Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-901-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-901-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Earth Model Column Collaboratory (EMC2) v1.1: an open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models
Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
Robert C. Jackson
Environmental Sciences Division, Argonne National Laboratory, Argonne, IL, USA
Ann M. Fridlind
NASA Goddard Institute for Space Studies, New York, NY, USA
Andrew S. Ackerman
NASA Goddard Institute for Space Studies, New York, NY, USA
Scott Collis
Environmental Sciences Division, Argonne National Laboratory, Argonne, IL, USA
Johannes Verlinde
Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
Jiachen Ding
Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
Related authors
Israel Silber, Jennifer M. Comstock, Adam K. Theisen, Michael R. Kieburtz, Zeen Zhu, and Jenni Kyrouac
EGUsphere, https://doi.org/10.5194/egusphere-2025-4723, https://doi.org/10.5194/egusphere-2025-4723, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present PrecipBE, a multi-instrument precipitation event best-estimate data product developed at the Atmospheric Radiation Measurement (ARM) user facility, providing time series and tabular statistics of events, which could help advance model evaluation and cloud-process studies. We demonstrate PrecipBE utilization with a brief 30-year trend analysis using ARM Southern Great Plains (SGP) site data, suggesting shorter, less intense events, but rising annual rainfall, driven by rare extremes.
Yijia Sun, Ann M. Fridlind, Israel Silber, Nicole Riemer, and Daniel A. Knopf
EGUsphere, https://doi.org/10.5194/egusphere-2025-3620, https://doi.org/10.5194/egusphere-2025-3620, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The role of Arctic clouds in the regional climate remains uncertain due to insufficient understanding of the amount of liquid droplets and ice crystals present in these clouds. An aerosol-cloud model is employed to examine the role of different aerosol types and freezing parameterizations on the number of ice crystals. The choice of freezing parameterization significantly changes the number of ice crystals impacting the interpretation of the evolution and warming effect of Arctic clouds.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Israel Silber, Jennifer M. Comstock, Michael R. Kieburtz, and Lynn M. Russell
Earth Syst. Sci. Data, 17, 29–42, https://doi.org/10.5194/essd-17-29-2025, https://doi.org/10.5194/essd-17-29-2025, 2025
Short summary
Short summary
We present ARMTRAJ, a set of multipurpose trajectory datasets, which augments cloud, aerosol, and boundary layer studies utilizing the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility data. ARMTRAJ data include ensemble run statistics that enhance consistency and serve as uncertainty metrics for air mass coordinates and state variables. ARMTRAJ will soon become a near real-time product that will accompany past, ongoing, and future ARM deployments.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Short summary
Long-term ground-based radar and sounding measurements over Alaska (Antarctica) indicate that more than 85 % (75 %) of supercooled clouds are precipitating at cloud base and that 75 % (50 %) are precipitating to the surface. Such high prevalence is reconciled with lesser spaceborne estimates by considering radar sensitivity. Results provide a strong observational constraint for polar cloud processes in large-scale models.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, https://doi.org/10.5194/gmd-14-43-2021, 2021
Israel Silber, Jennifer M. Comstock, Adam K. Theisen, Michael R. Kieburtz, Zeen Zhu, and Jenni Kyrouac
EGUsphere, https://doi.org/10.5194/egusphere-2025-4723, https://doi.org/10.5194/egusphere-2025-4723, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present PrecipBE, a multi-instrument precipitation event best-estimate data product developed at the Atmospheric Radiation Measurement (ARM) user facility, providing time series and tabular statistics of events, which could help advance model evaluation and cloud-process studies. We demonstrate PrecipBE utilization with a brief 30-year trend analysis using ARM Southern Great Plains (SGP) site data, suggesting shorter, less intense events, but rising annual rainfall, driven by rare extremes.
Yijia Sun, Ann M. Fridlind, Israel Silber, Nicole Riemer, and Daniel A. Knopf
EGUsphere, https://doi.org/10.5194/egusphere-2025-3620, https://doi.org/10.5194/egusphere-2025-3620, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The role of Arctic clouds in the regional climate remains uncertain due to insufficient understanding of the amount of liquid droplets and ice crystals present in these clouds. An aerosol-cloud model is employed to examine the role of different aerosol types and freezing parameterizations on the number of ice crystals. The choice of freezing parameterization significantly changes the number of ice crystals impacting the interpretation of the evolution and warming effect of Arctic clouds.
McKenna W. Stanford, Ann M. Fridlind, Andrew S. Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
Atmos. Chem. Phys., 25, 11199–11231, https://doi.org/10.5194/acp-25-11199-2025, https://doi.org/10.5194/acp-25-11199-2025, 2025
Short summary
Short summary
The evolution of cloud droplets, from the point they are activated by atmospheric aerosol to the formation of precipitation, is an important process relevant to understanding cloud–climate feedbacks. This study demonstrates a benchmark framework for using novel airborne measurements and retrievals to constrain high-resolution simulations of moderately deep cumulus clouds and pathways for scaling results to large-scale models and space-based observational platforms.
Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5053–5074, https://doi.org/10.5194/acp-25-5053-2025, https://doi.org/10.5194/acp-25-5053-2025, 2025
Short summary
Short summary
The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation.
Anthony La Luna, Zhibo Zhang, Jianyu Zheng, Qianqian Song, Hongbin Yu, Jiachen Ding, Ping Yang, and Masanori Saito
EGUsphere, https://doi.org/10.5194/egusphere-2025-1117, https://doi.org/10.5194/egusphere-2025-1117, 2025
Short summary
Short summary
The lidar backscattering properties of Asian dust particles were studied using a discrete dipole approximation (DDA) model. Both the lidar ratio (LR) and depolarization ratio (DPR) exhibit an asymptotic trend with dust particle size. Two parameterization schemes were developed: one to estimate the DPR of a single dust particle given its size, and the other to estimate the DPR of dust particles with a lognormal particle size distribution given the effective radius.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Israel Silber, Jennifer M. Comstock, Michael R. Kieburtz, and Lynn M. Russell
Earth Syst. Sci. Data, 17, 29–42, https://doi.org/10.5194/essd-17-29-2025, https://doi.org/10.5194/essd-17-29-2025, 2025
Short summary
Short summary
We present ARMTRAJ, a set of multipurpose trajectory datasets, which augments cloud, aerosol, and boundary layer studies utilizing the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility data. ARMTRAJ data include ensemble run statistics that enhance consistency and serve as uncertainty metrics for air mass coordinates and state variables. ARMTRAJ will soon become a near real-time product that will accompany past, ongoing, and future ARM deployments.
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024, https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Short summary
Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in dry, warm air, which can lead to cloud dissipation. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence have led us to conclude.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Bhupendra A. Raut, Paytsar Muradyan, Rajesh Sankaran, Robert C. Jackson, Seongha Park, Sean A. Shahkarami, Dario Dematties, Yongho Kim, Joseph Swantek, Neal Conrad, Wolfgang Gerlach, Sergey Shemyakin, Pete Beckman, Nicola J. Ferrier, and Scott M. Collis
Atmos. Meas. Tech., 16, 1195–1209, https://doi.org/10.5194/amt-16-1195-2023, https://doi.org/10.5194/amt-16-1195-2023, 2023
Short summary
Short summary
We studied the stability of a blockwise phase correlation (PC) method to estimate cloud motion using a total sky imager (TSI). Shorter frame intervals and larger block sizes improve stability, while image resolution and color channels have minor effects. Raindrop contamination can be identified by the rotational motion of the TSI mirror. The correlations of cloud motion vectors (CMVs) from the PC method with wind data vary from 0.38 to 0.59. Optical flow vectors are more stable than PC vectors.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Michael S. Diamond, Pablo E. Saide, Paquita Zuidema, Andrew S. Ackerman, Sarah J. Doherty, Ann M. Fridlind, Hamish Gordon, Calvin Howes, Jan Kazil, Takanobu Yamaguchi, Jianhao Zhang, Graham Feingold, and Robert Wood
Atmos. Chem. Phys., 22, 12113–12151, https://doi.org/10.5194/acp-22-12113-2022, https://doi.org/10.5194/acp-22-12113-2022, 2022
Short summary
Short summary
Smoke from southern Africa blankets the southeast Atlantic from June-October, overlying a major transition region between overcast and scattered clouds. The smoke affects Earth's radiation budget by absorbing sunlight and changing cloud properties. We investigate these effects in regional climate and large eddy simulation models based on international field campaigns. We find that large-scale circulation changes more strongly affect cloud transitions than smoke microphysical effects in our case.
Daniel Hernandez-Deckers, Toshihisa Matsui, and Ann M. Fridlind
Atmos. Chem. Phys., 22, 711–724, https://doi.org/10.5194/acp-22-711-2022, https://doi.org/10.5194/acp-22-711-2022, 2022
Short summary
Short summary
We investigate how the concentration of aerosols (small particles that serve as seeds for cloud droplets) affect the dynamics of simulated clouds using two different frameworks, i.e., the traditional selection of cloudy rising grid points and tracking small-scale coherent rising features (cumulus thermals). By doing so, we find that these cumulus thermals reveal useful information about the coupling between internal cloud circulations and cloud droplet and raindrop formation.
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067, https://doi.org/10.5194/acp-21-12049-2021, https://doi.org/10.5194/acp-21-12049-2021, 2021
Short summary
Short summary
Cold air outbreaks affect the local energy budget by forming bright boundary layer clouds that, once it rains, evolve into dimmer, broken cloud fields that are depleted of condensation nuclei – an evolution consistent with closed-to-open cell transitions. We find that cloud ice accelerates this evolution, primarily via riming prior to rain onset, which (1) reduces liquid water, (2) reduces condensation nuclei, and (3) leads to early precipitation cooling and moistening below cloud.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Short summary
Long-term ground-based radar and sounding measurements over Alaska (Antarctica) indicate that more than 85 % (75 %) of supercooled clouds are precipitating at cloud base and that 75 % (50 %) are precipitating to the surface. Such high prevalence is reconciled with lesser spaceborne estimates by considering radar sensitivity. Results provide a strong observational constraint for polar cloud processes in large-scale models.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, https://doi.org/10.5194/gmd-14-43-2021, 2021
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021, https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Short summary
About 4 years of 2D video disdrometer data in Darwin are used to develop and validate rainfall retrievals for tropical convection in C- and X-band radars in Darwin. Using blended techniques previously used for Colorado and Manus and Gan islands, with modified coefficients in each estimator, provided the most optimal results. Using multiple radar observables to develop a rainfall retrieval provided a greater advantage than using a single observable, including using specific attenuation.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Cited articles
Amante, C.: ETOPO1 1 arc-minute global relief model: procedures, data sources
and analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical
Data Center [data set], NOAA, Tech. rep., https://doi.org/10.7289/V5C8276M, 2009. a
Bodas-Salcedo, A., Webb, M. J., Brooks, M. E., Ringer, M. A., Williams, K. D.,
Milton, S. F., and Wilson, D. R.: Evaluating cloud systems in the Met Office
global forecast model using simulated CloudSat radar reflectivities, J.
Geophys. Res.-Atmos., 92, 1023–1043,
https://doi.org/10.1029/2007JD009620, 2008. a
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein,
S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.:
COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043,
https://doi.org/10.1175/2011BAMS2856.1, 2011. a, b
Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole, J. N. S.,
Dufresne, J.-L., Koshiro, T., Stevens, B., Wang, Z., and Yokohata, T.:
Origins of the Solar Radiation Biases over the Southern Ocean in CFMIP2
Models, J. Climate, 27, 41–56, https://doi.org/10.1175/JCLI-D-13-00169.1,
2014. a
Bohren, C. F. and Battan, L. J.: Radar Backscattering by Inhomogeneous
Precipitation Particles, J. Atmos. Sci., 37,
1821–1827, https://doi.org/10.1175/1520-0469(1980)037<1821:RBBIPP>2.0.CO;2, 1980. a
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small
Particles, John Wiley & Sons, Ltd, Weinheim, Germany,
https://doi.org/10.1002/9783527618156, 1983. a
Burns, D., Kollias, P., Tatarevic, A., Battaglia, A., and Tanelli, S.: The
performance of the EarthCARE Cloud Profiling Radar in marine stratiform
clouds, J. Geophys. Res.-Atmos., 121, 14525–14537,
https://doi.org/10.1002/2016JD025090, 2016. a, b
Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D.,
Spinhirne, J. D., Scott, V. S., and Hwang, I. H.: Full-Time, Eye-Safe Cloud
and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program
Sites: Instruments and Data Processing, J. Atmos. Ocean.
Tech., 19, 431–442,
https://doi.org/10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO2, 2002. a
Cesana, G. and Chepfer, H.: Evaluation of the cloud thermodynamic phase in a
climate model using CALIPSO-GOCCP, J. Geophys. Res.-Atmos., 118, 7922–7937, https://doi.org/10.1002/jgrd.50376, 2013. a, b
Cesana, G. and Waliser, D. E.: Characterizing and understanding systematic
biases in the vertical structure of clouds in CMIP5/CFMIP2 models,
Geophys. Res. Lett., 43, 10538–10546, https://doi.org/10.1002/2016GL070515,
2016. a
Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.:
Ubiquitous low-level liquid-containing Arctic clouds: New observations and
climate model constraints from CALIPSO-GOCCP, Geophys. Res. Lett.,
39, L20804, https://doi.org/10.1029/2012GL053385, 2012. a
Cesana, G., Chepfer, H., Winker, D., Getzewich, B., Cai, X., Jourdan, O.,
Mioche, G., Okamoto, H., Hagihara, Y., Noel, V., and Reverdy, M.: Using in
situ airborne measurements to evaluate three cloud phase products derived
from CALIPSO, J. Geophys. Res.-Atmos., 121, 5788–5808,
https://doi.org/10.1002/2015JD024334, 2016. a
Cesana, G., Del Genio, A. D., Ackerman, A. S., Kelley, M., Elsaesser, G., Fridlind, A. M., Cheng, Y., and Yao, M.-S.: Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations, Atmos. Chem. Phys., 19, 2813–2832, https://doi.org/10.5194/acp-19-2813-2019, 2019. a, b, c
Cesana, G. V., Ackerman, A. S., Fridlind, A. M., Silber, I., and Kelley, M.:
Snow Reconciles Observed and Simulated Phase Partitioning and Increases Cloud
Feedback, Geophys. Res. Lett., 48, e2021GL094876,
https://doi.org/10.1029/2021GL094876, 2021. a
Chen, Y.-S., Verlinde, J., Clothiaux, E. E., Ackerman, A. S., Fridlind, A. M.,
Chamecki, M., Kollias, P., Kirkpatrick, M. P., Chen, B.-C., Yu, G., and
Avramov, A.: On the forward modeling of radar Doppler spectrum width from
LES: Implications for model evaluation, J. Geophys. Res.-Atmos., 123, 7444–7461,
https://doi.org/10.1029/2017JD028104, 2018. a
Chepfer, H., Bony, S., Winker, D., Chiriaco, M., Dufresne, J.-L., and Sèze,
G.: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by
a climate model, Geophys. Res. Lett., 35, L15704,
https://doi.org/10.1029/2008GL034207, 2008. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a
de Boer, G., Morrison, H., Shupe, M. D., and Hildner, R.: Evidence of liquid
dependent ice nucleation in high-latitude stratiform clouds from surface
remote sensors, Geophys. Res. Lett., 38, L01803,
https://doi.org/10.1029/2010GL046016, 2011. a
Derr, V. E., Abshire, N. L., Cupp, R. E., and McNice, G. T.: Depolarization of
Lidar Returns from Virga and Source Cloud, J. Appl. Meteorol.
Clim., 15, 1200–1203,
https://doi.org/10.1175/1520-0450(1976)015<1200:DOLRFV>2.0.CO;2, 1976. a, b
Ding, J., Bi, L., Yang, P., Kattawar, G. W., Weng, F., Liu, Q., and Greenwald,
T.: Single-scattering properties of ice particles in the microwave regime:
Temperature effect on the ice refractive index with implications in remote
sensing, J. Quant. Spectrosc. Ra., 190,
26–37, https://doi.org/10.1016/j.jqsrt.2016.11.026, 2017. a, b
Doviak, R. J. and Zrnić, D. S.: Doppler Radar and Weather Observations, 2nd Edn.
Academic Press, San Diego, https://doi.org/10.1016/C2009-0-22358-0,
1993. a
Eloranta, E. W.: Practical model for the calculation of multiply scattered
lidar returns, Appl. Optics, 37, 2464–2472, https://doi.org/10.1364/AO.37.002464, 1998. a
Eloranta, E. W.: High spectral resolution lidar, in: Lidar: Range-Resolved
Optical Remote Sensing of the Atmosphere, Springer New York,
New York, NY, 143–163, 2005. a
Elsaesser, G. S., Genio, A. D. D., Jiang, J. H., and van Lier-Walqui, M.: An
Improved Convective Ice Parameterization for the NASA GISS Global Climate
Model and Impacts on Cloud Ice Simulation, J. Climate, 30, 317–336, https://doi.org/10.1175/JCLI-D-16-0346.1, 2017. a
Falconi, M. T., von Lerber, A., Ori, D., Marzano, F. S., and Moisseev, D.: Snowfall retrieval at X, Ka and W bands: consistency of backscattering and microphysical properties using BAECC ground-based measurements, Atmos. Meas. Tech., 11, 3059–3079, https://doi.org/10.5194/amt-11-3059-2018, 2018. a, b
Fan, J., Ghan, S., Ovchinnikov, M., Liu, X., Rasch, P. J., and Korolev, A.:
Representation of Arctic mixed-phase clouds and the
Wegener-Bergeron-Findeisen process in climate models: Perspectives from a
cloud-resolving study, J. Geophys. Res.-Atmos., 116, D00T07,
https://doi.org/10.1029/2010JD015375, 2011. a
Flynn, C. J., Mendozaa, A., Zhengb, Y., and Mathurb, S.: Novel
polarization-sensitive micropulse lidar measurement technique, Opt.
Express, 15, 2785–2790, https://doi.org/10.1364/OE.15.002785, 2007. a
Fridlind, A. M. and Ackerman, A. S.: Simulations of Arctic
Mixed-Phase Boundary Layer Clouds: Advances in Understanding and Outstanding
Questions, chap. 7, in: Mixed-Phase Clouds, edited by: Andronache, C.,
Elsevier, 153–183, https://doi.org/10.1016/B978-0-12-810549-8.00007-6, 2018. a
Gettelman, A. and Morrison, H.: Advanced Two-Moment Bulk Microphysics for
Global Models, Part I: Off-Line Tests and Comparison with Other Schemes,
J. Climate, 28, 1268–1287, https://doi.org/10.1175/JCLI-D-14-00102.1, 2015. a, b, c
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke,
M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar,
J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman,
M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones,
P. W., Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H.-Y.,
Lin, W., Lipscomb, W. H., Ma, P.-L., Mahajan, S., Maltrud, M. E., Mametjanov,
A., McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y.,
Rasch, P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts,
A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B.,
Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan,
H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie,
S., Yang, Y., Yoon, J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang,
C., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM
Coupled Model Version 1: Overview and Evaluation at Standard Resolution,
J. Adv. Model. Earth Sy., 11, 2089–2129,
https://doi.org/10.1029/2018MS001603, 2019. a
Hansen, J. E.: Multiple Scattering of Polarized Light in Planetary Atmospheres
Part II. Sunlight Reflected by Terrestrial Water Clouds, J.
Atmos. Sci., 28, 1400–1426,
https://doi.org/10.1175/1520-0469(1971)028<1400:MSOPLI>2.0.CO;2, 1971. a
Heiblum, R. H., Altaratz, O., Koren, I., Feingold, G., Kostinski, A. B., Khain,
A. P., Ovchinnikov, M., Fredj, E., Dagan, G., Pinto, L., Yaish, R., and Chen,
Q.: Characterization of cumulus cloud fields using trajectories in the center
of gravity versus water mass phase space: 2. Aerosol effects on warm
convective clouds, J. Geophys. Res.-Atmos., 121,
6356–6373, https://doi.org/10.1002/2015JD024193, 2016. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hillman, B. R., Marchand, R. T., and Ackerman, T. P.: Sensitivities of
Simulated Satellite Views of Clouds to Subgrid-Scale Overlap and Condensate
Heterogeneity, J. Geophys. Res.-Atmos., 123, 7506–7529,
https://doi.org/10.1029/2017JD027680, 2018. a, b
Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A., Yang, P., Wind, G., Dutcher, S., Ackerman, S., Amarasinghe, N., Nagle, F., and Wang, C.: Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, 2016. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, J. Open Res. Softw., 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
Khairoutdinov, M. and Kogan, Y.: A New Cloud Physics Parameterization in a
Large-Eddy Simulation Model of Marine Stratocumulus, Mon. Weather Rev.,
128, 229–243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2, 2000. a
Klein, S. A. and Jakob, C.: Validation and Sensitivities of Frontal Clouds
Simulated by the ECMWF Model, Mon. Weather Rev., 127, 2514–2531,
https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2, 1999. a
Klein, S. A., Zhang, Y., Zelinka, M. D., Pincus, R., Boyle, J., and Gleckler,
P. J.: Are climate model simulations of clouds improving? An evaluation using
the ISCCP simulator, J. Geophys. Res.-Atmos., 118,
1329–1342, https://doi.org/10.1002/jgrd.50141, 2013. a, b
Kuma, P., McDonald, A. J., Morgenstern, O., Querel, R., Silber, I., and Flynn, C. J.: Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0), Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, 2021. a
Lin, J.-L., Qian, T., and Shinoda, T.: Stratocumulus Clouds in Southeastern
Pacific Simulated by Eight CMIP5–CFMIP Global Climate Models, J.
Climate, 27, 3000–3022, https://doi.org/10.1175/JCLI-D-13-00376.1, 2014. a
Lin, L., Gettelman, A., Xu, Y., Wu, C., Wang, Z., Rosenbloom, N., Bates, S. C., and Dong, W.: CAM6 simulation of mean and extreme precipitation over Asia: sensitivity to upgraded physical parameterizations and higher horizontal resolution, Geosci. Model Dev., 12, 3773–3793, https://doi.org/10.5194/gmd-12-3773-2019, 2019. a, b
Lubin, D., Zhang, D., Silber, I., Scott, R. C., Kalogeras, P., Battaglia, A.,
Bromwich, D. H., Cadeddu, M., Eloranta, E., Fridlind, A., Frossard, A.,
Hines, K. M., Kneifel, S., Leaitch, W. R., Lin, W., Nicolas, J., Powers, H.,
Quinn, P. K., Rowe, P., Russell, L. M., Sharma, S., Verlinde, J., and
Vogelmann, A. M.: AWARE: The Atmospheric Radiation Measurement (ARM) West
Antarctic Radiation Experiment, B. Am. Meteorol.
Soc., 101, E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1, 2020. a
Mätzler, C. (Ed.): Thermal Microwave Radiation: Applications for Remote
Sensing, Electromagnetic Waves, Institution of Engineering and Technology,
available at: https://digital-library.theiet.org/content/books/ew/pbew052e (last access: 1 December 2021),
2006. a
Mech, M., Maahn, M., Kneifel, S., Ori, D., Orlandi, E., Kollias, P., Schemann, V., and Crewell, S.: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere, Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, 2020. a
Morris, V. R.: Ceilometer Instrument Handbook, DOE/SC-ARM-TR-020, DOE Office
of Science, Office of Biological and Environmental Research, https://doi.org/10.2172/1036530, 2016. a
Morrison, H. and Gettelman, A.: A New Two-Moment Bulk Stratiform Cloud
Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part
I: Description and Numerical Tests, J. Climate, 21, 3642–3659,
https://doi.org/10.1175/2008JCLI2105.1, 2008. a, b, c, d
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on
the Development of Trailing Stratiform Precipitation in a Simulated Squall
Line: Comparison of One- and Two-Moment Schemes, Mon. Weather Rev.,
137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009. a
Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and
Sulia, K.: Resilience of persistent Arctic mixed-phase clouds, Nat.
Geosci., 5, 11–17, https://doi.org/10.1038/ngeo1332, 2012. a
Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., and
Caldwell, P. M.: Observational constraints on low cloud feedback reduce
uncertainty of climate sensitivity, Nat. Clim. Change, 11, 501–507,
https://doi.org/10.1038/s41558-021-01039-0, 2021. a
Newsom, R. K.: Raman Lidar (RL) Handbook, DOE/SC-ARM-TR-038, DOE Office of
Science, Office of Biological and Environmental Research, United States,
https://doi.org/10.2172/1020561, 2009. a
Noel, V., Roy, G., Bissonnette, L., Chepfer, H., and Flamant, P.: Analysis of
lidar measurements of ice clouds at multiple incidence angles, Geophys.
Res. Lett., 29, 52-1–52-4,
https://doi.org/10.1029/2002GL014828, 2002. a
Nott, G. J. and Duck, T. J.: Lidar studies of the polar troposphere,
Meteorol. Appl., 18, 383–405, https://doi.org/10.1002/met.289, 2011. a
Oue, M., Tatarevic, A., Kollias, P., Wang, D., Yu, K., and Vogelmann, A. M.: The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory, Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020, 2020. a
Penndorf, R.: Tables of the Refractive Index for Standard Air and the Rayleigh
Scattering Coefficient for the Spectral Region between 0.2 and 20.0 µ and
Their Application to Atmospheric Optics, J. Opt. Soc.
Am., 47, 176–182, https://doi.org/10.1364/JOSA.47.000176, 1957. a
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum,
B. A., Riedi, J. C., and Frey, R. A.: The MODIS cloud products:
algorithms and examples from Terra, IEEE T. Geosci.
Remote, 41, 459–473, https://doi.org/10.1109/TGRS.2002.808301, 2003. a
Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N.,
Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz,
R. E., Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS Cloud Optical
and Microphysical Products: Collection 6 Updates and Examples From Terra and
Aqua, IEEE T. Geosci. Remote, 55, 502–525,
https://doi.org/10.1109/TGRS.2016.2610522, 2017. a
Razenkov, I. I. and Eloranta, E. W.: High spectral resolution lidar at the
university of wisconsin-madison, EPJ Web Conf., 176, 01024,
https://doi.org/10.1051/epjconf/201817601024, 2018. a
Rowe, P. M., Fergoda, M., and Neshyba, S.: Temperature-Dependent Optical
Properties of Liquid Water From 240 to 298 K, J. Geophys. Res.-Atmos., 125, e2020JD032624,
https://doi.org/10.1029/2020JD032624,2020. a
Rémillard, J. and Tselioudis, G.: Cloud Regime Variability over the Azores
and Its Application to Climate Model Evaluation, J. Climate, 28,
9707–9720, https://doi.org/10.1175/JCLI-D-15-0066.1, 2015. a
Sassen, K.: Polarization in lidar: a review, in: Polarization Science and
Remote Sensing, edited by: Shaw, J. A. and Tyo, J. S., International Society for Optics and Photonics, SPIE, 5158, 151–160,
https://doi.org/10.1117/12.507006, 2003. a
Seifert, A. and Beheng, K. D.: A double-moment parameterization for simulating
autoconversion, accretion and selfcollection, Atmos. Res., 59–60,
265–281, https://doi.org/10.1016/S0169-8095(01)00126-0, 2001. a
Shupe, M. D.: A ground-based multisensor cloud phase classifier, Geophys.
Res. Lett., 34, L22809, https://doi.org/10.1029/2007GL031008, 2007. a
Silber, I.: AWARE Highly Supercooled Cloud Case Study Model Initialization Files for SCMs, Mendeley Data V1 [data set], https://doi.org/10.17632/gz4gdn3jvz.1, 2021. a, b
Silber, I., Verlinde, J., Eloranta, E. W., and Cadeddu, M.: Antarctic cloud
macrophysical, thermodynamic phase, and atmospheric inversion coupling
properties at McMurdo Station, Part I: Principal data processing and
climatology, J. Geophys. Res.-Atmos., 123, 6099–6121,
https://doi.org/10.1029/2018JD028279, 2018a. a, b
Silber, I., Verlinde, J., Eloranta, E. W., Flynn, C. J., and Flynn, D. M.:
Polar Liquid Cloud Base Detection Algorithms for High Spectral Resolution or
Micropulse Lidar Data, J. Geophys. Res.-Atmos., 123,
4310–4322, https://doi.org/10.1029/2017JD027840, 2018b. a, b
Silber, I., Fridlind, A. M., Verlinde, J., Ackerman, A. S., Chen, Y.-S.,
Bromwich, D. H., Wang, S.-H., Cadeddu, M., and Eloranta, E. W.: Persistent
Supercooled Drizzle at Temperatures Below −25 ∘C Observed at McMurdo
Station, Antarctica, J. Geophys. Res.-Atmos., 124,
10878–10895, https://doi.org/10.1029/2019JD030882, 2019a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Silber, I., Verlinde, J., Wang, S.-H., Bromwich, D. H., Fridlind, A. M.,
Cadeddu, M., Eloranta, E. W., and Flynn, C. J.: Cloud Influence on ERA5 and
AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica,
J. Climate, 32, 7935–7949, https://doi.org/10.1175/JCLI-D-19-0149.1,
2019b. a
Silber, I., Fridlind, A. M., Verlinde, J., Russell, L. M., and Ackerman, A. S.:
Nonturbulent Liquid-Bearing Polar Clouds: Observed Frequency of Occurrence
and Simulated Sensitivity to Gravity Waves, Geophys. Res. Lett., 47,
e2020GL087099, https://doi.org/10.1029/2020GL087099,
2020. a, b
Silber, I., Fridlind, A. M., Verlinde, J., Ackerman, A. S., Cesana, G. V., and Knopf, D. A.: The prevalence of precipitation from polar supercooled clouds, Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, 2021a. a, b
Silber, I., Jackson, R. C., Fridlind, A. M., Ackerman, A. S., Collis, S.,
Verlinde, J., and Ding, J.:
Silber_et_al_EMC²_gmd-2021-194_code_and_data, Zenodo [code],
https://doi.org/10.5281/zenodo.5115252, 2021b. a
Silber, I., McGlynn, P. S., Harrington, J. Y., and Verlinde, J.:
Habit-Dependent Vapor Growth Modulates Arctic Supercooled Water Occurrence,
Geophys. Res. Lett., 48, e2021GL092767,
https://doi.org/10.1029/2021GL092767,
2021c. a
Smith, R. N. B.: A scheme for predicting layer clouds and their water content
in a general circulation model, Q. J. Roy. Meteor.
Soc., 116, 435–460, https://doi.org/10.1002/qj.49711649210, 1990. a
Sokolowsky, G. A., Clothiaux, E. E., Baggett, C. F., Lee, S., Feldstein, S. B.,
Eloranta, E. W., Cadeddu, M. P., Bharadwaj, N., and Johnson, K. L.:
Contributions to the Surface Downwelling Longwave Irradiance during Arctic
Winter at Utqiaġvik (Barrow) Alaska, J. Climate, 33, 4555–4577,
https://doi.org/10.1175/JCLI-D-18-0876.1, 2020. a
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C.,
Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of
precipitation in global models, J. Geophys. Res.-Atmos., 115, D24211,
115, https://doi.org/10.1029/2010JD014532, 2010. a
Stevens, D. E., Ackerman, A. S., and Bretherton, C. S.: Effects of Domain Size
and Numerical Resolution on the Simulation of Shallow Cumulus Convection,
J. Atmos. Sci., 59, 3285–3301,
https://doi.org/10.1175/1520-0469(2002)059<3285:EODSAN>2.0.CO;2, 2002. a
Suzuki, K., Stephens, G., Bodas-Salcedo, A., Wang, M., Golaz, J.-C., Yokohata,
T., and Koshiro, T.: Evaluation of the Warm Rain Formation Process in Global
Models with Satellite Observations, J. Atmos. Sci., 72,
3996–4014, https://doi.org/10.1175/JAS-D-14-0265.1, 2015. a
Swales, D. J., Pincus, R., and Bodas-Salcedo, A.: The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2, Geosci. Model Dev., 11, 77–81, https://doi.org/10.5194/gmd-11-77-2018, 2018. a, b
Tan, I. and Storelvmo, T.: Sensitivity Study on the Influence of Cloud
Microphysical Parameters on Mixed-Phase Cloud Thermodynamic Phase
Partitioning in CAM5, J. Atmos. Sci., 73, 709–728,
https://doi.org/10.1175/JAS-D-15-0152.1, 2016. a
Theisen, A., Kehoe, K., Jackson, B., Sherman, Z., Godine, C., ajsockol,
jkyrouac, and Hemedinger, J.: ARM-DOE/ACT: Version 0.4.3, Zenodo [code],
https://doi.org/10.5281/zenodo.3987372, 2020. a
Thorsen, T. J. and Fu, Q.: Automated Retrieval of Cloud and Aerosol Properties
from the ARM Raman Lidar. Part II: Extinction, J. Atmos.
Ocean. Tech., 32, 1999–2023, https://doi.org/10.1175/JTECH-D-14-00178.1, 2015. a, b, c
Tian, L. and Curry, J. A.: Cloud overlap statistics, J. Geophys.
Res.-Atmos., 94, 9925–9935,
https://doi.org/10.1029/JD094iD07p09925, 1989. a
Turner, D. D., Kneifel, S., and Cadeddu, M. P.: An Improved Liquid Water
Absorption Model at Microwave Frequencies for Supercooled Liquid Water
Clouds, J. Atmos. Ocean. Tech., 33, 33–44,
https://doi.org/10.1175/JTECH-D-15-0074.1, 2016. a
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote Sensing:
Microwave remote sensing fundamentals and radiometry, Artech House, Norwood, Massachusetts
1st Edn., 1981. a
Vassel, M., Ickes, L., Maturilli, M., and Hoose, C.: Classification of Arctic multilayer clouds using radiosonde and radar data in Svalbard, Atmos. Chem. Phys., 19, 5111–5126, https://doi.org/10.5194/acp-19-5111-2019, 2019. a, b
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019. a
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the ultraviolet
to the microwave: A revised compilation, J. Geophys. Res.-Atmos., 113, D14220, https://doi.org/10.1029/2007JD009744, 2008. a
Webb, M., Senior, C., Bony, S., and Morcrette, J.-J.: Combining ERBE and ISCCP
data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate
models, Clim. Dynam., 17, 905–922, https://doi.org/10.1007/s003820100157, 2001. a
Widener, K. and Bharadwaj, N.: C-Band Scanning ARM Precipitation Radar
(C-SAPR) Handbook, ARM-TR-121, DOE Office of Science, Office of Biological
and Environmental Research, https://doi.org/10.2172/1054629, 2012. a
Widener, K. and Johnson, K.: W-band ARM Cloud Radar (WACR) Handbook,
ARM-TR-073, DOE Office of Science, Office of Biological and Environmental
Research, United States, https://doi.org/10.2172/1019541, 2006. a, b, c
Widener, K., Bharadwaj, N., and Johnson, K.: Ka-Band ARM Zenith Radar (KAZR)
Instrument Handbook, ARM-TR-106, DOE Office of Science, Office of Biological
and Environmental Research, United States, https://doi.org/10.2172/1035855,
2012a. a, b, c
Widener, K. B. and Mead, J. B.: W-band ARM cloud radar – Specifications and
design, in: Proc. 14th ARM Science Team Meeting, Albuquerque, New Mexico, 2004. a
Widener, K. B., Bharadwaj, N., and Johnson, K.: Scanning ARM Cloud Radar
(X/Ka/W-SACR), ARM-TR-113, DOE Office of Science, Office of Biological and
Environmental Research, United States, https://doi.org/10.2172/1043296,
2012b. a, b, c
Winker, D. M.: Accounting for multiple scattering in retrievals from space
lidar, in: 12th International Workshop on Lidar Multiple Scattering
Experiments, edited by: Werner, C., Oppel, U. G., and Rother, T., International Society for Optics and Photonics, SPIE, vol. 5059,
128–139,
https://doi.org/10.1117/12.512352, 2003. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Tech., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009.
a
Xiao, H., Zhao, P., Liu, X., and Li, H.: Sensitivity of aerosol-cloud
interactions to autoconversion schemes in mixed-phase orographic clouds,
Atmos. Res., 247, 105205,
https://doi.org/10.1016/j.atmosres.2020.105205, 2021. a
Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G. W., Mishchenko, M. I.,
and Cole, B.: Spectrally Consistent Scattering, Absorption, and Polarization
Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 µm,
J. Atmos. Sci., 70, 330–347,
https://doi.org/10.1175/JAS-D-12-039.1, 2013. a, b, c
Zaremba, T. J., Rauber, R. M., McFarquhar, G. M., Hayman, M., Finlon, J. A.,
and Stechman, D. M.: Phase Characterization of Cold Sector Southern Ocean
Cloud Tops: Results From SOCRATES, J. Geophys. Res.-Atmos., 125, e2020JD033673,
https://doi.org/10.1029/2020JD033673, 2020. a
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M.,
Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate
Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47,
e2019GL085782, https://doi.org/10.1029/2019GL085782,2020. a
Zhang, Y., Xie, S., Klein, S. A., Marchand, R., Kollias, P., Clothiaux, E. E.,
Lin, W., Johnson, K., Swales, D., Bodas-Salcedo, A., Tang, S., Haynes, J. M.,
Collis, S., Jensen, M., Bharadwaj, N., Hardin, J., and Isom, B.: The ARM
Cloud Radar Simulator for Global Climate Models: Bridging Field Data and
Climate Models, B. Am. Meteorol. Soc., 99, 21–26,
https://doi.org/10.1175/BAMS-D-16-0258.1, 2018. a
Short summary
The Earth Model Column Collaboratory (EMC2) is an open-source ground-based (and air- or space-borne) lidar and radar simulator and subcolumn generator designed for large-scale models, in particular climate models, applicable also for high-resolution models. EMC2 emulates measurements while remaining faithful to large-scale models' physical assumptions implemented in their cloud or radiation schemes. We demonstrate the use of EMC2 to compare AWARE measurements with the NASA GISS ModelE3 and LES.
The Earth Model Column Collaboratory (EMC2) is an open-source ground-based (and air- or...