Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-179-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-179-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Alessio Bellucci
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
now at: Consiglio Nazionale delle Ricerche, Istituto di Scienze
dell'Atmosfera e del Clima (CNR-ISAC), Bologna 40129, Italy
Paolo Ruggieri
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
now at: Department of Physics and Astronomy, University of Bologna,
Bologna 40126, Italy
Panos J. Athanasiadis
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Stefano Materia
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Daniele Peano
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Giusy Fedele
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Riccardo Hénin
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Silvio Gualdi
Climate Simulation and Prediction (CSP) division, Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna 40127, Italy
Viewed
Total article views: 2,511 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jul 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,881 | 568 | 62 | 2,511 | 163 | 55 | 42 |
- HTML: 1,881
- PDF: 568
- XML: 62
- Total: 2,511
- Supplement: 163
- BibTeX: 55
- EndNote: 42
Total article views: 1,611 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 05 Jan 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,202 | 365 | 44 | 1,611 | 85 | 48 | 35 |
- HTML: 1,202
- PDF: 365
- XML: 44
- Total: 1,611
- Supplement: 85
- BibTeX: 48
- EndNote: 35
Total article views: 900 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jul 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
679 | 203 | 18 | 900 | 78 | 7 | 7 |
- HTML: 679
- PDF: 203
- XML: 18
- Total: 900
- Supplement: 78
- BibTeX: 7
- EndNote: 7
Viewed (geographical distribution)
Total article views: 2,511 (including HTML, PDF, and XML)
Thereof 2,423 with geography defined
and 88 with unknown origin.
Total article views: 1,611 (including HTML, PDF, and XML)
Thereof 1,565 with geography defined
and 46 with unknown origin.
Total article views: 900 (including HTML, PDF, and XML)
Thereof 858 with geography defined
and 42 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
9 citations as recorded by crossref.
- Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran M. Akbarian et al. 10.1016/j.jhydrol.2023.129480
- Deep Learning‐Based Seasonal Forecast of Sea Ice Considering Atmospheric Conditions Y. Zhu et al. 10.1029/2023JD039521
- Decadal prediction skill for Eurasian surface air temperature in CMIP6 models Y. Huang et al. 10.1016/j.aosl.2023.100377
- On the skill of Indo-Pacific decadal sea level predictions and its connection with skilful AMO and PDO predictions J. Deepa & C. Gnanaseelan 10.1007/s00382-024-07456-z
- Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it I. Dunkl et al. 10.5194/bg-20-3523-2023
- Impact of volcanic eruptions on CMIP6 decadal predictions: a multi-model analysis R. Bilbao et al. 10.5194/esd-15-501-2024
- Initialization shock in the ocean circulation reduces skill in decadal predictions of the North Atlantic subpolar gyre I. Polkova et al. 10.3389/fclim.2023.1273770
- Decadal prediction of Northeast Asian winter precipitation with CMIP6 models X. Xin et al. 10.1007/s00382-023-07063-4
- Predicting precipitation on the decadal timescale: A prototype climate service for the hydropower sector E. Tsartsali et al. 10.1016/j.cliser.2023.100422
8 citations as recorded by crossref.
- Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran M. Akbarian et al. 10.1016/j.jhydrol.2023.129480
- Deep Learning‐Based Seasonal Forecast of Sea Ice Considering Atmospheric Conditions Y. Zhu et al. 10.1029/2023JD039521
- Decadal prediction skill for Eurasian surface air temperature in CMIP6 models Y. Huang et al. 10.1016/j.aosl.2023.100377
- On the skill of Indo-Pacific decadal sea level predictions and its connection with skilful AMO and PDO predictions J. Deepa & C. Gnanaseelan 10.1007/s00382-024-07456-z
- Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it I. Dunkl et al. 10.5194/bg-20-3523-2023
- Impact of volcanic eruptions on CMIP6 decadal predictions: a multi-model analysis R. Bilbao et al. 10.5194/esd-15-501-2024
- Initialization shock in the ocean circulation reduces skill in decadal predictions of the North Atlantic subpolar gyre I. Polkova et al. 10.3389/fclim.2023.1273770
- Decadal prediction of Northeast Asian winter precipitation with CMIP6 models X. Xin et al. 10.1007/s00382-023-07063-4
Latest update: 13 Dec 2024
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model...