Short summary
We present evidence which strongly suggest that decadal variations in the intensity of the North Atlantic winter jetstream can be predicted by current forecast models, but that decadal variations in its position appear to be unpredictable. It is argued that this skill at predicting jet intensity originates from the slow, predictable variability of sea surface temperatures in the sub-polar North Atlantic.
David Docquier, Stéphane Vannitsem, Alessio Bellucci, and Claude Frankignoul
EGUsphere, https://doi.org/10.5194/egusphere-2022-1340, https://doi.org/10.5194/egusphere-2022-1340, 2022
Short summary
Short summary
Understanding whether variations in ocean heat content are driven by air-sea heat fluxes or by ocean dynamics is of crucial importance to enhance climate projections. We use a relatively novel causal method to quantify interactions between ocean heat budget terms based on climate models. We find that low-resolution models overestimate the influence of ocean dynamics in the upper ocean, and that changes in ocean heat content are dominated by air-sea fluxes at high resolution.
Enrico Scoccimarro, Daniele Peano, Silvio Gualdi, Alessio Bellucci, Tomas Lovato, Pier Giuseppe Fogli, and Antonio Navarra
Geosci. Model Dev., 15, 1841–1854, https://doi.org/10.5194/gmd-15-1841-2022, https://doi.org/10.5194/gmd-15-1841-2022, 2022
Short summary
Short summary
This study evaluated the ability of the CMCC-CM2 climate model participating to the last CMIP6 effort, in representing extreme events of precipitation and temperature at the daily and 6-hourly frequencies. The 1/4° resolution version of the atmospheric model provides better results than the version at 1° resolution for temperature extremes, at both time frequencies. For precipitation extremes, especially at the daily time frequency, the higher resolution does not improve model results.
Giusy Fedele, Elena Mauri, Giulio Notarstefano, and Pierre Marie Poulain
Ocean Sci., 18, 129–142, https://doi.org/10.5194/os-18-129-2022, https://doi.org/10.5194/os-18-129-2022, 2022
Short summary
Short summary
Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. This work aims to characterize the inter-basin and inter-annual variability of AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. A clear salinification and warming trend characterizes AW and LIW over the last 2 decades.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Jasdeep Singh Anand, Alessandro Anav, Marcello Vitale, Daniele Peano, Nadine Unger, Xu Yue, Robert J. Parker, and Hartmut Boesch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-125, https://doi.org/10.5194/bg-2021-125, 2021
Publication in BG not foreseen
Short summary
Short summary
Ozone damages plants, which prevents them from absorbing CO2 from the atmosphere. This poses a potential threat to preventing dangerous climate change. In this work, satellite observations of forest cover, ozone, climate, and growing season are combined with an empirical model to estimate the carbon lost due to ozone exposure over Europe. The estimated carbon losses agree well with prior modelled estimates, showing for the first time that satellites can be used to better understand this effect.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Taraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie A. Fisher, Chris D. Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, and Andy J. Wiltshire
Biogeosciences, 17, 5129–5148, https://doi.org/10.5194/bg-17-5129-2020, https://doi.org/10.5194/bg-17-5129-2020, 2020
Hilla Afargan-Gerstman, Iuliia Polkova, Lukas Papritz, Paolo Ruggieri, Martin P. King, Panos J. Athanasiadis, Johanna Baehr, and Daniela I. V. Domeisen
Weather Clim. Dynam., 1, 541–553, https://doi.org/10.5194/wcd-1-541-2020, https://doi.org/10.5194/wcd-1-541-2020, 2020
Short summary
Short summary
We investigate the stratospheric influence on marine cold air outbreaks (MCAOs) in the North Atlantic using ERA-Interim reanalysis data. MCAOs are associated with severe Arctic weather, such as polar lows and strong surface winds. Sudden stratospheric events are found to be associated with more frequent MCAOs in the Barents and the Norwegian seas, affected by the anomalous circulation over Greenland and Scandinavia. Identification of MCAO precursors is crucial for improved long-range prediction.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
S. O. Krichak, S. B. Feldstein, P. Alpert, S. Gualdi, E. Scoccimarro, and J.-I. Yano
Nat. Hazards Earth Syst. Sci., 16, 269–285, https://doi.org/10.5194/nhess-16-269-2016, https://doi.org/10.5194/nhess-16-269-2016, 2016
Short summary
Short summary
This paper presents a review of a large number of research studies focused on the investigation of cold season extreme precipitation events (EPEs) in the Mediterranean region (MR) demonstrating an important role of anomalously intense transports of moist air from the tropical and subtropical Atlantic in the occurrence of the MR EPEs. The issue of a possible role of the recent past decline in Arctic sea ice in the climatology of the MR EPEs during the period is also addressed.
F. Fattore, T. Bertolini, S. Materia, S. Gualdi, A. Thongo M'Bou, G. Nicolini, R. Valentini, A. De Grandcourt, D. Tedesco, and S. Castaldi
Biogeosciences, 11, 3069–3081, https://doi.org/10.5194/bg-11-3069-2014, https://doi.org/10.5194/bg-11-3069-2014, 2014
A. Sanna, P. Lionello, and S. Gualdi
Nat. Hazards Earth Syst. Sci., 13, 1567–1577, https://doi.org/10.5194/nhess-13-1567-2013, https://doi.org/10.5194/nhess-13-1567-2013, 2013
Related subject area
Climate and Earth system modeling
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea
Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0
Differentiable programming for Earth system modeling
Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning
An improved method of the Globally Resolved Energy Balance model by the Bayesian networks
Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations
Various ways of using empirical orthogonal functions for climate model evaluation
C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling
FEOTS v0.0.0: a new offline code for the fast equilibration of tracers in the ocean
Pace v0.2: a Python-based performance-portable atmospheric model
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
The analysis of large-volume multi-institute climate model output at a Central Analysis Facility (PRIMAVERA Data Management Tool V2.10)
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023, https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023, https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
Geosci. Model Dev., 16, 3355–3373, https://doi.org/10.5194/gmd-16-3355-2023, https://doi.org/10.5194/gmd-16-3355-2023, 2023
Short summary
Short summary
Simultaneous modelling of ocean, sea ice, and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev., 16, 3313–3334, https://doi.org/10.5194/gmd-16-3313-2023, https://doi.org/10.5194/gmd-16-3313-2023, 2023
Short summary
Short summary
This paper describes a newly developed submodel ACCF V1.0 based on the MESSy 2.53.0 infrastructure. The ACCF V1.0 is based on the prototype algorithmic climate change functions (aCCFs) v1.0 to enable climate-optimized flight trajectories. One highlight of this paper is that we describe a consistent full set of aCCFs formulas with respect to fuel scenario and metrics. We demonstrate the usage of the ACCF submodel using AirTraf V2.0 to optimize trajectories for cost and climate impact.
Peter Ukkonen and Robin J. Hogan
Geosci. Model Dev., 16, 3241–3261, https://doi.org/10.5194/gmd-16-3241-2023, https://doi.org/10.5194/gmd-16-3241-2023, 2023
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it is computationally too costly to simulate precisely. This has led to attempts to replace radiation codes based on physical equations with neural networks (NNs) that are faster but uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs only to predict optical properties is accurate and reliable.
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023, https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Short summary
Desert dust has significant impacts on climate, public health, infrastructure and ecosystems. An impact assessment requires numerical predictions, which are challenging because the dust emissions are not well known. We present a novel approach using satellite observations and machine learning to more accurately estimate the emissions and to improve the model simulations.
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023, https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
Short summary
Using outputs of global biogeochemical ocean model and machine learning methods, we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
Zhenxia Liu, Zengjie Wang, Jian Wang, Zhengfang Zhang, Dongshuang Li, Zhaoyuan Yu, Linwang Yuan, and Wen Luo
Geosci. Model Dev., 16, 2939–2955, https://doi.org/10.5194/gmd-16-2939-2023, https://doi.org/10.5194/gmd-16-2939-2023, 2023
Short summary
Short summary
This study introduces an improved method of the Globally Resolved Energy Balance (GREB) model by the Bayesian network. The improved method constructs a coarse–fine structure that combines a dynamical model with a statistical model based on employing the GREB model as the global framework and utilizing Bayesian networks as the local optimization. The results show that the improved model has better applicability and stability on a global scale and maintains good robustness on the timescale.
Colin Tully, David Neubauer, and Ulrike Lohmann
Geosci. Model Dev., 16, 2957–2973, https://doi.org/10.5194/gmd-16-2957-2023, https://doi.org/10.5194/gmd-16-2957-2023, 2023
Short summary
Short summary
A new method to simulate deterministic ice nucleation processes based on the differential activated fraction was evaluated against a cumulative approach. Box model simulations of heterogeneous-only ice nucleation within cirrus suggest that the latter approach likely underpredicts the ice crystal number concentration. Longer simulations with a GCM show that choosing between these two approaches impacts ice nucleation competition within cirrus but leads to small and insignificant climate effects.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023, https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, https://doi.org/10.5194/gmd-16-2833-2023, https://doi.org/10.5194/gmd-16-2833-2023, 2023
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features, i.e. a series of parallel-optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells).
Joseph Schoonover, Wilbert Weijer, and Jiaxu Zhang
Geosci. Model Dev., 16, 2795–2809, https://doi.org/10.5194/gmd-16-2795-2023, https://doi.org/10.5194/gmd-16-2795-2023, 2023
Short summary
Short summary
FEOTS aims to enhance the value of data produced by state-of-the-art climate models by providing a framework to diagnose and use ocean transport operators for offline passive tracer simulations. We show that we can capture ocean transport operators from a validated climate model and employ these operators to estimate water mass budgets in an offline regional simulation, using a small fraction of the compute resources required to run a full climate simulation.
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
Geosci. Model Dev., 16, 2719–2736, https://doi.org/10.5194/gmd-16-2719-2023, https://doi.org/10.5194/gmd-16-2719-2023, 2023
Short summary
Short summary
It is hard for scientists to write code which is efficient on different kinds of supercomputers. Python is popular for its user-friendliness. We converted a Fortran code, simulating Earth's atmosphere, into Python. This new code auto-converts to a faster language for processors or graphic cards. Our code runs 3.5–4 times faster on graphic cards than the original on processors in a specific supercomputer system.
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
EGUsphere, https://doi.org/10.5194/egusphere-2023-549, https://doi.org/10.5194/egusphere-2023-549, 2023
Short summary
Short summary
The present paper introduces a floodplains scheme for a high resolution Land Surface Model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land atmosphere fluxes and highlights the potential impact of floodplains on land-atmosphere interactions and the importance of integrating this module in coupled simulations.
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023, https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-46, https://doi.org/10.5194/gmd-2023-46, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The PRIMAVERA project aimed to develop a new generation of advanced global climate models. The large volume of data generated was uploaded to a Central Analysis Facility (CAF) and was analysed by 100 PRIMAVERA scientists there. We describe how the PRIMAVERA project used the CAF's facilities to enable users to analyse this large data set. We believe that similar, multi institute, big-data projects could also use a CAF to efficiently share, organise and analyse large volumes of data.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023, https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Short summary
Climate projections of a high-CO2 future are highly uncertain. A new study provides a novel approach to identifying key regions that dynamically explain the model uncertainty. To yield an accurate estimate of the future North Atlantic carbon uptake, we find that a correct simulation of the upper- and interior-ocean volume transport at 25–30° N is key. However, results indicate that models rarely perform well for both indicators and point towards inconsistencies within the model ensemble.
Cited articles
Allan, R. and Ansell, T.: A new globally complete monthly historical
gridded mean sea level pressure dataset (HadSLP2): 1850–2004, J. Climate, 19, 5816–5842, 2006.
Athanasiadis, P. J., Yeager, S., Kwon, Y. O., Bellucci, A., Smith, D. W.,
and Tibaldi, S.: Decadal predictability of North Atlantic blocking and the
NAO, NPJ Clim. Atmos. Sci., 3, 1–10, 2020.
Athanasiadis, P. J., Ogawa, F., Omrani, N. E., Keenlyside, N., Schiemann, R., Baker, A. J., Vidale, P. L., Bellucci, A., Ruggieri, P., Haarsma, R., Roberts, M., Roberts, C., Novak, L., and Gualdi, S.: Mitigating Climate Biases in the Midlatitude North Atlantic by Increasing Model Resolution: SST Gradients and Their Relation to Blocking and the Jet, J. Climate, 35, 3385–3406, 2022.
Bellucci, A., Gualdi, S., and Navarra, A. J. J. O. C.: The double-ITCZ
syndrome in coupled general circulation models: The role of large-scale
vertical circulation regimes, J. Climate, 23, 1127–1145, 2010.
Bellucci, A., Haarsma, R., Bellouin, N., Booth, B., Cagnazzo, C., van den
Hurk, B., Keenlyside, N., Koenigk, T., Massonnet, F., Materia, S., and
Weiss, M.: Advancements in decadal climate predictability: The role of
nonoceanic drivers, Rev. Geophys., 53, 165–202, 2015a.
Bellucci, A., Haarsma, R., Gualdi, S., Athanasiadis, P. J., Caian, M., Cassou, C., Fernandez, E., Germe, A., Jungclaus, J., Kröger, J., Matei, D., Müller, w., Pohlmann, H., Salas y Melia, D., Sanchez, E., Smith, D., Terray, L., Wyser K., and Yang, S.: An assessment of a multi-model ensemble of
decadal climate predictions, Clim. Dynam., 44, 2787–2806, 2015b.
Bellucci, A., Mariotti, A., and Gualdi, S.: The role of forcings in the
twentieth-century North Atlantic multidecadal variability: The 1940–75
North Atlantic cooling case study, J. Climate, 30, 7317–7337,
2017.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteor. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011.
Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., Samuelsen, A., Langehaug, H., Svendsen, L., Chiu, P.-G., Passos, L., Bentsen, M., Guo, C., Gupta, A., Tjiputra, J., Kirkevåg, A., Olivié, D., Seland, Ø., Solsvik Vågane, J., Fan, Y., and Eldevik, T.: NorCPM1 and its contribution to CMIP6 DCPP, Geosci. Model Dev., 14, 7073–7116, https://doi.org/10.5194/gmd-14-7073-2021, 2021.
Bilbao, R., Wild, S., Ortega, P., Acosta-Navarro, J., Arsouze, T., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Cruz-García, R., Cvijanovic, I., Doblas-Reyes, F. J., Donat, M., Dutra, E., Echevarría, P., Ho, A.-C., Loosveldt-Tomas, S., Moreno-Chamarro, E., Pérez-Zanon, N., Ramos, A., Ruprich-Robert, Y., Sicardi, V., Tourigny, E., and Vegas-Regidor, J.: Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth, Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, 2021.
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016.
Borchert, L. F., Koul, V., Menary, M. B., Befort, D. J., Swingedouw, D.,
Sgubin, G., and Mignot, J.: Skillful decadal prediction of unforced
southern European summer temperature variations, Environ. Res.
Lett., 16, 104017, https://doi.org/10.1088/1748-9326/ac20f5, 2021a.
Borchert, L. F., Menary, M. B., Swingedouw, D., Sgubin, G., Hermanson, L.,
and Mignot, J.: Improved decadal predictions of North Atlantic subpolar
gyre SST in CMIP6, Geophys. Res. Lett., 48, e2020GL091307, https://doi.org/10.1029/2020GL091307,
2021b.
Branstetter, M. L.: Development of a parallel river transport algorithm and
applications to climate studies, The University of Texas at Austin, 2001.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and
Bladé, I.: The effective number of spatial degrees of freedom of a
time-varying field, J. Climate, 12, 1990–2009, 1999.
Brune, S. and Baehr, J.: Preserving the coupled atmosphere–ocean feedback
in initializations of decadal climate predictions, Wiley Interdisciplinary
Reviews: Climate Change, 11, e637, https://doi.org/10.1002/wcc.637, 2020.
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.: Global mean climate and main patterns of variability in the CMCC-CM2
coupled model, J. Adv. Model. Earth Sy., 11, 185–209,
https://doi.org/10.1029/2018MS001369, 2019.
Collins, M.: Climate predictability on interannual to decadal time scales:
The initial value problem, Clim. Dynam., 19, 671–692, 2002.
Delgado-Torres, C., Donat, M. G., Gonzalez-Reviriego, N., Caron, L.-P., Athanasiadis, P. J., Bretonnière, P.-A., Dunstone, N. J., Ho, A.-C., Nicolì, D., Pankatz, K., Paxian, A., Pérez-Zanón, N., Samsó Cabré, M., Solaraju-Murali, B., Soret, A., and Doblas-Reyes, F. J.:
Multi-model forecast quality assessment of CMIP6 decadal predictions,
J. Climate, 35, 4363–4382, 2022.
Doblas‐Reyes, F. J., Balmaseda, M. A., Weisheimer, A., and Palmer, T. N.: Decadal climate prediction with theEuropean Centre for Medium‐Range Weather Forecasts coupled forecast system: Impact of ocean observations, J. Geophys. Res., 116, D19111, https://doi.org/10.1029/2010JD015394, 2011.
Doblas-Reyes, F. J., Andreu-Burillo, I., Chikamoto, Y., García-Serrano, J., Guemas, V., Kimoto, M., Mochizuki, T., Rodrigues, L. R. L., and Van Oldenborgh, G. J.: Initialized
near-term regional climate change prediction, Nat. Commun., 4,
1–9, 2013.
Dong, L., Leung, L. R., Lu, J., and Song, F.: Double-ITCZ as an emergent
constraint for future precipitation over Mediterranean climate regions in
the North Hemisphere, Geophys. Res. Lett., 48, e2020GL091569, https://doi.org/10.1029/2020GL091569,
2021.
Dunstone, N., Lockwood, J., Solaraju-Murali, B., Reinhardt, K., Tsartsali, E. E., Athanasiadis, P. J., Bellucci, A., Brookshaw, A., Caron, L.-P., Doblas-Reyes, F. J., Früh, B., González-Reviriego, N., Gualdi, S., Hermanson, L., Materia, S., Nicodemou, A., Nicolì, D., Pankatz, K., Paxian, A., Scaife, A., Smith, D., and Thornton H. E.: Towards useful decadal
climate services, B. Am. Meteorol. Soc., 103, E1705–E1719, https://doi.org/10.1175/BAMS-D-21-0190.1, 2022.
Ehsan, M. A., Nicolì, D., Kucharski, F., Almazroui, M., Tippett, M., Bellucci, A., Ruggieri, P., and Kang, I.-S.: Atlantic Ocean influence on Middle East
summer surface air temperature, NPJ Clim. Atmos. Sci., 3,
1–8, 2020.
Famooss Paolini, L., Athanasiadis, P. J., Ruggieri, P., and Bellucci, A.: The
atmospheric response to meridional shifts of the Gulf Stream SST front and
its dependence on model resolution, J. Climate, 35, 6007–6030, 2022.
Gaetani, M. and Mohino, E.: Decadal prediction of the Sahelian
precipitation in CMIP5 simulations, J. Climate, 26, 7708–7719,
2013.
García-Serrano, J. and Doblas-Reyes, F. J.: On the assessment of
near-surface global temperature and North Atlantic multi-decadal variability
in the ENSEMBLES decadal hindcast, Clim. Dynam., 39, 2025–2040, 2012.
Goddard, L., Kumar, A., Solomon, A., Smith, D., Boer, G., Gonzalez, P., Kharin, V., Merryfield, W., Deser, C., Mason, S. J. Kirtman, B. P., Msadek, R., Sutton, R., Hawkins, E., Fricker, T., Hegerl, G., Ferro, C. A. T., Stephenson, D. B., Meehl, G. A., Stockdale, T., Burgman, R., Greene, A. M., Kushnir, Y., Newman, M., Carton, J., Fukumori, I., and Delworth, T.: A verification framework for interannual-to-decadal
predictions experiments, Clim. Dynam., 40, 245–272, 2013.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci.
Data, 7, 1–18, 2020.
Harris, I. C., Jones, P. D., and Osborn, T.: CRU TS4.05: Climatic Research Unit
(CRU) Time-Series (TS) version 4.05 of high-resolution gridded data of
month-by-month variation in climate (January 1901–December 2020), NERC EDS Centre
for Environmental Data Analysis, University of East Anglia Climatic Research
Unit, 2021.
He, Y., Wang, B., Liu, M., Liu, L., Yu, Y., Liu, J., Li, R., Zhang, C., Xu, S., Huang, W., Liu, Q., Wang, Y., and Li, F.:
Reduction of initial shock in decadal predictions using a new initialization
strategy, Geophys. Res. Lett., 44, 8538–8547, 2017.
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., and
Folland, C. K.: A tripole index for the interdecadal Pacific oscillation,
Clim. Dynam., 45, 3077–3090, 2015.
Hermanson, L., Smith, D., Seabrook, M., Bilbao, R., Doblas-Reyes, F., Tourigny, E., Lapin, V., Kharin, V. V., Merryfield, W., J., Sospedra-Alfonso, R., Athanasiadis, P., Nicolì, D., Gualdi, S., Dunstone, N., Eade, R., Scaife, A., Collier, M., O'Kane, T., Kitsios, V., Sandery, P., Pankatz, K., Früh, B., Pohlmann, H., Müller, W., Kataoka, T., Tatebe, H., Ishii, M., Imada, Y., Kruschke, T., Koenigk, T., Karami, M. P., Yang, S., Tian, T., Zhang, L., Delworth, T., Yang, X., Zeng, F., Wang, Y., Counillon, F., Keenlyside, N., Bethke, I., Lean, J., Luterbacher, J., Kolli, R. K., and Kumar, A: WMO global annual to decadal climate
update: a prediction for 2021–25, B. Am. Meteorol.
Soc., 103, E1117–E1129, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut., J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020
Karspeck, A. R., Stammer, D., Köhl, A., Danabasoglu, G., Balmaseda, M., Smith, D. M., Fujii, Y., Zhang, S., Giese, B., Tsujino, H., and Rosati, A.: Comparison of the Atlantic meridional
overturning circulation between 1960 and 2007 in six ocean reanalysis
products, Clim. Dynam., 49, 957–982, 2017.
Kataoka, T., Tatebe, H., Koyama, H., Mochizuki, T., Ogochi, K., Naoe, H., Imada, Y., Shiogama, H., Kimoto, M., and Watanabe, M.: Seasonal to decadal predictions with MIROC6:
Description and basic evaluation, J. Adv. Model. Earth Sy., 12, e2019MS002035, https://doi.org/10.1029/2019MS002035, 2020.
Keenlyside, N. S., Latif, M., Jungclaus, J., Kornblueh, L., and Roeckner,
E.: Advancing decadal-scale climate prediction in the North Atlantic sector,
Nature, 453, 84–88, 2008.
Kharin, V. V. and Zwiers, F. W.: On the ROC score of probability
forecasts, J. Climate, 16, 4145–4150, 2003.
Kim, H. J.: Global Soil Wetness Project Phase 3 Atmospheric Boundary
Conditions (Experiment 1), Data Integr. Anal. Syst. [data set], https://doi.org/10.20783/DIAS.501, 2017.
Kirtman, B., Power, S., Adedoyin, J., Boer, G., Bojariu, R., Camilloni, I., Doblas-Reyes, F., Fiore, A., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G., Vecchi, G., and Wang, H.: Near-term Climate Change: Projections and Predictability, book section 11, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 953–1028, https://doi.org/10.1017/CBO9781107415324.023, 2013.
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.:
A signature of persistent natural thermohaline circulation cycles in
observed climate, Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233, 2005.
Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the
Atlantic multidecadal oscillation, Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242,
2006.
Kucharski, F., Parvin, A., Rodriguez-Fonseca, B., Farneti, R., Martin-Rey, M., Polo, I., Mohino, E., Losada, T., and Mechoso, C. R.: The teleconnection of the tropical
Atlantic to Indo-Pacific sea surface temperatures on inter-annual to
centennial time scales: a review of recent findings, Atmosphere, 7, 29, https://doi.org/10.3390/atmos7020029,
2016.
Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G., Boer, G., Doblas-Reyes, F., Hawkins, E., Kimoto, M., Kolli, R. K., Kumar, A., Matei, D., Matthes, K., Müller, W. A., O'Kane, T., Perlwitz, J., Power, S., Raphael, M., Shimpo, A., Smith, D., Tuma, M., and Wu, B.: Towards operational predictions of the near-term
climate, Nat. Clim. Change, 9, 94–101, 2019.
Li J. and Wang, J. X.: A new North Atlantic Oscillation index and its
variability, Adv. Atmos. Sci., 20, 661–676, 2003.
Li, J., Li, F., He, S., Wang, H., and Orsolini, Y. J.: The Atlantic
multidecadal variability phase dependence of teleconnection between the
North Atlantic Oscillation in February and the Tibetan Plateau in March,
J. Climate, 34, 4227–4242, 2021.
Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3825, 2020.
Mariotti, A. and Dell'Aquila, A.: Decadal climate variability in the
Mediterranean region: roles of large-scale forcings and regional processes,
Clim. Dynam., 38, 1129–1145, 2012.
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A., Greene, A. M., Hawkins, E., Hegerl, G., Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra, A., Pulwarty, R., Smith, D., Stammer, D., and Stockdale, T.: Decadal prediction: can it be
skillful?, B. Am. Meteorol. Soc., 90,
1467–1486, 2009.
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A., Greene, A. M., Hawkins, E., Hegerl, G., Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra, A., Pulwarty, R., Smith, D., Stammer, D., and Stockdale, T.: Initialized Earth System prediction
from subseasonal to decadal timescales, Nat. Rev. Earth
Environ., 2, 340–357, 2021.
Moat, B. I., Frajka-Williams, E., Smeed, D. A., Rayner, D., Johns, W. E., Baringer,
M. O., Volkov, D., and Collins, J.: Atlantic meridional overturning circulation
observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation
and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to
2020 (v2020.2), British Oceanographic Data Centre – Natural Environment
Research Council, UK, https://doi.org/10.5285/e91b10af-6f0a-7fa7-e053-6c86abc05a09,
2022.
Nicolì, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6 DCPP dcppA-hindcast, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3751, 2020.
Nicolì, D. and Ruggieri, P.: Ocean and sea-ice initial conditions for CMCC DPS, Zenodo [data set], https://doi.org/10.5281/zenodo.6866295, 2022.
Nicolì, D., Bellucci, A., Iovino, D., Ruggieri, P., and Gualdi, S.:
The impact of the AMV on Eurasian summer hydrological cycle, Sci.
Rep.-UK, 10, 1–11, 2020.
Nicolì, D., Bellucci, A., Ruggieri, P., Athanasiadis, P., Materia, S., Peano, D., Fedele, G., and Gualdi, S.: CMCC-CM2-SR5 code for CMIP6 DCPP-A, Zenodo [code], https://doi.org/10.5281/zenodo.6810749, 2022.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
O'Reilly, C. H., Zanna, L., and Woollings, T.: Assessing external and
internal sources of Atlantic multidecadal variability using models, proxy
data, and early instrumental indices, J. Climate, 32, 7727–7745,
2019.
Pohlmann, H., Jungclaus, J. H., Köhl, A., Stammer, D., and Marotzke,
J.: Initializing decadal climate predictions with the GECCO oceanic
synthesis: Effects on the North Atlantic, J. Climate, 22,
3926–3938, 2009.
Polkova, I., Köhl, A., and Stammer, D.: Impact of initialization
procedures on the predictive skill of a coupled ocean–atmosphere model,
Clim. Dynam., 42, 3151–3169, 2014.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter-decadal
modulation of the impact of ENSO on Australia, Clim. Dynam., 15,
319–324, 1999.
Rayner, N., Parker, D. E., Folland, C. K., Horton, E. B., Alexander, L. V.,
and Rowell, D. P.: The global sea-ice and sea surface temperature (HadISST)
data sets, J. Geophys, Res., 108, 2–22, 2003.
Robson, J., Polo, I., Hodson, D. L., Stevens, D. P., and Shaffrey, L. C.:
Decadal prediction of the North Atlantic subpolar gyre in the HiGEM
high-resolution climate model, Clim. Dynam., 50, 921–937, 2018.
Ruggieri, P., Bellucci, A., Nicolì, D., Athanasiadis, P. J., Gualdi, S., Cassou, C., Castrucci, F., Danabasoglu, G., Paolo Davini, P., Dunston, N., Eade, R., Gastineau. G., Harvey, B., Hermanson, L., Qasmi, S.,, Ruprich-Robert, Y., Sanchez-Gomez, E., Smith, D., Wild, S., and Zampieri, M.: Atlantic multidecadal variability and
North Atlantic jet: a multimodel view from the decadal climate prediction
project, J. Climate, 34, 347–360, 2021.
Ruprich-Robert, Y., Moreno-Chamarro, E., Levine, X., Bellucci, A., Cassou, C., Castruccio, F., Davini, P., Eade, R., Gastineau, G., Hermanson, L., Dan Hodson, D., Lohmann, K., Lopez-Parages, J., Monerie, P.-A, Nicolì, D., Qasmi, S., Roberts, C. D., Sanchez-Gomez, E., Danabasoglu, G., Dunstone, N., Martin-Rey, M., Msadek, R., Robson, J., Smith, D., and Tourigny, E.: Impacts of Atlantic multidecadal
variability on the tropical Pacific: a multi-model study, Npj Clim.
Atmos. Sci., 4, 1–11, 2021.
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science, npj Clim. Atmos. Sci., 1, 1–8, 2018.
Schneider, U., Becker, A., Finger, P., Rustemeier, E., and Ziese, M.: GPCC
Full Data Monthly Product Version 2020 at 1.0∘: Monthly
land-surface precipitation from rain-gauges built on GTS-based and
historical data, Deutscher Wetterdienst, https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2020_doi_download.html (last access: 30 May 2022), 2020.
Shaffrey, L. C., Hodson, D., Robson, J., Stevens, D P., Hawkins, E., Polo, I., Stevens, I., Sutton, R. T., Lister, G., Iwi, A., Smith, D., and Stephens, A.: Decadal predictions with the HiGEM high
resolution global coupled climate model: description and basic evaluation,
Clim. Dynam., 48, 297–311, 2017.
Smith, D. M., Cusack, S., Colman, A. W., Folland, C. K., Harris, G. R., and
Murphy, J. M.: Improved surface temperature prediction for the coming decade
from a global climate model, Science, 317, 796–799, 2007.
Smith, D. M., Scaife, A. A., and Kirtman, B. P.: What is the current state
of scientific knowledge with regard to seasonal and decadal forecasting?,
Environ. Res. Lett., 7, 015602, https://doi.org/10.1088/1748-9326/7/1/015602, 2012.
Smith, D. M., Eade, R., and Pohlmann, H.: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction, Clim. Dynam., 41, 3325–3338, 2013.
Smith, D. M. Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G., DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X.: Robust skill of decadal climate
predictions, Npj Clim. Atmos. Sci., 2, 1–10, 2019.
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M., Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K., Monerie, P.-A., Müller, W. A., Nicolì, D., Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw, D., Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic climate far more predictable
than models imply, Nature, 583, 796–800, 2020.
Sospedra-Alfonso, R., Merryfield, W. J., Boer, G. J., Kharin, V. V., Lee, W.-S., Seiler, C., and Christian, J. R.: Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5), Geosci. Model Dev., 14, 6863–6891, https://doi.org/10.5194/gmd-14-6863-2021, 2021.
Storto, A. and Masina, S.: C-GLORSv5: an improved multipurpose global ocean eddy-permitting physical reanalysis, Earth Syst. Sci. Data, 8, 679–696, https://doi.org/10.5194/essd-8-679-2016, 2016.
Sun, C., Li, J., and Zhao, S.: Remote influence of Atlantic multidecadal
variability on Siberian warm season precipitation, Sci. Rep.-UK, 5,
1–9, 2015.
Sun, C., Kucharski, F., Li, J., Jin, F. F., Kang, I. S., and Ding, R.:
Western tropical Pacific multidecadal variability forced by the Atlantic
multidecadal oscillation, Nat. Commun., 8, 1–10, 2017.
Sutton, R. T. and Hodson, D. L.: Atlantic Ocean forcing of North American
and European summer climate, Science, 309, 115–118, 2005.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc.,
93, 485–498, 2012.
Tian, B. and Dong, X.: The double-ITCZ bias in CMIP3, CMIP5, and CMIP6
models based on annual mean precipitation, Geophys. Res. Lett.,
47, e2020GL087232, https://doi.org/10.1029/2020GL087232, 2020.
Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural
variability in 2005, Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894, 2006.
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020.
Van Oldenborgh, G. J., Doblas-Reyes, F. J., Wouters, B., and Hazeleger, W.:
Decadal prediction skill in a multi-model ensemble, Clim. Dynam., 38,
1263–1280, 2012.
Viovy, N.: CRUNCEP Version 7 - Atmospheric Forcing Data for the Community
Land Model, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory, Boulder, Colorado, http://rda.ucar.edu/datasets/ds314.3/ (last access: 18 October 2022), 2016.
Volpi, D., Guemas, V., Doblas-Reyes, F. J., Hawkins, E., and Nichols, N. K.: Decadal climate prediction with a refined anomaly initialisation approach, Clim. Dynam., 48, 1841–1853, 2017.
Wilks, D. S. (Ed.): Statistical methods in the atmospheric sciences, vol. 100,
Academic press, ISBN 9780123850225, 2011.
Xin, X., Wei, M., Li, Q., Zhou, W., Luo, Y., and Zhao, Z.: Decadal
prediction skill of BCC-CSM1.1 with different initialization strategies,
J. Meteorol. Soc. Jpn. Ser. II, 97, 733–744, 2019.
Yang, C., Masina, S., and Storto, A.: Historical ocean reanalyses (1900–2010)
using different data assimilation strategies, Q. J. Roy Meteor. Soc., 143, 479–493,
https://doi.org/10.1002/qj.2936, 2016b.
Yang, X., Delworth, T. L., Zeng, F., Zhang, L., Cooke, W. F., Harrison, M. J., Rosati, A., Underwood, S., Compo, G. P., and McColl, C.: On the Development of GFDL's Decadal Prediction
System: Initialization Approaches and Retrospective Forecast Assessment,
J. Adv. Model. Earth Sy., 13, e2021MS002529, https://doi.org/10.1029/2021MS002529, 2021.
Yeager, S. G., Danabasoglu, G., Rosenbloom, N. A., Strand, W., Bates, S. C., Meehl, G. A., Karspeck, A. R., Lindsay, K., Long, M. C., Teng, H., and Lovenduski, N. S.: Predicting near-term changes in
the Earth System: A large ensemble of initialized decadal prediction
simulations using the Community Earth System Model, B. Am.
Meteorol. Soc., 99, 1867–1886, 2018.
Zhang, R. and Delworth, T. L.: Simulated tropical response to a
substantial weakening of the Atlantic thermohaline circulation, J. Climate, 18, 1853–1860, 2005.
Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y., Marsh, R., Yeager, S. G., Amrhein, D. E., and Little, C. M.: A review of the role of the Atlantic meridional
overturning circulation in Atlantic multidecadal variability and associated
climate impacts, Rev. Geophys., 57, 316–375, 2019.
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model...