Articles | Volume 15, issue 23
https://doi.org/10.5194/gmd-15-8931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8931-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temperature forecasting by deep learning methods
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Michael Langguth
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Amirpasha Mozaffari
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Scarlet Stadtler
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Karim Mache
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Martin G. Schultz
Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
Related authors
Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang
Atmos. Chem. Phys., 24, 4177–4192, https://doi.org/10.5194/acp-24-4177-2024, https://doi.org/10.5194/acp-24-4177-2024, 2024
Short summary
Short summary
We developed a novel transformer framework to bridge the sparse surface monitoring for inferring ozone–NOx–VOC–aerosol sensitivity and their urban–nonurban discrepancies at a finer scale with implications for improving our understanding of ozone variations. The change in urban–rural disparities in ozone was dominated by PM2.5 from 2019 to 2020. An aerosol-inhibited regime on top of the two traditional NOx- and VOC-limited regimes was identified in Jiaodong Peninsula, Shandong, China.
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023, https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020, https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary
Short summary
Cirrus clouds appearing in the upper troposphere and lower stratosphere have important impacts on the radiation budget and climate change. We revisited global stratospheric cirrus clouds with CALIPSO and for the first time with MIPAS satellite observations. Stratospheric cirrus clouds related to deep convection are frequently detected in the tropics. At middle latitudes, MIPAS detects more than twice as many stratospheric cirrus clouds due to higher detection sensitivity.
Ramiyou Karim Mache, Sabine Schröder, Michael Langguth, Ankit Patnala, and Martin G. Schultz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1399, https://doi.org/10.5194/egusphere-2025-1399, 2025
Short summary
Short summary
The TOAR-classifier model is a data-driven tool that allows for an objective classification of air quality measuring stations as urban, rural, or suburban. Such classification is important in the analysis of air pollutant trends and regional signatures. The model is employed in the second Tropospheric Ozone Assessment Report but can also be used in other research work.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang
Atmos. Chem. Phys., 24, 4177–4192, https://doi.org/10.5194/acp-24-4177-2024, https://doi.org/10.5194/acp-24-4177-2024, 2024
Short summary
Short summary
We developed a novel transformer framework to bridge the sparse surface monitoring for inferring ozone–NOx–VOC–aerosol sensitivity and their urban–nonurban discrepancies at a finer scale with implications for improving our understanding of ozone variations. The change in urban–rural disparities in ozone was dominated by PM2.5 from 2019 to 2020. An aerosol-inhibited regime on top of the two traditional NOx- and VOC-limited regimes was identified in Jiaodong Peninsula, Shandong, China.
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023, https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023, https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
Short summary
Our paper presents an alternative approach for generating high-resolution precipitation maps based on the nonlinear combination of the complete set of variables of the numerical weather predictions. This process combines the super-resolution task with the bias correction in a single step, generating high-resolution corrected precipitation maps with a lead time of 3 h. We used using deep learning algorithms to combine the input information and increase the accuracy of the precipitation maps.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Swantje Preuschmann, Tanja Blome, Knut Görl, Fiona Köhnke, Bettina Steuri, Juliane El Zohbi, Diana Rechid, Martin Schultz, Jianing Sun, and Daniela Jacob
Adv. Sci. Res., 19, 51–71, https://doi.org/10.5194/asr-19-51-2022, https://doi.org/10.5194/asr-19-51-2022, 2022
Short summary
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021, https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary
Short summary
MLAir provides a coherent end-to-end structure for a typical time series analysis workflow using machine learning (ML). MLAir is adaptable to a wide range of ML use cases, focusing in particular on deep learning. The user has a free hand with the ML model itself and can select from different methods during preprocessing, training, and postprocessing. MLAir offers tools to track the experiment conduction, documents necessary ML parameters, and creates a variety of publication-ready plots.
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
Short summary
With IntelliO3-ts v1.0, we present an artificial neural network as a new forecasting model for daily aggregated near-surface ozone concentrations with a lead time of up to 4 d. We used measurement and reanalysis data from more than 300 German monitoring stations to train, fine tune, and test the model. We show that the model outperforms standard reference models like persistence models and demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d.
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020, https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary
Short summary
Cirrus clouds appearing in the upper troposphere and lower stratosphere have important impacts on the radiation budget and climate change. We revisited global stratospheric cirrus clouds with CALIPSO and for the first time with MIPAS satellite observations. Stratospheric cirrus clouds related to deep convection are frequently detected in the tropics. At middle latitudes, MIPAS detects more than twice as many stratospheric cirrus clouds due to higher detection sensitivity.
Cited articles
Ayzel, G., Heistermann, M., and Winterrath, T.:
Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402, https://doi.org/10.5194/gmd-12-1387-2019, 2019. a
Ayzel, G., Scheffer, T., and Heistermann, M.:
RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a
Bauer, P., Thorpe, A., and Brunet, G.:
The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a, b, c
Brenowitz, N. D., Beucler, T., Pritchard, M., and Bretherton, C. S.:
Interpreting and stabilizing machine-learning parametrizations of convection, J. Atmos. Sci., 77, 4357–4375, 2020. a
Brock, A., Donahue, J., and Simonyan, K.:
Large Scale GAN Training for High Fidelity Natural Image Synthesis, in: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019, OpenReview.net, https://openreview.net/forum?id=B1xsqj09Fm (last access: 16 Kuly 2021), 2019. a
Canziani, A., Paszke, A., and Culurciello, E.:
An analysis of deep neural network models for practical applications, arXiv [preprint], arXiv:1605.07678, 2016. a
Casaioli, M., Mantovani, R., Proietti Scorzoni, F., Puca, S., Speranza, A., and Tirozzi, B.:
Linear and nonlinear post-processing of numerically forecasted surface temperature, Nonlin. Processes Geophys., 10, 373–383, https://doi.org/10.5194/npg-10-373-2003, 2003. a
Chantry, M., Hatfield, S., Dueben, P., Polichtchouk, I., and Palmer, T.:
Machine learning emulation of gravity wave drag in numerical weather forecasting, J. Adv. Model. Earth Sy., 13, e2021MS002477, https://doi.org/10.1029/2021MS002477, 2021. a
Chattopadhyay, A., Nabizadeh, E., and Hassanzadeh, P.:
Analog forecasting of extreme-causing weather patterns using deep learning, J. Adv. Model. Earth Sy., 12, e2019MS001958, https://doi.org/10.1029/2019MS001958, 2020. a
Clark, A., Donahue, J., and Simonyan, K.:
Adversarial video generation on complex datasets, arXiv [preprint], arXiv:1907.06571, 2019. a
Chepfer, H., Brogniez, H., and Noël, V.:
Diurnal variations of cloud and relative humidity profiles across the tropics,
Sci. Rep.-UK,
9, 1–9, 2019. a
de Bézenac, E., Pajot, A., and Gallinari, P.:
Deep learning for physical processes: incorporating prior scientific knowledge, J. Stat. Mech.-Theory E., 2019, 124009, https://doi.org/10.1088/1742-5468/ab3195, 2019. a
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.:
Imagenet: A large-scale hierarchical image database, in: 2009 IEEE conference on computer vision and pattern recognition, Ieee, 248–255, https://doi.org/10.1109/CVPR.2009.5206848, 2009. a
Denton, E. and Fergus, R.:
Stochastic video generation with a learned prior, arXiv [preprint], arXiv:1802.07687, 2018. a
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.:
An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale, arXiv [preprint], arXiv:2010.11929, 2020. a
Dueben, P. D. and Bauer, P.:
Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999–4009, https://doi.org/10.5194/gmd-11-3999-2018, 2018. a
ECMWF: ERA5 data, ECMWF MARS archive, https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets, last access: 20 October 2021. a
Ebert, F., Finn, C., Lee, A. X., and Levine, S.:
Self-supervised visual planning with temporal skip connections, arXiv [preprint], arXiv:1710.05268, 2017. a
Eccel, E., Ghielmi, L., Granitto, P., Barbiero, R., Grazzini, F., and Cesari, D.:
Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models, Nonlin. Processes Geophys., 14, 211–222, https://doi.org/10.5194/npg-14-211-2007, 2007. a
Efron, B. and Tibshirani, R. J.:
An introduction to the bootstrap, CRC Press, https://doi.org/10.1201/9780429246593, 1994. a
Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek, J., Bromberg, C., Gazen, C., Hickey, J., Bell, A., and Kalchbrenner, N.:
Skillful Twelve Hour Precipitation Forecasts using Large Context Neural Networks, arXiv [preprint], arXiv:2111.07470, 2021. a
Franceschi, J.-Y., Delasalles, E., Chen, M., Lamprier, S., and Gallinari, P.:
Stochastic latent residual video prediction, in: International Conference on Machine Learning, PMLR, 3233–3246, https://doi.org/10.48550/arXiv.2002.09219 2020. a
Fuks, O. and Tchelepi, H. A.:
Limitations of physics informed machine learning for nonlinear two-phase transport in porous media,
J. Mach. Learn. Model. Comput.,
1, 9–37, https://doi.org/10.1615/JMachLearnModelComput.2020033905, 2020. a
Garratt, J. R.:
The atmospheric boundary layer,
Earth-Sci. Rev., 37, 89–134, 1994. a
Ginzburg, A. I., Kostianoy, A. G., and Sheremet, N. A.:
Sea surface temperature variability, in: The Black Sea Environment, Springer, 255–275, https://doi.org/10.1007/698_5_067, 2007. a
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Generative adversarial networks, Communications of the ACM, 63, 139–144, https://doi.org/10.1145/3422622, 2020. a, b
Gong, B. and Langguth, M.: Data samples of the paper “Temperature forecasting by deep-learning methods”, B2SHARE [data set], https://doi.org/10.23728/B2SHARE.744BBB4E6EE84A09AD368E8D16713118, 2022. a
Gong, B., Langguth, M., and Ji, Y.: Atmospheric Machine Learning Benchmarking System (1.0.3), Zenodo [code], https://doi.org/10.5281/zenodo.6907316, 2022a. a
Gong, B., Langguth, M., Ji, Y., Mozaffari, A., Stadtler, S., Mache, K., and Schultz, M. G.: 2m Temperature Forecast by Deep Learning, Jülich DATA V2 [data set], https://doi.org/10.26165/JUELICH-DATA/X5HPXP, 2022b. a
Grönquist, P., Yao, C., Ben-Nun, T., Dryden, N., Dueben, P., Li, S., and Hoefler, T.:
Deep learning for post-processing ensemble weather forecasts, Philos. T. R. Soc. A, 379, 20200092, https://doi.org/10.1098/rsta.2020.0092, 2021. a
Guen, V. L. and Thome, N.:
Disentangling physical dynamics from unknown factors for unsupervised video prediction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11474–11484, https://doi.org/10.48550/arXiv.2003.01460, 2020. a
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A.:
Improved training of wasserstein GANs, in: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), Curran Associates Inc., Red Hook, NY, USA, 5769–5779, 2017. a
Haiden, T., Janousek, M., Vitart, F., Ben-Bouallegue, Z., Ferranti, L., and Prates, F.:
Evaluation of ECMWF forecasts, including the 2021 upgrade, Report, https://doi.org/10.21957/90pgicjk4, 2021. a
Han, Y., Zhang, G. J., Huang, X., and Wang, Y.:
A moist physics parameterization based on deep learning, J. Adv. Model. Earth Sy., 12, e2020MS002076, https://doi.org/10.1029/2020MS002076, 2020. a
Hatfield, S., Chantry, M., Dueben, P., Lopez, P., Geer, A., and Palmer, T.:
Building Tangent-Linear and Adjoint Models for Data Assimilation With Neural Networks, J. Adv. Model. Earth Sy., 13, e2021MS002521, https://doi.org/10.1029/2021MS002521, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a, b
Huth, R.:
Statistical downscaling of daily temperature in central Europe,
J. Climate, 15, 1731–1742, 2002. a
Huth, R.:
Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors,
J. Climate, 17, 640–652, 2004. a
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A.:
Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 1125–1134,
https://doi.org/10.48550/arXiv.1611.07004,
2017. a, b
Jin, B., Hu, Y., Tang, Q., Niu, J., Shi, Z., Han, Y., and Li, X.:
Exploring spatial-temporal multi-frequency analysis for high-fidelity and temporal-consistency video prediction, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4554–4563,
https://doi.org/10.48550/arXiv.2002.09905, 2020. a
Jin, X., Cai, S., Li, H., and Karniadakis, G. E.:
NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations,
J. Comput. Phys., 426, 109951, https://doi.org/10.1016/j.jcp.2020.109951, 2021. a
Jülich Supercomputing Centre: JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre, Journal of large-scale research facilities, 5, A171, https://doi.org/10.17815/jlsrf-5-171, 2019. a
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L.:
Physics-informed machine learning,
Nature Reviews Physics, 3, 422–440, 2021. a
Karpatne, A., Watkins, W., Read, J., and Kumar, V.:
Physics-guided neural networks (pgnn): An application in lake temperature modeling, arXiv [preprint], arXiv:1710.11431, 2017. a
Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., van den Heever, S. C., and Yano, J. I.:
Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization,
Rev. Geophys., 53, 247–322, 2015. a
Kim, S., Hong, S., Joh, M., and Song, S.-k.:
Deeprain: Convlstm network for precipitation prediction using multichannel radar data, arXiv [preprint], arXiv:1711.02316, 2015. a
Kingma, D. P. and Ba, J.:
Adam: A method for stochastic optimization, arXiv [preprint], arXiv:1412.6980, 2017. a
Kingma, D. P. and Welling, M.:
Auto-encoding variational bayes, arXiv [preprint], arXiv:1312.6114, 2013. a, b, c
Kong, Y. and Fu, Y.:
Human action recognition and prediction: A survey, arXiv [preprint], arXiv:1806.11230, 2018. a
Krizhevsky, A., Sutskever, I., and Hinton, G. E.:
ImageNet Classification with Deep Convolutional Neural Networks, in: Advances in Neural Information Processing Systems, edited by: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., vol. 25, Curran Associates, Inc., https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (last access: 1 July 2022), 2012. a
Leinonen, J., Nerini, D., and Berne, A.:
Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network, IEEE T. Geosci. Remote, 59, 7211–7223, https://doi.org/10.1109/TGRS.2020.3032790, 2020. a
Lezama Valdes, L.-M., Katurji, M., and Meyer, H.:
A Machine Learning Based Downscaling Approach to Produce High Spatio-Temporal Resolution Land Surface Temperature of the Antarctic Dry Valleys from MODIS Data, Remote Sens.-Basel, 13, 4673, https://doi.org/10.3390/rs13224673, 2021. a
Liu, H.-B. and Lee, I.:
MPL-GAN: Toward Realistic Meteorological Predictive Learning Using Conditional GAN, IEEE Access, 8, 93179–93186, 2020. a
Liu, W., Luo, W., Lian, D., and Gao, S.:
Future frame prediction for anomaly detection – a new baseline, in: Proceedings of the IEEE conference on computer vision and pattern recognition 6536–6545, https://doi.org/10.48550/arXiv.1712.00986, 2018. a
Lorenz, E. N.:
The predictability of a flow which possesses many scales of motion, Tellus, 21, 289–307, https://doi.org/10.3402/tellusa.v21i3.10086, 1969. a, b
McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D., Lagerquist, R., Smith, T., and Williams, J. K.:
Using artificial intelligence to improve real-time decision-making for high-impact weather, B. Am. Meteorol. Soc., 98, 2073–2090, 2017. a
Murphy, A. H. and Winkler, R. L.:
A general framework for forecast verification, Mon. Weather Rev., 115, 1330–1338, 1987. a
Oliu, M., Selva, J., and Escalera, S.:
Folded recurrent neural networks for future video prediction, in: Proceedings of the European Conference on Computer Vision (ECCV), 716–731, https://doi.org/10.48550/arXiv.1712.00311, 2018. a
Oprea, S., Martinez-Gonzalez, P., Garcia-Garcia, A., Castro-Vargas, J. A., Orts-Escolano, S., Garcia-Rodriguez, J., and Argyros, A.:
A review on deep learning techniques for video prediction, IEEE T. Pattern Anal., 44, 2806–2826, https://doi.org/10.1109/TPAMI.2020.3045007, 2020. a, b
Orlanski, I.:
A rational subdivision of scales for atmospheric processes, B. Am. Meteorol. Soc., 56, 527–530, https://doi.org/10.1175/1520-0477-56.5.527, 1975. a, b, c
Owens, R. G. and Hewson, T. D.:
ECMWF Forecast User Guide, Tech. rep.,
ECMWF, https://doi.org/10.21957/m1cs7h, 2018. a
Patraucean, V., Handa, A., and Cipolla, R.:
Spatio-temporal video autoencoder with differentiable memory, arXiv [preprint], arXiv:1511.06309, 2015. a
Prudden, R., Adams, S., Kangin, D., Robinson, N., Ravuri, S., Mohamed, S., and Arribas, A.:
A review of radar-based nowcasting of precipitation and applicable machine learning techniques, arXiv [preprint], arXiv:2005.04988, 2020. a
Qi, M., Wang, Y., Li, A., and Luo, J.:
STC-GAN: Spatio-temporally coupled generative adversarial networks for predictive scene parsing, IEEE T. Image Process., 29, 5420–5430, 2020. a
Racah, E., Beckham, C., Maharaj, T., Prabhat, and Pal, C. J.:
Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets, ICLR, https://openreview.net/forum?id=SJ_QCYqle (last access: 12 December 2021), 2017. a
Raissi, M., Perdikaris, P., and Karniadakis, G. E.:
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,
J. Comput. Phys., 378, 686–707, 2019. a
Raissi, M., Yazdani, A., and Karniadakis, G. E.:
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations,
Science, 367, 1026–1030, 2020. a
Rao, C., Sun, H., and Liu, Y.:
Physics-informed deep learning for incompressible laminar flows,
Theoretical and Applied Mechanics Letters, 10, 207–212, 2020. a
Rao, Q. and Frtunikj, J.:
Deep learning for self-driving cars: Chances and challenges, in: Proceedings of the 1st International Workshop on Software Engineering for AI in Autonomous Systems, 35–38, https://doi.org/10.1145/3194085.3194087, 2018. a
Rasp, S. and Lerch, S.:
Neural networks for postprocessing ensemble weather forecasts, Mon. Weather Rev., 146, 3885–3900, https://doi.org/10.1175/MWR-D-18-0187.1, 2018. a, b
Rasp, S. and Thuerey, N.:
Data-Driven Medium-Range Weather Prediction With a Resnet Pretrained on Climate Simulations: A New Model for WeatherBench, J. Adv. Model. Earth Sy., 13, e2020MS002 405, https://doi.org/10.1029/2020MS002405, 2021. a, b
Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and Mohamed, S.:
Skilful precipitation nowcasting using deep generative models of radar, Nature, 597, 672–677, https://doi.org/10.1038/s41586-021-03854-z, 2021. a, b
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, 2019. a
Reyniers, M.:
Quantitative precipitation forecasts based on radar observations: Principles, algorithms and operational systems, Institut Royal Météorologique de Belgique Brussel, Belgium, 2008. a
Scher, S. and Messori, G.:
Weather and climate forecasting with neural networks: using general circulation models (GCMs) with different complexity as a study ground,
Geosci. Model Dev., 12, 2797–2809, https://doi.org/10.5194/gmd-12-2797-2019, 2019. a
Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., Agrawal, S., Hickey, J., and Kalchbrenner, N.:
Metnet: A neural weather model for precipitation forecasting, arXiv [preprint], arXiv:2003.12140, 2020. a
Sun, B., Groisman, P. Y., Bradley, R. S., and Keimig, F. T.:
Temporal changes in the observed relationship between cloud cover and surface air temperature,
J. Climate, 13, 4341–4357, 2000. a
Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-Hooimeyer, J., Joe, P., Barker, D. M., Li, P.-W., Golding, B., Xu, M., and Pinto, J.: Use of NWP for nowcasting convective precipitation: Recent progress and challenges, B. Am. Meteorol. Soc., 95, 409–426, 2014. a
Sun, J., Xie, J., Hu, J.-F., Lin, Z., Lai, J., Zeng, W., and Zheng, W.-S.:
Predicting future instance segmentation with contextual pyramid convlstms, in: Proceedings of the 27th acm international conference on multimedia, 2043–2051, https://doi.org/10.1145/3343031.3350949, 2019. a
Tarek, M., Brissette, F. P., and Arsenault, R.:
Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020. a
Vannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A., Bouallégue, Z. B., Bhend, J., Dabernig, M., Cruz, L. D., Hieta, L., Mestre, O., Moret, L., Plenkovic, I. O., Schmeits, M., Taillardat, M., den Bergh, J. V., Schaeybroeck, B. V., Whan, K., and Ylhaisi, J.: Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World, B. Am. Meteorol. Soc., 102, E681–E699, 2021. a
Villegas, R., Yang, J., Hong, S., Lin, X., and Lee, H.:
Decomposing motion and content for natural video sequence prediction, arXiv [preprint], arXiv:1706.08033, 2017. a
von Engeln, A. and Teixeira, J.:
A planetary boundary layer height climatology derived from ECMWF reanalysis data,
J. Climate, 26, 6575–6590, 2013. a
Wang, S., Teng, Y., and Perdikaris, P.:
Understanding and mitigating gradient flow pathologies in physics-informed neural networks,
SIAM J. Sci. Comput., 43, A3055–A3081, 2021. a
Wang, Y., Long, M., Wang, J., Gao, Z., and Philip, S. Y.:
Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms, in: Advances in Neural Information Processing Systems, 879–888, https://proceedings.neurips.cc/paper/2017/hash/e5f6ad6ce374177eef023bf5d0c018b6-Abstract.html (last access: 12 December 2021), 2017.
a
Wang, Y., Jiang, L., Yang, M.-H., Li, L.-J., Long, M., and Fei-Fei, L.:
Eidetic 3d lstm: A model for video prediction and beyond, in: International conference on learning representations, https://openreview.net/forum?id=B1lKS2AqtX (last access: 10 November 2021), 2018. a
Wang, Y., Wu, H., Zhang, J., Gao, Z., Wang, J., Yu, P. S., and Long, M.:
PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning, arXiv [preprint], arXiv:2103.09504, 2021. a
Weyn, J. A., Durran, D. R., and Caruana, R.:
Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere, J. Adv. Model. Earth Sy., 12, e2020MS002109, https://doi.org/10.1029/2020MS002109, 2020. a, b
Wilson, J. W., Feng, Y., Chen, M., and Roberts, R. D.:
Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems, Weather Forecast., 25, 1691–1714, 2010. a
Yan, W., Zhang, Y., Abbeel, P., and Srinivas, A.:
VideoGPT: Video Generation using VQ-VAE and Transformers, arXiv [preprint], arXiv:2104.10157, 2021. a
Zaengl, G., Reinert, D., Rípodas, P., and Baldauf, M.:
The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, 2015. a
Ziyin, L., Hartwig, T., and Ueda, M.:
Neural networks fail to learn periodic functions and how to fix it, arXiv [preprint], arXiv:2006.08195, 2020. a
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Inspired by the success of deep learning in various domains, we test the applicability of video...