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Abstract. Numerical weather prediction (NWP) models
solve a system of partial differential equations based on phys-
ical laws to forecast the future state of the atmosphere. These
models are deployed operationally, but they are computation-
ally very expensive. Recently, the potential of deep neural
networks to generate bespoke weather forecasts has been ex-
plored in a couple of scientific studies inspired by the suc-
cess of video frame prediction models in computer vision.
In this study, a simple recurrent neural network with convo-
lutional filters, called ConvLSTM, and an advanced gener-
ative network, the Stochastic Adversarial Video Prediction
(SAVP) model, are applied to create hourly forecasts of the
2 m temperature for the next 12 h over Europe. We make
use of 13 years of data from the ERA5 reanalysis, of which
11 years are utilized for training and 1 year each is used for
validating and testing. We choose the 2 m temperature, total
cloud cover, and the 850 hPa temperature as predictors and
show that both models attain predictive skill by outperform-
ing persistence forecasts. SAVP is superior to ConvLSTM
in terms of several evaluation metrics, confirming previous
results from computer vision that larger, more complex net-
works are better suited to learn complex features and to gen-
erate better predictions. The 12 h forecasts of SAVP attain a
mean squared error (MSE) of about 2.3 K2, an anomaly cor-
relation coefficient (ACC) larger than 0.85, a structural simi-
larity index (SSIM) of around 0.72, and a gradient ratio (rG)
of about 0.82. The ConvLSTM yields a higher MSE (3.6 K2),
a smaller ACC (0.80) and SSIM (0.65), and a slightly larger
rG (0.84). The superior performance of SAVP in terms of
MSE, ACC, and SSIM can be largely attributed to the gener-
ator. A sensitivity study shows that a larger weight of the gen-
erative adversarial network (GAN) component in the SAVP
loss leads to even better preservation of spatial variability
at the cost of a somewhat increased MSE (2.5 K2). Includ-
ing the 850 hPa temperature as an additional predictor en-

hances the forecast quality, and the model also benefits from
a larger spatial domain. By contrast, adding the total cloud
cover as predictor or reducing the amount of training data
to 8 years has only small effects. Although the temperature
forecasts obtained in this way are still less powerful than con-
temporary NWP models, this study demonstrates that sophis-
ticated deep neural networks may achieve considerable fore-
cast quality beyond the nowcasting range in a purely data-
driven way.

1 Introduction

Accurate predictions of weather are important for many as-
pects of modern society. They are of high relevance in econ-
omy and industry, e.g. for agriculture, for the (renewable)
electric power industry, or for prevention against natural haz-
ards. Since the early 1960s, numerical weather prediction
(NWP) models are run operationally at meteorological cen-
tres all over the world. These models are nowadays capable
of simulating the dynamics of the global atmosphere down to
the kilometre scale (Bauer et al., 2015). While their predic-
tions have reached a remarkable degree of reliability, the re-
quired computational resources are enormous (Zaengl et al.,
2015).

Over recent years, deep learning (DL) has been success-
fully applied in computer vision applications, such as self-
driving cars (Rao and Frtunikj, 2018), human action predic-
tion (Kong and Fu, 2018), and anomaly detection (Liu et al.,
2018). These show that deep neural networks have the abil-
ity to recognize complex patterns and uncover highly non-
linear relations in a data-driven way. Thus, hopes are raised
that deep learning can be used for weather prediction and
Earth system science (Schultz et al., 2021), which have to
deal with many complex, multi-scale, and non-linear cou-
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pled processes (Orlanski, 1975). The weather and climate
communities are beginning to investigate the use of these
advanced machine learning (ML) methods in the context
of weather (McGovern et al., 2017) and climate forecast-
ing (Reichstein et al., 2019), such as data assimilation (e.g.
Hatfield et al., 2021), emulation of physical parameteriza-
tion (e.g. Han et al., 2020), and detection of extreme weather
events in climate datasets (e.g. Racah et al., 2016).

As discussed in Schultz et al. (2021), there are many po-
tential applications of DL in the field of weather forecast-
ing. DL methods can be integrated in each step of the NWP
workflow, which comprises preprocessing of observational
data, assimilation of these data into the modelled real atmo-
spheric state, forecasting with a numerical model, and post-
processing on the raw model outputs (see Fig. 1 in Schultz
et al., 2021). Here, we provide a proof-of-concept study on
replacing the NWP model with data-driven video prediction
methods to forecast the evolution of the atmospheric state,
particularly the 2 m temperature, up to 12 h ahead. This is
considerably longer than the typical range of nowcasting
applications with a lead time of 3 h or less (Wilson et al.,
2010) but shorter than medium-range forecasts targeted in
other studies (cf. Scher, 2018; Rasp and Lerch, 2018; Weyn
et al., 2020). Together with an hourly temporal resolution of
the video prediction model which aligns with the temporal
resolution of operational NWP model output, our applica-
tion focuses on predicting the diurnal cycle of 2 m temper-
ature. This approach comprises two potential challenges for
deep neural networks: a quick error accumulation in an au-
toregressive forecast task (see, e.g. Rasp et al., 2020; Scher
and Messori, 2019) and the prediction of quasi-periodic pro-
cesses for which deep neural networks are known to struggle
with (Ziyin et al., 2020).

Weather forecasting shares some similarities with video
prediction by deep learning. Both explore spatio-temporal
patterns from previously observed data to generate a plau-
sible future state of the system. Nevertheless, there are at
least two main differences. First, video prediction is mostly
used for human pose, physical object, and trajectory fore-
casting, where individual objects are often clearly separable
from the background and do not interact with each other on
several spatio-temporal scales. Temporal patterns are learned
from the movement of objects to then generate a series of
frames anticipating how a scene might evolve during the next
few seconds. In contrast, weather data do not contain clearly
separable objects and the physical laws governing the evolu-
tion of weather patterns over time are much more complex
due to multi-scale interactions (see, e.g., Orlanski, 1975).
For instance, a convective system is driven by large-scale
flow patterns (e.g. embedded in a synoptic-scale low) and
is subject to turbulence processes in the planetary boundary
layer (e.g. convection triggering). Vice versa, the convection
itself vents the planetary boundary layer and also modifies
the large-scale atmospheric state. Due to the multi-scale in-
teractions, the degree of inherent uncertainty in weather pre-

dictions is enormous (e.g. Lorenz, 1969). Second, video pre-
dictions mostly aim for perceptually realistic looking scenes.
Several evaluation metrics such as the peak signal-to-noise
ratio (Mathieu et al., 2015) or the structural similarity index
(Wang et al., 2004) are applied for this purpose in the com-
puter vision domain. However, the degree of physical realism
is barely obtainable from a graphical display of weather, for
example in weather charts. Due to this difference, meteorolo-
gists have developed a broad range of evaluation metrics with
careful consideration of their statistical properties (see, e.g.,
Wilks, 2011) and deep learning must eventually show that it
can compete with numerical models according to the same
evaluation standards (e.g. Rasp and Lerch, 2018; Leinonen
et al., 2020).

The application of deep neural networks in weather and
climate science is still in its infant stage. While some stud-
ies experimented with emulators of physical parameteriza-
tions within atmospheric models (Brenowitz et al., 2020;
Chantry et al., 2021) or processed direct model output for
improved forecast products (e.g. Sha et al., 2020; Grönquist
et al., 2021), others directly explored video prediction ap-
proaches for weather forecasting. So far, relatively simple
architectures such as fully convolutional u-shaped encoder–
decoder networks (U-Net) or convolutional layers coupled
with long short-term memory (LSTM) cells (so called Con-
vLSTM) are commonly used in the weather forecast domain
(e.g. Kim et al., 2017; Weyn et al., 2019; Y. Wang et al.,
2021). In parallel, the performance of deep learning models
for computer vision tasks has continuously improved with
increased complexity and more refined concepts of the neu-
ral network architectures. Since the breakthrough of AlexNet
(Krizhevsky et al., 2012) in the ImageNet challenge (Deng
et al., 2009), convolutional neural networks and their vari-
ants have seen rapid development (e.g. Xingjian et al., 2015;
Canziani et al., 2016). Recently, generative adversarial net-
works (GANs; Goodfellow et al., 2014), variational autoen-
coders (VAEs; Kingma and Welling, 2013), and vision trans-
former networks (Dosovitskiy et al., 2020; Caron et al., 2021)
have become increasing popular and are nowadays combined
with previous approaches to further improve on machine
learning benchmark datasets (see Oprea et al., 2020, for a
review).

While data-driven neural networks are continuously im-
proved in computer vision, there is recent growing inter-
est in applying physics-informed neural networks (PINNs).
PINNs aim to leverage the power of neural networks as uni-
versal function approximators by explicitly encoding the un-
derlying physical laws expressed in partial differential equa-
tions (Raissi et al., 2019) and therefore constitute a promis-
ing framework for atmospheric dynamics described by the
Navier–Stokes equations, the continuity equation for moist
air, and the first law of thermodynamics. However, PINNs
have only been applied to highly simplified versions of the
Navier–Stokes equation so far (e.g. Rao et al., 2020; Jin et al.,
2021) and furthermore may suffer from severe convergence
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and accuracy problems for processes on multiple spatio-
temporal scales (Fuks and Tchelepi, 2020; Raissi et al., 2020;
S. Wang et al., 2021) such as the real atmosphere.

Due to the existing fundamental challenges in applying
PINNs to real-world meteorological problems, we focus on
data-driven neural networks in this paper. Particularly, we
explore to what extent such more advanced deep learning
models with the capability of capturing non-linear relations
in the data provide opportunities to enhance the predictive
skills of machine learning in Earth science applications. Ac-
cordingly, we have applied a state-of-the-art DL architecture,
namely the stochastic adversarial video prediction (SAVP)
model, which combines ConvLSTM, GAN, and VAE archi-
tecture components (Lee et al., 2018), to a simplified meteo-
rological forecast problem and compare its results with those
from a ConvLSTM model. For convenience, we make use
of data from the ERA5 reanalysis system (Hersbach et al.,
2020) provided by the European Center for Medium-Range
Weather Forecasts (ECMWF). These data have the big ad-
vantage of providing a comprehensive estimate of the atmo-
spheric state without suffering from sparse observational data
with varying biases due to different measurement techniques
(e.g. station sites, radiosondes, and satellite observations).
Besides, the gridded dataset allows for straightforward appli-
cations of convolutional operators. Ultimately, a DL forecast
system should work directly with the observational data.

Within the scope of this study, we seek to answer the fol-
lowing research questions: (1) How well do video prediction
models perform in predicting the diurnal cycle of 2 m tem-
perature? (2) Is there a clear advantage of using more so-
phisticated DL architectures? (3) How do different compo-
nents in composite model architectures such as SAVP affect
the forecast quality? (4) How sensitive is the model perfor-
mance with respect to external parameters (spatial domain,
additional predictors, and training dataset size)?

The paper is organized as follows: Sect. 2 will give a
thorough review of the state-of-the-art deep learning mod-
els for video prediction and also presents some related work
on weather forecasting. Section 3 introduces the meteorolog-
ical dataset and describes the video prediction models that
are deployed in this study. In Sect. 4, a detailed analysis of
the model results is presented based on standard evaluation
metrics from the domain of computer vision and from the
meteorological community. The effect of the different com-
ponents in SAVP models are analysed through the sensitivity
analysis for the scaling factors on L1 loss. We also present
the results of sensitivity analysis to evaluate the impacts of
input variable selection, the size of the spatial domain, and
the length of the training dataset. Finally, Sect. 6 summarizes
the findings and provides an outlook on the future avenue of
weather forecasting with video prediction methods.

2 State-of-the-art video prediction models

2.1 Deep learning for video prediction

Common machine learning techniques for video prediction
can be categorized as recurrent neural networks (RNNs)
(Oliu et al., 2018; Wang et al., 2018), adversarial learning
(Goodfellow et al., 2014; Mathieu et al., 2015), and VAE (Pa-
traucean et al., 2015). While different recurrent network ar-
chitectures have been developed over the last years, LSTM
cells combined with convolutional layers as proposed by
Xingjian et al. (2015) have been widely applied for video
prediction as a baseline model to compare with other state-
of-the-art methods (Villegas et al., 2017; Guen and Thome,
2020). The combination of convolution with LSTM enables
the DL model to capture spatio-temporal dependencies and
thus make predictions about the temporal evolution of spa-
tial patterns, which is the core task of video prediction.

Despite the early success of ConvLSTM models, they are
prone to generate blurry images, which do not look very re-
alistic (Denton and Fergus, 2018; Ebert et al., 2017). The
reason for this can be attributed to the loss function used
in ConvLSTM models where the L1 and L2 loss constitute
common choices. These losses measure the point- or pixel-
wise distance between prediction and ground truth and rely
on the assumption that the data follow a Gaussian distribu-
tion. However, L1 and L2 losses perform poorly when the
data are drawn from multi-modal distributions or from non-
Gaussian distributions. The problem gets worse with grow-
ing uncertainty in the future state (Mathieu et al., 2015). This
is because the model tends to converge towards the average
of all the possible future states on a point-wise level even
if the average values themselves have low probability. This
failure in capturing and reflecting the statistical nature of the
underlying data leads to a rather quick degradation of fore-
cast accuracy with increasing lead times as noted by Mathieu
et al. (2015) and Sun et al. (2019).

As an alternative, GAN-based architectures have been de-
veloped, which use adversarial loss to learn the underlying
data statistics among multiple equally probable modes and
therefore mitigate blurriness. GANs constitute a composite
model architecture which consists of a generator and a dis-
criminator model. The discriminator is trained to distinguish
between real and artificially generated video sequences. Con-
versely, the generator gets optimized to fool the discrimina-
tor; i.e. it aims to produce video sequences that cannot be
differentiated from real ones by the discriminator. By train-
ing both models adversarially, the generator must learn the
statistical properties of the underlying data and thereby be-
comes capable of generating perceptually realistic images
(Oprea et al., 2020).

However, GAN models also have their shortcomings. It is
well known that these models may lack diversity in the pre-
dicted video sequences which is commonly referred as mode
collapse in the computer vision community (Isola et al.,
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2017; Lee et al., 2018). Approaches to overcome model
collapse are either to optimize models on the Earth Mover
distance (Wasserstein GANs) instead of the cross-entropy
loss (Gulrajani et al., 2017) or to embed a VAE framework
(Kingma and Welling, 2013). VAEs, like other likelihood-
based models, can play a complementary role to the GANs
and generate more dispersed samples, better learn the data
distribution, and avoid mode collapse.

To leverage the advantages of different architectures, Lee
et al. (2018) proposed a model architecture that tries to over-
come the aforementioned shortcomings by combining three
different model architectures. Their SAVP approach incor-
porates VAE and GAN components together with ConvL-
STM cells. Since SAVP leverages the advantages of both, this
model demonstrates very good forecasting capability when
applied to common ML benchmark datasets such as Moving-
MNIST, BAIR Push, and KTH (Franceschi et al., 2020; Jin
et al., 2020).

2.2 Video prediction in weather forecasts

Precipitation nowcasting with a lead time of up to 3 h is
one of the most common applications of video prediction
models. Lagrangian persistence approaches with optical flow
(Reyniers, 2008; Ayzel et al., 2019) are well established and
already outperform NWP models. The limited performance
of NWP models for such short-term forecasts is related to
spin-up effects after initialization and to the data assimila-
tion procedure, which is challenged by quickly varying at-
mospheric processes with non-Gaussian statistical properties
such as cloud formation and precipitation. However, opti-
cal flow methods fail to capture any developments in the
precipitation patterns, and, thus, advanced deep neural net-
work architectures have been recently applied to attain fur-
ther improvements. Corner stones in the history of precip-
itation nowcasting are the study by Xingjian et al. (2015)
and the development of PredRNN (Wang et al., 2017), who
both applied ConvLSTM models for this task. Recently, dif-
ferent model architectures with increasing complexity have
been tested such as attention models (e.g. Sønderby et al.,
2020) and deep U-Nets (e.g. Ayzel et al., 2020). Recently,
GAN-based models have been becoming popular for precipi-
tation nowcasting since they succeed in preserving the under-
lying statistical distribution and thereby improve in forecast-
ing stronger precipitation events (Liu and Lee, 2020; Ravuri
et al., 2021).

For longer lead times, NWP models still constitute the
state of the art (Bauer et al., 2015; Schultz et al., 2021), but
there have been a few experimental studies which examine
the applicability of deep neural networks to generate tailor-
made meteorological predictions in the short, medium, and
seasonal forecast range (more than 6 h, up to 2 weeks, and
beyond).

Weyn et al. (2019) developed weather prediction models
using deep convolutional neural networks (CNNs) to pre-

dict the 500 hPa geopotential height at a lead time of 14 d.
Rasp and Thuerey (2021) proposed a deep residual convolu-
tional neural network (ResNet) to predict global geopoten-
tial, temperature, and precipitation at 5.625◦ resolution up
to 5 d ahead based on the WeatherBench dataset (Rasp et al.,
2020). The study from Weyn et al. (2020) explored a CNN-
based model to predict surface temperature patterns. These
results and other studies such as Scher (2018) and Chattopad-
hyay et al. (2020) show that basic meteorological features
(e.g. evolving Rossby waves) can be predicted from DL mod-
els and that a realistic seasonal cycle with prescribed vari-
ations in top-of-atmosphere solar forcing can be produced.
Even though the DL models still cannot compete with op-
erational NWP models on high spatial resolution, these first
results are promising. One aspect which makes DL models
particularly attractive is that they are computationally cheap
once the neural network has been trained.

However, despite these initial successes, we observe that
DL models for weather forecasting optimized on the L1 and
L2 loss also suffer from a similar issue to generating “blurry
images” in computer vision tasks. Distinct meteorological
features such as precipitation patterns or weather fronts often
get smoothed, and, thus, the predicted meteorological fields
exhibit statistical properties that do not match the observed
ones.

To improve handling of the inherent uncertainty and to
preserve the high spatio-temporal variability in meteoro-
logical forecast products, Bihlo (2020) trained conditional
GAN (cGAN) models based on the pix2pix architecture
(Isola et al., 2017) with a U-Net deployed for the generator.
With this architecture, he predicted the 500 hPa geopotential
height, the 2 m temperature, and total precipitation for a max-
imum lead time of 24 h and obtained encouraging results for
the two previous quantities. Similar to our study, they used
ERA5 reanalysis data sliced to a region over Europe and ob-
tained promising results on a coarsened 0.5◦ grid.

Our study builds on these recent works by employing the
SAVP model architecture to weather forecasts over 12 h. As
described above, SAVP combines the advantages of GANs
with those from VAE, and we can thus hope to obtain accu-
rate predictions with sharp features. We compare the SAVP
results to a simple ConvLSTM model to probe the sensitivity
of the forecast quality on the complexity of the model ar-
chitecture. Furthermore, we examine the impact of the target
domain size, the number of selected predictors, and the size
of the training dataset.

3 Data and models

3.1 Dataset

The ERA5 reanalysis dataset provided by the ECMWF is
used as the data source in this study (Hersbach et al., 2020).
Reanalysis data combine a numerical weather prediction
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Figure 1. Topographic height of the surface from the ERA5 reanal-
ysis dataset remapped onto a regular, spherical grid with1x= 0.3◦.
The grid boxes of the target domain are highlighted by opaque
colours. The dashed and solid lines bound the subdomains in
the sensitivity study. The domains comprise 92× 56, 80× 48 and
72× 44 grid points in the zonal and meridional direction, respec-
tively.

(NWP) model, in this case the Integrated Forecast System
(IFS) Cy41r2, with sophisticated data assimilation to retrieve
an optimized estimate on the atmospheric state. Global atmo-
spheric reanalysis datasets such as the ERA5 play a substan-
tial role in climate monitoring and are also used over a wide
range of other applications in Earth science, e.g. for hydro-
logical studies (e.g. Tarek et al., 2020) or to track progress in
numerical modelling (e.g. Haiden et al., 2021).

The original ERA5 reanalysis data are defined on a re-
duced N320 Gaussian grid with an approximate horizontal
grid spacing of 0.2825◦ (1x ≈ 30 km). Since such highly re-
solved data fields with 640 grid points in the latitude direc-
tion and about 1280 grid points in the longitude direction
near the Equator would consume too much memory for the
video prediction task, we limit our forecasting task to the re-
gion of central Europe (see Fig. 1) and subset the data ac-
cordingly.

The deep learning task of our study is to generate hourly
forecasts of the 2 m temperature over the next 12 h based on
the ERA5 reanalysis fields of the previous 12 h. The two neu-
ral networks used are described in Sect. 3.3.

In the ERA5 dataset, the 2 m temperature is not a prognos-
tic variable of the underlying IFS model. Instead, it is diag-
nosed by an empirical interpolation scheme based on the skin
temperature and the temperature at the lowest model layer
placed 10 m above the ground (Owens and Hewson, 2018).
Both quantities are subject to complex interactions between
the surface, the planetary boundary layer, and the free tropo-
sphere. Over land, the skin temperature is driven by radiation
fluxes which undergo a diurnal and seasonal cycle and which
are strongly modulated by clouds (Liu et al., 2008). Clouds
impact the incoming solar (short-wave) radiation and control
the long-wave radiation budget, which also depends on the
temperature of the atmospheric column aloft. Turbulence in

the planetary boundary layer further couples the near-surface
temperature with the temperature at higher levels in the at-
mosphere (Garratt, 1994).

While there is a great variety of different variables which
drive the underlying processes, we use the 850 hPa tem-
perature (T850 hPa) and the total cloud cover (TCC) as ad-
ditional informative predictors. T850 hPa corresponds to the
air temperature at a height of approximately 1500 m above
sea level and is commonly used to characterize air masses
(Huth, 2002, 2004). This variable has been used in previ-
ous 2 m temperature forecasting studies for statistical post-
processing of surface air temperatures by machine learning
methods (Casaioli et al., 2003; Eccel et al., 2007). The TCC
distils key information on the optical properties of the atmo-
sphere, which modulates the incoming solar and the outgoing
long-wave radiation (Sun et al., 2000; Liu et al., 2008). Thus,
both variables are assumed to encode relevant drivers of the
2 m temperature.

A more systematic variable selection process is not con-
ducted in this study. However, we note that further drivers
of the 2 m temperature can be encoded in a data-driven way
from the input data sequence as discussed below.

3.2 Preprocessing

To allow the application of convolutional operations on the
data, the data were interpolated onto a regular spherical grid
with a spacing of 0.3◦ via the Meteorological Archival and
Retrieval System (MARS) in this study. On this grid, the tar-
get domain over Europe consists of 92× 56 grid points in
the zonal and meridional direction, respectively. Finally, we
restrict the time period to the years 2007–2019 (13 years).
In this way, no large climate change signals are involved in
the temperature field. The data are originally recorded hourly
and further processed as samples to train the deep learning
network. Each sample consists of 24 time steps, of which
12 are used as input for the next 12 h forecasts. While this
results in about 8400 samples per year, this choice on the to-
tal sequence length allows the models to infer the daytime
in a data-driven way. Based on one half of the diurnal cy-
cle of 2 m temperature as part of the input data, the models
have to predict the second half, which implies an implicit but
complete encoding of the daytime into the forecasting task.
Thus, no explicit information on the daytime is provided to
the models. We furthermore note that no explicit information
on the season of the data sequence is provided but argue that
the relevant information can be inferred from the dynamical
input data (e.g. temperature of the air mass).

We constructed three cross-validation experiments by se-
lecting different non-overlapping data splits for training, val-
idation, and testing (see Fig. 2). Thereby, we make use of
11 years of data for training, while 2 years are deployed for
validation and testing with minimized auto-correlation fol-
lowing the discussion in Schultz et al. (2021). The cross-
validation is applied to check the robustness of the trained
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Figure 2. The three cross-validation datasets (CV 1, CV 2, and CV 3) consist of different training, validation, and testing samples from the
13 years ERA5 reanalysis data between 2007 and 2019. Each row represents one data partition. The three datasets (D1, D2, and D3) consist
of samples from 2007 to 2019, from 2008 to 2019, and from 2010 to 2019, respectively.

models over a broad temperature range. By selecting 2010
(CV 3), 2016 (CV 1), and 2019 (CV 2) for the testing dataset,
we ensure that our trained models are tested on years with
relatively cool, on-average, and warm temperatures, respec-
tively, within the chosen data period. During training, the val-
idation loss (for tuning the model parameters) operates on
data from 2013 (average), 2017 (warm), and 2016 (average).

To check how the model performance depends on the spa-
tial domain size and on the provided information of the atmo-
spheric state, we vary the spatial extent of the domain and the
number of involved predictors. For the former, smaller target
regions are tested; see Fig. 1. The latter is realized by remov-
ing TCC from the list of predictors in a first experiment and
just inputting T2 m in a second experiment. Additionally, we
vary the number of training samples by cropping the train-
ing dataset and also check the sensitivity on the input se-
quence length, which was discussed to be relevant to encode
the daytime in a data-driven way (see above). A comprehen-
sive overview of the sensitivity experiments is provided in
Table A1 of the Appendix.

Our approach shares some similarities with the study of
Bihlo (2020) as we use the same dataset, a similar study re-
gion, and also focus on short-range predictions. However,
besides the use of a different neural network architecture
(SAVP in our case, cGAN in Bihlo, 2020), there are some
distinct differences which make our application potentially
more challenging. First, we approximately retain the spatial
resolution of the ERA5 reanalysis data on a regular 0.3◦ grid
(compared to 0.5◦). Besides, the temporal resolution is also
considerably higher since we set the time step to 1 h com-
pared to 3 h. By doing so, our models must learn to repre-
sent smaller features of the near-surface temperature field,
and they must better capture the underlying diurnal cycle.
By conditioning the model on its own predictions, errors are
expected to accumulate quicker with an hourly time step.

3.3 Model architectures

In the following, we briefly introduce the three video
prediction models probed in this study: a simple fully con-

volutional neural network (CNN), the convolutional LSTM
(ConvLSTM) model, and the Stochastic Adversarial Video
Prediction (SAVP) model. While a summary of the architec-
tures is provided, more detailed descriptions can be obtained
from the original studies by Rasp et al. (2020) on CNN,
Xingjian et al. (2015) on ConvLSTM networks, and Lee
et al. (2018) for SAVP. The current version of models and
code are available and can be accessed from the project web-
site (https://gitlab.jsc.fz-juelich.de/esde/machine-learning/
ambs/-/tree/Gong2022_temperature_forecasts, last access: 1
July 2022).

3.3.1 A simple convolutional neural network (CNN)

Following up the study by Rasp et al. (2020), we deploy a
simple CNN as one of the baseline models. The CNN con-
sists of five layers, and each layer has 64 channels with a ker-
nel size of 5. In contrast to the global forecasts with a spatial
resolution of 5.625◦ provided in Rasp et al. (2020), the target
domain in our task is restricted to central Europe, and thus we
did not apply periodic convolutions. The mean square error is
optimized on the variables of interest (2 m temperature, tem-
perature at 850 hPa, and total cloud cover) for 1 preceding
hour. The model was trained for 20 epochs using the Adam
optimizer with a learning rate of 0.0001 and batch size of 4.
During forecasting, we use the previous model output as in-
put for the next step, which allows us to obtain forecasts up
to 12 h ahead (iterative forecasting).

3.3.2 The convolutional LSTM (ConvLSTM) model

The ConvLSTM model employs convolutional operations
which encode the spatial properties of the input data into a
hidden state. Temporal coherence is preserved with the help
of a gated LSTM, so that an encoded state from all input
data is achieved at the end of the input sequence (the en-
coded atmospheric state over the previous 12 h in our case).
The forecasting network then unfolds this state by convey-
ing both the LSTM cells’ states (cell and hidden state) and
the predictions fed in sequentially to come up with a forecast
over the next 12 h. Here, we employ a one-layer ConvLSTM
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Figure 3. Sketch of ConvLSTM architecture (based on arguments in Xingjian et al., 2015).

network, i.e. one ConvLSTM layer followed by a 1× 1 con-
volutional layer. A sketch of the model architecture is pro-
vided in Fig. 3. We used a batch size of 4 and epochs of 10.
The model was trained using mean squared error as the loss
function and Adam optimizer (Kingma and Ba, 2014) with a
learning rate of lr= 0.001.

3.3.3 The Stochastic Adversarial Video Prediction
(SAVP) model

SAVP constitutes a combination of the GAN and the VAE ar-
chitectures. The model is therefore best described by summa-
rizing both components separately in the following subsec-
tions before we explain how these components are coupled
together. The explanations are furthermore complemented by
a sketch of the SAVP architecture provided in Fig. 4.

Variational autoencoder

The VAE part of SAVP consists of an encoder and a gen-
erator. The deep encoder E compresses the information
from adjacent time steps into a low-dimensional latent vec-
tor Zt−1=E(X̃t ,X̃t−1) where X̃ represents either ground
data from the input sequence or previously predicted data
(i.e. X̃t ∈ {Xt ,X̂t }). Thus, E encodes the transition between
the states at time steps t − 1 and t into the latent repre-
sentation Zt−1, which is then fed to the deep generator G
for reconstructing the state X̂t . To control the latent space
and to allow random sampling, the learned posterior dis-
tribution q(Zt−1 | X̃t−1:t ) is kept close to a prior distribu-
tion p(Zt−1). Thus, the loss component of the VAE part
consists of the L1 error constituting the reconstruction loss
(first term in Eq. 1) and the Kullback–Leibler divergence
DKL(q(Zt−1 | X̃t−1:t ) ‖ p(Zt−1)), which acts to regularize
the posterior distribution of the latent space onto the prior
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Figure 4. Illustration of the SAVP architecture (based on discussion
in Lee et al., 2018).

distribution (second term in Eq. 1). The latter constitutes a
standard Gaussian distribution whose parameters are opti-
mized with the help of the re-parametrization trick (Kingma
and Welling, 2013).

Generative adversarial network

The generator G in SAVP inputs the data from the previous
time step X̃t−1, i.e. either ground truth or previously gener-
ated data, to reconstruct the data at time step t . Additionally,
the generator is also conditioned on the latent space Zt−1 via
sampling. In GAN-based networks the generatorG is thereby
encouraged to learn the statistical properties of the underly-
ing data. This is achieved by optimizing G to fool a deep
discriminator D, which is itself optimized to distinguish be-
tween real data (i.e. the ground truth) and generated data. The
loss function of the GAN LGAN in SAVP applies the binary
cross-entropy loss for an adversarial minimax optimization.
While the generator tries to minimize LGAN, the discrimina-
tor aims to maximize LGAN.

Combining VAE and GAN

For the SAVP architecture, one generator G is set up, which
is shared between the VAE and GAN parts. However, two
separate discriminators are used which are equivalent in
terms of the architecture but differ in their trainable model
parameters. The latter difference arises from the latent em-

bedding that is fed to the shared generator G. For the dis-
criminator related to the VAE part DVAE, Zt−1 is sampled
from the posterior distribution q(Zt−1 | X̃t−1:t ), whereas
sampling from the prior distribution p(Zt−1) is performed
for the discriminator of the GAN part. Consequently, two
GAN loss terms become part of SAVP’s objective function
(see Eq. 1), whose third and fourth terms are related to the
GAN and VAE component, respectively. The total SAVP loss
is calculated as

G∗,E∗ = argmin
G,E

max
D,DVAE

λ1L1(G,E)+ λKLLKL(E)

+LGAN(G,D)+LVAE
GAN(G,E,D

VAE). (1)

The discriminator architecture used by SAVP involves
several convolutional layers that operate on the complete
data sequence, followed by a fully connected layer. Three-
dimensional convolutions are applied to handle the spatial
and the temporal dimensions simultaneously. The shared
generator G involves several ConvLSTM-layers with inter-
nal skip connections. These are followed by two convolu-
tional layers to predict the state at the next time step. A sepa-
rate composite mask is used to identify features from the data
that are displaced between the time steps (e.g. a cold front in
our meteorological application). In total, the number of train-
able model parameters sums up to about 14 M. More details
on the architecture are provided in Lee et al. (2018).

The default hyperparameters and training schedule in this
study have been modified from the original description in Lee
et al. (2018). During training, the initial learning rate used
with the Adam optimizer is set to lr= 2× 10−4. The training
applies linear learning rate decay to lr= 2× 10−8 between
the iteration steps 3000 to 9000. With a batch size of 32, this
roughly corresponds to the start of the second epoch and the
end of the third epoch, respectively. Overall, the model is op-
timized on four epochs. For the scaling factors of the differ-
ent loss components, we choose λ1= 10 000 and λKL= 0.01.
Note that variations in λ1 receive special attention in our sen-
sitivity analysis below. The scaling factor for the distance in
features space is set up to 0.001. Furthermore, the reconstruc-
tion loss only accounts for T2 m, which differs from common
computer vision applications where all channels enter this
loss term.

3.4 Evaluation metrics

For evaluating the video frame prediction models introduced
above, we make use of metrics that are commonly applied
in the meteorological domain as suggested by Rasp and
Thuerey (2021). In particular, we calculate the mean square
error (MSE) and the anomaly correlation coefficient (ACC)
for the predicted T2 m fields (cf. Appendix Eqs. B1 and B2).
While the MSE measures the mean squared distance between
the predicted and the analysed (ground truth) temperature
field, the ACC quantifies the agreement in the spatial patterns
of departures from the climatological mean. Thus, the ACC is
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a positively oriented score with a perfect value of 1, whereas
the MSE is negatively oriented with a perfect value of 0. In
this study, we make use of the uncentred ACC (see Eq. B2)
and calculate the climatological mean based on 30 years of
data (1991–2020) provided by the ERA5 dataset. The cli-
matological mean is computed for each month of the year
and each hour of the day separately. This ensures that the
seasonal and diurnal cycle of the near-surface temperature is
incorporated.

In addition to the meteorological evaluation metrics, we
also choose the structural similarity index (SSIM) which is
commonly applied in video prediction to access the percep-
tual similarity between images (Wang et al., 2004). Transfer-
ring to this application, the SSIM quantifies and compares
the mean as well as the spatial variability in the predicted
2 m temperature field against the ground truth and also ac-
counts for covariances (cf. Eq. B7). Although being an evalu-
ation metric from computer vision, it is considered to provide
useful information on the forecast quality. Like the ACC, the
SSIM is a positively oriented score with a perfect value of 1.

To evaluate the truthfulness of the predicted spatial vari-
ability, we also compute the domain-averaged amplitude of
the horizontal T2 m gradient. Similar to Sha et al. (2020), we
then calculate the ratio rG of the gradient amplitude from the
predictions and the respective ground truth (see Eq. B10). For
rG(X,X̂)= 1, the predictions share the same local spatial
variability as the ERA5 reanalysis data, while rG(X,X̂) < 1
(rG(X,X̂) > 1) indicates that the local spatial variability is
underestimated (overestimated) in the predictions. This met-
ric is similar to the sharpness measure introduced in Mathieu
et al. (2015) but takes the Earth’s curvature into account and
does not scale to the maximal gradient amplitude.

While further details on all evaluation metrics are provided
in Appendix C, we verify our models against the persistence
forecast in terms of skill scores for convenience. This allows
a direct comparison with a reference model which attains a
value of Sref for the respective score S. As a reference model,
we use a simple persistence model which is based on the as-
sumption that today’s weather is the same as yesterday’s; i.e.
the temperature field from the last day is simply copied. To-
gether with the perfect score value Sper, the skill score SSS
reads

SSS =
Sm− Sref

Sper− Sref
, (2)

where Sm denotes the score value of the considered model
forecast.

4 Results

In the following, we evaluate the predictive skill of the SAVP
and ConvLSTM models for 2 m temperature predictions up
to a lead time of 12 h. For the presented model results, our
default hyperparameters of both models have been tuned to

yield the best results in terms of the MSE. However, we also
provide an ablation study on the L1 loss component in the
SAVP model and also probe the sensitivity with respect to
input variables, regions, and the size of the training dataset.

4.1 Model performance analysis

The skill scores in terms of the MSE (Fig. 5a), the ACC
(Fig. 5b), and the SSIM (Fig. 5c) are displayed in Fig. 5. The
uncertainty estimates depicted by the boxes and whiskers
are derived through block bootstrapping with a block length
of 7 d (Efron and Tibshirani, 1994). It is seen that all video
prediction models outperform the persistence forecast sig-
nificantly over the complete prediction period. The constant
MSE of the persistence forecast (MSE(Persistence)' 7 K2)
is reduced by about 50 % for ConvLSTM and by about 70 %
for the SAVP model over the prediction period. Likewise,
both models also clearly provide better forecasts of lo-
cal temperature anomalies from the climatological mean
(ACC(Persistence)' 0.67) as seen from Fig. 5. Only with
respect to the SSIM (SSIM(Persistence)' 0.66) does the
ConvLSTM model lose its forecast skill after a lead time
of 7 h (Fig. 5c). In many aspects, the SAVP model also
clearly performs better than the ConvLSTM model: the
MSE skill score degrades linearly and at a much smaller
rate, especially over the first 6 h. After 12 h, the MSE of
SAVP tracks at about 2.3 K2, while the ConvLSTM model
shows up with an MSE slightly above 3.6 K2 (absolute score
values are displayed in Fig. C2 of the Appendix). Similarly,
the ACC and the SSIM remain closer to 1 for the SAVP
model (ACC(SAVP)' 0.87>ACC(ConvLSTM)' 0.80
and SSIM(SAVP)' 0.73>SSIM(ConvLSTM)' 0.67).
Thus, as expected, the more complex SAVP model can
learn a better representation of the atmospheric state and
therefore produces a better prediction of the diurnal cycle of
the 2 m temperature compared to ConvLSTM.

However, even though the global variability as expressed
by the SSIM is better captured with SAVP, the local spatial
variability is scarcely better than in the ConvLSTM model.
In terms of the horizontal gradient ratio, the forecasts of
both models degrade continuously with increasing lead time,
yielding a noticeably underestimation by the end of the fore-
cast period (see Fig. 5d). Thus, the predicted 2 m temperature
fields of both video prediction models become too smooth in-
dicating that small-scale variations due to the underlying to-
pography (mountain ranges) and surface type (costal regions)
get blurred.

Furthermore, we compare the performance of the video
prediction models against the short-range forecasts provided
with the ERA5 dataset. These forecasts are initiated at 06:00
and 18:00 UTC with a maximum lead time of 18 h. Since the
changes in the assimilation window at 09:00 and 21:00 UTC
introduce a systematic shift with respect to the reference re-
analysis data, the presented scores are limited to lead times
between forecast hour 6 and 12. It is seen that there is still
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Figure 5. Averaged skill scores of (a) MSE, (b) ACC, and (c) SSIM across lead time (x axis) for the SAVP and the ConvLSTM models as
well as ERA5 short-range forecasts. Both video prediction models are trained with the three cross-validation datasets (with CV 1–3 in D1)
displayed in Fig. 2. The testing period of the ERA5 short-range forecasts covers the year 2019, which corresponds to CV 2. The persistence
serves as the reference forecast. Sampling uncertainty estimated via block bootstrapping is illustrated by box-and-whisker plot showing the
inter-quartile and inter-decile ranges of the skill score values. Panel (d) shows the ratio of the spatially averaged 2 m temperature gradient for
the same video prediction models and ERA5 short-range forecasts. The persistence forecasts (not shown) attain a constant value of rG = 1
since local spatial variability is retained.

a significant gap between the data-driven approaches and the
contemporary NWP models which are driven by the funda-
mental laws of physics. The skill scores of the ERA5 short-
range forecasts in terms of the proposed evaluation metrics
are higher than the video prediction model and closer to the
best score of 1.

In addition, we evaluate the performance of the CNN with
iterative forecasting from Rasp et al. (2020). The results re-
veal that the iterative CNN forecasts can only beat the persis-
tence forecasts up to 4 h lead time. After that, the model error
accumulates quickly and even becomes highly unstable after
forecast hour 10, when the MSE starts to exceed 100 K2 (not
shown). Thus, it is evident that the CNN performs consider-
ably worse than the simple ConvLSTM model which shows
that pure CNN models fail to capture the temporal depen-
dency of the data and to obtain skilful forecasts for longer
lead times. Recurrent layers are required to transit temporal
information, which in turn is highly relevant to stabilize the
model’s long-term forecasting performance.

To illustrate concretely our statistical findings, we show a
representative case study of ConvLSTM and SAVP forecasts
starting on 2 August 2019, 03:00 UTC. The first row in Fig. 6

shows the 2 m temperature field from the ERA5 reanalysis
(ground truth) for a lead time of 6 and 12 h. The differences
in the respective ConvLSTM and SAVP model forecasts are
presented in the second and third row, respectively, with pos-
itive values corresponding to a warm bias.

Apart from growing differences to the ground truth with
increasing lead time where SAVP exhibits smaller errors on
average, both models forecast strong warming over continen-
tal areas. Thus, aspects of the diurnal cycle are captured by
the video prediction models. However, it is also noted that the
forecast accuracy especially deteriorates around the Alpine
region, indicating that both models have problems in predict-
ing the temperature evolution in this area. Besides, differ-
ences appear to be bounded by the coastal line with dipole
structures visible in the Mediterranean region. This indicates
that strong spatial gradients in 2 m temperature tend to be
blurred in accordance with the findings in Fig. 5d.

Further insight into the statistical properties of the forecast
with respect to the ERA5 reanalysis (the ground truth) can be
obtained from conditional quantile plots. These plots visual-
ize important aspects of the joint distribution of forecast and
reference data for continuous variables by factorizing it into
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Figure 6. Example forecast for the 2 m temperature with a lead time of 6 (panels a, c, and e) and 12 h (panels b, d, and f). (a, b) The ground
truth from the ERA5 reanalysis dataset. (c, f) The difference between the forecasts generated by the ConvLSTM (c, d) and SAVP (e, f),
where positive (negative) values represent a warm (cold) bias in the forecasts. The initial time for both model forecasts is 2 August 2019,
03:00 UTC. Further time steps of the 12 h predictions are provided in Appendix C6.

a conditional and a marginal distribution (Murphy and Win-
kler, 1987; Wilks, 2011). Figure 7 shows the full joint dis-
tribution in terms of the calibration-refinement factorization
for lead times of 6 and 12 h. The median as well as the inter-
decile ranges of the ground truth conditioned on the forecasts
are displayed by the solid and dashed lines, respectively. The
histogram at log scale illustrates the marginal distribution of
the respective model forecast.

The central parts of the temperature range are well cal-
ibrated in both models, but the ConvLSTM model shows
a broader inter-decile range in accordance with the larger

MSE. Larger deviations from the 1 : 1 line are obtained near
the tails of the conditional distributions in all four panels.
Thus, both models have problems issuing calibrated fore-
casts when the 2 m temperature is very high (around 310 K)
or very low (around 250 K). It is noteworthy that the marginal
distribution of the ConvLSTM model results becomes nar-
rower for longer lead times since no temperatures below
252 K (10 out of 8471 samples) are predicted. By contrast,
the SAVP model predicts up to 4 K colder temperatures even
for forecast hour 12, although the forecasts are not well cal-
ibrated at the lower tail of the conditional distribution. A

https://doi.org/10.5194/gmd-15-8931-2022 Geosci. Model Dev., 15, 8931–8956, 2022



8942 B. Gong et al.: Temperature forecasting by deep learning methods

Figure 7. Conditional quantile plots in terms of the calibration-refinement factorization for 2 m temperature forecasts with a lead time of 6 h
(a, c) and 12 h (b, d). Panels (a, b) show the factorization of ConvLSTM forecasts, while (c, d) correspond to the SAVP model. The solid
straight line denotes the 1 : 1 reference line of a hypothetical perfect model. The dashed lines represent the 10th and 90th quantiles, and
the bold solid line represent the median of the ground truth data conditioned on the forecasts, respectively. The marginal distribution of the
model forecasts is presented as log histogram (right axis, light grey bars).

similar result, but with a smaller amplitude, can also be de-
duced at the upper tail of the conditional distributions. Thus,
the SAVP forecasts exhibit a slightly higher degree of refine-
ment, also termed sharpness in statistics (Wilks, 2011), com-
pared to ConvLSTM.

4.2 Trade-off between sharpness and accuracy

The term “sharpness” has different meanings in the computer
vision and meteorological domains. Sharpness in meteorol-
ogy characterizes the unconditional distribution of the fore-
casts. A sharp forecast means that the forecasts are frequently
enough distinctly different from the climatological value of
the predictand. By contrast, sharpness describes the image
contrast at the object edges in the computer vision domain.
In the following, we discuss sharpness in this latter sense and
analyse the local spatial variability of the 2 m temperature
fields in terms of the gradient ratio.

Sensitivity tests were performed by varying the L1 loss
scaling factor λ1 in Eq. (1). While the results are rather insen-
sitive for λ1> 100 (not shown), we notice a stronger depen-
dency of the model performance for smaller values of λ1. The
image sharpness is improved particularly for longer predic-
tions for smaller scaling factors of the L1 loss, while the MSE
is slightly increased (see Fig. 8). This implies that the GAN
component in SAVP is largely responsible for maintaining
the feature contours. By reducing the strong weight of re-

construction loss, the SAVP model is encouraged to produce
temperature fields with a higher local variability, although
the errors at grid-point level become larger then.

Note that such a trade-off between sharpness in terms of
the gradient ratio and accuracy in terms of MSE is observed
in weather forecast applications as in other computer vision
applications (Lee et al., 2018).

This sensitivity study also explains why the SAVP in its
original configuration does not outperform the ConvLSTM
model in terms of the gradient ratio (Fig. 5). Due to the
very large value of the L1 scaling factor (λ1= 10 000), the
model is encouraged to optimize for the pixel-wise loss over
other losses (e.g. the adversarial loss). Thus, the outperfor-
mance in terms of MSE, ACC, and SSIM can be attributed to
the more sophisticated generator architecture in SAVP alone
rather than the adversarial optimization.

In order to gain additional insight into the performance of
the GAN component in SAVP on the tails of the 2 m tem-
perature distribution, two conditional quantile plots gener-
ated with λ1= 10 000 and λ1= 15 are provided in Fig. 9.
While there are no significant differences for large parts of
the conditional distribution, we observe that the median gets
closer to the 1 : 1 reference line at the lower tail of the PDF
for λ1= 15. Thus, lowering λ1 also yields better-calibrated
model forecasts for very cold temperatures. Note that the
lowest temperatures occur in the Alpine region for our target
region where grid points are located more than 2000 ma.s.l.
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Figure 8. Performance of the SAVP model in terms of (a) MSE and (b) the gradient ratio rG with variations in the scaling factor for the L1
loss λ1. Note that the results for λ1 = 70 only differ marginally from using λ1==10 000.

Figure 9. Conditional quantile plots in terms of the calibration-refinement factorization for 2 m temperature forecasts with a lead time of 12 h
of the SAVP model with (a) λ1= 10 000 and (b) λ1= 15.

(see Fig. 1). Since the surface elevation varies quite strongly
over the mountainous region, the preservation of large local
temperature gradients due to the underlying topography is a
necessary prerequisite for well-calibrated forecasts in this re-
gion.

4.3 Sensitivity analysis

In the following, we describe further sensitivity tests on the
domain size, the selected predictor variables, and the amount
of training data of the SAVP model (Experiments 2, 3, and 4;
cf. Table A2 in the Appendix). The analysis thereby focuses
on evaluating the model performance in terms of the MSE.
However, the results of the other evaluation metrics are also
briefly presented and the corresponding plots are attached to
Appendix C.

The models in Experiment 2 are trained on data from
all 11 years, but the domain size is reduced from 92× 56 to
80× 48 and 72× 44. Note that the evaluation for this exper-
iment is conducted on the inner 72× 44 domain to allow for
direct comparison. It is seen that the performance in terms
of the MSE slightly deteriorates when the target domain
becomes smaller (Fig. 10a). Interestingly, the reduction in
MSE is most pronounced when enlarging the target domain
from 80× 48 to 92× 56 (reduction in MSE by about 0.2 K2).
Similar results are obtained in terms of the ACC. However,

in terms of the SSIM and the gradient ratio rG only minor
changes due to variations in the domain size are observed.

In Experiment 3, the set of predictor variables is reduced
gradually from three (T2 m, T850 hPa, TCC) to two (T2 m,
T850 hPa) and further to one (T2 m). Note that this experiment
is conducted on the smaller target domain with 80× 48 grid
points, on which the average MSE tracks about 0.2 K2 higher
than on the largest domain with 92× 56 grid points. While
the MSE is fairly insensitive with respect to the inclusion of
the TCC, a significant increase is observed when T850 hPa is
dropped from the list of predictors. For the former case, the
MSE is just increased by about 0.1 K2, whereas the latter re-
sults in an MSE of 3.7 K2 after a lead time of 12 h. Thus, the
temperature of the air mass is more relevant than the total
cloud cover for predicting the diurnal cycle of 2 m temper-
ature in our study. In terms of the other evaluation metrics
(ACC, SSIM, and rG), similar results are obtained.

To evaluate the impact of the number of training sam-
ples on the forecasting performance, the size of the training
dataset is reduced from 11 years in D1 to 10 years in D2 and
8 years in D3 (see Fig. 2). For the sake of a fair comparison,
we fixed the validation dataset to 2016 and the testing dataset
to 2019, respectively. Removing a single year from the train-
ing dataset does not affect the model performance in terms of
the MSE (Fig. 10c). When 3 years of data are dropped from
the training dataset, we notice a slight deterioration (MSE in-
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Figure 10. Averaged MSE of 2 m temperature forecasts with the SAVP model for different sensitivity experiments using (a) different domain
sizes (red – 92× 56; green – 80× 48; blue – 72× 44), (b) different predictors (red – T2 m, T850 hPa, and TCC; green – T2 m, T850 hPa; blue –
T2 m), (c) different sizes of the training dataset (red – 11 years; green – 10 years; blue – 8 years), and (d) different input sequence lengths.
The sampling uncertainty estimated via block bootstrapping is denoted by colour shading.

creases to about 2.45 K2 from 2.3 K2). In terms of the ACC,
the SSIM, and rG, the model performance is also rather in-
sensitive to the variations in the size of the dataset probed in
this study.

To identify whether the models could infer the daytime
without providing explicit daytime information, we design
Experiment 5, where the length of the input sequence is var-
ied. We notice that providing one half of the diurnal cycle
(12 preceding hours) as input yields the best model perfor-
mance in terms of the MSE (see Fig. 10d). Reducing the
length of the input sequence from 12 h to 5 h results into a
successive degradation of model performance. Although the
increase in MSE is only about 0.3–0.4 K2 for a lead time
of 12 h, its impact is stronger than removing 3 years of train-
ing data or than removing TCC from the list of predictors.

A further significant degradation of model skill takes place
when the input sequence is restricted to the 2 preceding
hours. The MSE then becomes similar to the experiment
where the 2 m temperature itself was input as the predictor. In
terms of the ACC and the SSIM, the sensitivity of the results
is similar; however for the gradient ratio, we do not observe
a significant impact of input sequence length.

5 Discussion

The results presented in the previous section demonstrate
that video frame prediction models from computer vision at-
tain some predictive skill in forecasting the diurnal cycle of
2 m temperature. We showed that the SAVP model performs
significantly better than a simple ConvLSTM model in terms
of several evaluation metrics (MSE, ACC, and SSIM). This
confirms our expectation that more advanced DL can better
extract spatio-temporal features from the input sequence to
predict the future state, which in turn is beneficial for mete-
orological applications, even though these models are origi-
nally developed for applications in computer vision.

However, the local spatial variability as measured in terms
of the gradient ratio is not necessarily improved in our ex-
periments with the SAVP model. Experiments with varied
scaling factors of the L1 loss component λ1 reveal that the
strong weight on the pixel-wise reconstruction loss in our
basic hyperparameter setting (cf. Sect. 3.3.3) is responsible
for this behaviour. With λ1= 10 000, the adversarial part of
the SAVP architecture is effectively neglected. Thus, the im-
provement seen in the evaluation metrics can be attributed
to a more advanced generator which incorporates ConvL-
STM cells, several convolutional layers along with skip con-
nections and conditioning information on latent code. Re-
ducing λ1, the accuracy of the model in terms of the MSE
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slightly decreases, but the local spatial variability becomes
much more similar to the ground truth data. In other words,
the adversarial training with the GAN components encour-
ages the model to preserve local features in the 2 m tempera-
ture field which can be attributed to spatial variability due to
varying characteristics of the Earth’s surface. Note that the
latter characteristics (e.g. land–sea contrast and surface el-
evation) have not been explicitly fed to the models, so that
their impact needed to be learnt in a data-driven way. Ad-
ditionally, the forecasts tend to be better calibrated for very
cold conditions. Since very cold conditions constitute the tail
of the marginal distribution of 2 m temperature, it is hypothe-
sized that the GAN component in SAVP may help to forecast
extreme temperature events.

Further sensitivity experiments reveal that the prediction
of the diurnal cycle of 2 m temperature can significantly ben-
efit from incorporating additional predictors. In particular,
the temperature at 850 hPa provides additional information
on the air mass characteristics, which in turn yield a strong
reduction in the MSE by at least 30 %. However, adding the
total cloud cover surprisingly barely contributed although
clouds drive the energy fluxes at the surface, which in turn
drive the diurnal cycle of near-surface temperature and the
planetary boundary layer in general (e.g. von Engeln and
Teixeira, 2013; Chepfer et al., 2019). One reason for this
result might be that the model has problems in predicting
the future cloud cover since the underlying microphysical
processes are highly complex (see, e.g., Khain et al., 2015)
and that we only optimize the model on the 2 m tempera-
ture. While this turned out to be beneficial in our study (not
shown), meaningful feature abstraction from quickly varying
predictors becomes challenging.

Furthermore, the model performance is slightly improved
upon enlarging the target domain. On the one hand, this
might be attributed to an improved feature abstraction of
the large-scale atmospheric conditions (e.g. the advection
of air masses). On the other hand, the synoptic-scale fea-
tures have limited relevance at sub-daily timescales since the
time and spatial scales of atmospheric processes are corre-
lated (see, e.g. Orlanski, 1975). Besides, the largest domain
of 92× 56 grid points includes the largest fraction of marine
pixels. Since the 2 m temperature exhibits much smaller di-
urnal variations over the sea surface (Ginzburg et al., 2007),
the prediction becomes simpler for these regions, which in
turn translate to smaller prediction errors (see also Fig. 6).

In addition, the MSE of the SAVP model trained with
11 years of data is slightly decreased, but compared to the
additional amount of data included (37.5 % compared to the
8-year dataset), the effect is judged to be minor. We argue
that the dataset should probably not include fewer data than
probed here, but, contrarily, including more data from the
ERA5 reanalysis database is not expected to provide sub-
stantial benefits. It could even be that stronger climate change
signals may outweigh the added value of including more data
to the training dataset.

It is worth mentioning that using one half of the diurnal cy-
cle of 2 m temperature as input is beneficial to model’s fore-
casting capability. Limiting the input sequence to only 2 h
yields a strong increase in the MSE by about 1.5 K2, which
is equivalent to removing all informative predictors besides
the 2 m temperature itself. Since the performance already de-
teriorates for smaller changes to the input sequence, we con-
clude that the model can infer the daytime from the input
sequence in a data-driven way provided that it covers at least
one half of the day.

Our study shares some similarities with the study of
Bihlo (2020), which also presents short-range forecasts
of the 2 m temperature over Europe with a GAN-based
model. While his predictions attain a fairly low RMSE
of about 0.53 K for 12 h forecasts, which is considerably
smaller than the model performance with our SAVP model
(RMSE(SAVP)=

√
MSE(SAVP)' 1.5 K), direct compari-

son is limited due to relevant changes in the target of the fore-
cast product. First, the spatial resolution of the target product
is higher with 0.3◦ compared to 0.5◦, and, thus, local spa-
tial variability must be captured more precisely in our case
study. Second, we choose an hourly forecast product to fo-
cus explicitly on the predictability on the diurnal cycle. Thus,
12 consecutive forecasts are required to generate a 12 h fore-
cast with our SAVP, which is considerably more than four
time steps in Bihlo (2020). Thus, the increased temporal res-
olution of our forecasts come at the price of a stronger error
accumulation, since the forecasts are conditioned on the pre-
vious hour.

Furthermore, we notice that the gap between data-driven
neural networks for meteorological forecasts and contem-
porary NWP models is still considerable. While an RMSE
of 1.5 K for a 12 h forecast is attained with our SAVP model,
contemporary global NWP models show up with an RMSE
of about 0.4 K.1 Meanwhile, they also provide a higher spa-
tial solution of around 0.1◦' 10 km. However, in light of
the long development history of NWP models for several
decades (Bauer et al., 2015), the results with data-driven neu-
ral networks are already encouraging. Thus, further research,
as presented in the following section, may further close the
gap between deep neural networks and classical NWP mod-
els.

6 Conclusion

In this study, we have explored the application of video pre-
diction models, originally developed for computer vision ap-
plications, to forecast the sub-daily temperature evolution
over Europe. While the results show that more sophisticated

1This value was extracted on 12 October 2021 from the https://
www.emc.ncep.noaa.gov/gmb/STATS_vsdb/ (a revised model ver-
ification page is available at https://www.emc.ncep.noaa.gov/users/
verification/global/gfs/ops/grid2grid_all_models/rmse/, last access:
20 October 2021).
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model architectures such as the SAVP model and the inclu-
sion of informative predictors such as the 850 hPa temper-
ature can significantly improve the model performance, we
also shed further light on the orchestration of different loss
components in the composite SAVP architecture. Tuning the
model on the L1 loss optimizes for the MSE but also leads
to a strongly underestimated local spatial variability. Con-
versely, choosing a smaller weight on the L1 loss leads to
a slight increase in MSE, but the spatial variability is bet-
ter preserved due to a relatively stronger contribution of the
GAN component in SAVP.

The findings in our study and the persisting large gap
to NWP models motivate future work which aims to im-
prove the performance of the underlying deep neural net-
works. First, one may consider testing further state-of-the-art
video prediction models from computer vision which con-
tinue to develop at a quick pace. Further advanced GAN-
based models (e.g. Brock et al., 2019; Clark et al., 2019;
Qi et al., 2020) or the recent success in vision transformers
(e.g. Caron et al., 2021; Yan et al., 2021) are appealing can-
didates which may help to reduce the above-mentioned gap.
Apart from improving the model architecture, our results also
suggest that deep neural networks can benefit greatly from
adding further predictors beside the target variable to fur-
ther improve the forecast skill. In our case, the 850 hPa tem-
perature proved to be beneficial for the model performance,
and it is likely that other dynamic predictors such as surface
fluxes or near-surface wind can contribute to the model per-
formance as well. Also static fields such as surface elevation
and the land–sea mask should be considered (Sha et al., 2020;
Lezama Valdes et al., 2021). Thus, a more systematic predic-
tor selection is an appealing candidate to further improve the
forecast skill.

Another way would be to exploit explicitly physical
knowledge. This could be realized during preprocessing via
feature engineering or during training by formulating phys-
ical constraints (de Bézenac et al., 2019; Karniadakis et al.,
2021). In some cases, even simple physical constraints can
be beneficial and can furthermore increase the realism when
predictions beyond the training data space need to be issued
(Karpatne et al., 2017).

Additionally, enlarging the forecast domain is considered
to be helpful, especially when the lead time is extended. For
medium-range forecasts, even a processing of the global at-
mospheric state helps, but it is mentioned that this would re-
sult into enormous memory requirements on the operating
GPU used for training, at least when a highly resolved fore-
cast product is demanded (cf. Dueben and Bauer, 2018).

Due to the multi-scale, non-linear interactions in atmo-
spheric processes, the uncertainty in weather prediction tends
to be large (see, e.g., Lorenz, 1969), and quantifying this un-
certainty is considered to be crucial in meteorology (Vannit-
sem et al., 2021). The demand for a probabilistic framework
further increases when other meteorological quantities such
as precipitation are targeted, which involve a high degree of
inherent uncertainty due to the chaotic dynamics of small-
scale processes. The SAVP model can also be used for prob-
abilistic forecasting by adding white noise to the generator
or via sampling from the latent space of the VAE compo-
nent. The VAE component encodes the input into the latent
representation that returns a distribution instead of a single
point. The decoder synthesizes the frames by sampling ran-
dom latent code from this distribution. This approach proved
to be effective in generating more diverse samples on ma-
chine learning benchmark datasets in computer vision (Lee
et al., 2018), but it has to be checked if this also applies to
meteorological forecasting tasks.

Precipitation is a typical example for such a meteorologi-
cal quantity since it is subject to complex interacting micro-
physical and dynamical processes on small spatio-temporal
scales (Sun et al., 2014). While precipitation nowcasting is
already gaining momentum in the meteorological commu-
nity (Prudden et al., 2020), video prediction models may also
be helpful to extend the forecast range beyond a few hours.
This is motivated by the fact that even contemporary NWP
models still have problems in predicting precipitation events,
while first DL-based applications are already starting to com-
pete successfully with these models (see, e.g., Espeholt et al.,
2021; Ravuri et al., 2021).
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Appendix A: Experimental setup

As shown in Table A2, we conducted four experiments with
different settings, i.e. varying input variables, regions, and
number of training samples, to explore the feasibility and ro-
bustness capability by DL for 2 m temperature forecasting.
We finally obtain eight datasets as listed in Table A1, which
will be adapted for different experiments in Table A2.

Table A1. Overview of the datasets used in this study.

Dataset ID Training dataset Domain size Input/output length Variables

1 D1 92× 56 12/12 TCC, T850 hPa, T2 m
2 D2 92× 56 12/12 TCC, T850 hPa, T2 m
3 D3 92× 56 12/12 TCC, T850 hPa, T2 m
4 D2 80× 48 12/12 TCC, T850 hPa, T2 m
5 D2 72× 44 12/12 TCC, T850 hPa, T2 m
6 D2 80× 48 12/12 T850 hPa, T2 m
7 D2 80× 48 12/12 T2 m
8 D2 92× 56 2/12 TCC, T850 hPa, T2 m
9 D2 92× 56 5/12 TCC, T850 hPa, T2 m
10 D2 92× 56 7/12 TCC, T850 hPa, T2 m
11 D2 92× 56 9/12 TCC, T850 hPa, T2 m

Note: D1, D2, and D3 correspond to the three datasets where the number of years in the training dataset is varied (11, 10,
and 8 years, respectively) as illustrated in Fig. 2.

Table A2. Overview of the experiments in this study.

Experiments IDs Dataset IDs Models Target (scientific questions to be answered)

1 1 ConvLSTM, SAVP, Persistence Test and compare model performances
2 1, 4, 5 SAVP Test sensitivity to the domains
3 4, 6, 7 SAVP Test sensitivity to the variables
4 1, 2, 3 SAVP Test sensitivity to the size of training data
5 8, 9, 10, 11, 2 SAVP Test sensitivity to input sequence length
6 1 SAVP Test sensitivity to the scaling factor λ1
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Appendix B: Evaluation metrics

In this section, we provide some mathematical details on
the evaluation metrics used in this study that are the
mean squared error (MSE), the anomaly correlation coeffi-
cient (ACC), the structural similarity index (SSIM), and the
gradient ratio rG.

B1 Mean squared error (MSE)

The MSE measures the squared difference between the
model data and the ground truth data. Let xij and x̂ij con-
stitute data on discrete grid points of the ground truth and
the forecasts, respectively, where the grid consists of I and
J cell centre positions in the zonal and meridional direction
(or the width and height in pixels for images), respectively.
With N = I × J , the MSE reads

MSE=
1
N

I∑
i=1

J∑
j=1

[
x̂ij − xij

]2
. (B1)

B2 Anomaly correlation coefficient (ACC)

The ACC quantifies how well the spatial position of anoma-
lies matches between the predicted and the ground truth data
(i.e. the ERA5 reanalysis data in our case). The uncentred
ACC is given by

ACC= ∑I
i=1
∑J
j=1

[
x̂ij − x

c
ij

][
xij − x

c
ij

]
{∑I

i=1
∑J
j=1

[
x̂ij − x

c
ij

]2∑I
i=1
∑J
j=1

[
xij − x

c
ij

]2
}1/2 . (B2)

Here, xcij represents the climatological mean which is in-
ferred at each grid point from the ERA5 reanalysis data be-
tween 1990 and 2019 in this study. Since the 2 m tempera-
ture involves a seasonal and a diurnal cycle, the climatology
is calculated separately for each month of the year and each
hour of the day, respectively.

B3 Structural similarity index (SSIM)

The SSIM constitutes a score metric typically applied in
computer vision to measure the similarity between two im-
ages (Wang et al., 2004). It measures and compares the struc-
tural information between the ground truth and prediction
images. The similarity is thereby quantified in terms of lu-
minance, contrast variance, and structure. In the case of im-
ages with multiple channels (i.e. RGB images), the calcula-
tions are done separately for each channel and averaged af-
terwards.

– Luminance: the luminance is measured by averaging
the pixels’ brightness of the images. Letting µX and
µ
X̂

denote the averaged brightness of the pixels from

the ground truth and the generated image, the respec-
tive component l of SSIM is given by

l =
2µXµX̂ +C1

µ2
X +µ

2
X̂
+C1

, (B3)

where C1 is a constant to avoid divisions by 0 or very
small numbers. Specifically, we choose C1 = (K1L)

2,
where K1 = 0.01 and L is the dynamic range of input
values. In the case of the average brightness of the two
images matching, l = 1 is obtained.

– Contrast: the contrast is measured by calculating sepa-
rately the standard deviation of the pixel brightness of
each image. Let σX and σ

X̂
denote the standard devia-

tion of the ground truth and the generated image with

σX =

[
1

N − 1

I∑
i=1

J∑
j=1
(xij −µX)

2

]1/2

. (B4)

The contrast score component c then reads

c =
2σXσX̂ +C2

σ 2
X + σ

2
X̂
+C2

. (B5)

C2 is added in analogy to C1 but for the contrast score
component. Here, C2 = (K2L)

2 and K1 = 0.03.

– Structure: the structure is computed with the help of
the covariance in pixel space between the ground truth
and the generated image and therefore measures the
coherence between the two images in terms of varia-
tions around their average brightness. With σ

XX̂
denot-

ing the covariance and using the standard deviations of
the ground truth and generated image, that is σX and σ

X̂
,

the structural component s of SSIM is defined by

s =
σ
XX̂
+C3

σXσX̂ +C3
, (B6)

where C3 = C2/2 serves as an additional constant, as
proposed in the study by Wang et al. (2004).

Finally, the SSIM is obtained by merging the different
components together with the help of

SSIM= lα · cβ · sγ . (B7)

Here, α, β, and γ are disposal (positive) parameters which
control the importance of each score component. Here, we
use α = β = γc = 1. In our particular translation, the lumi-
nance corresponds to a measure which compares the domain-
averaged 2 m temperature between prediction and the respec-
tive ERA5 reanalysis data. Contrast is equivalent to a com-
parison between the global variability of T2 m per time step,
while the structure simply compares the covariance between
the predicted and the ground truth 2 m temperature fields.
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B4 Gradient ratio

The SSIM does not account explicitly account for local vari-
ability in the data. Indeed, the l and c components only eval-
uate the overall average and the variability. Only s measures
how the data vary on a grid point (pixel-wise) level. To fur-
ther analyse the local spatial variability, we calculate the am-
plitude of the horizontal 2 m temperature gradient. Sha et al.
(2020) follow a similar approach in their temperature down-
scaling application but deploy the Laplace operator rather
than the gradient operator. Besides, their operator does not
account for the curvature on the sphere.

In the geographical coordinate system, the horizontal gra-
dient of the arbitrary quantity ψ reads

∇hψ =
1

rE cos(ϕ)
∂ψ

∂λ
eλ+

1
rE

∂ψ

∂ϕ
eϕ . (B8)

Here, λ and ϕ denote the longitude and latitude, while rE is
the (averaged) Earth radius.

On a geographical grid, the amplitude of the continuous
gradient operator ∇h can be discretized with finite differ-
ences:

Gψ = |∇hψ(i,j)|

'
1
rE

√√√√√√ 1
cos2(ϕ(j))

(
ψ(i+1,j)−ψ(i−1,j)

21λ

)2

+

(
ψ(i,j+1)−ψ(i,j−1)

21ϕ

)2 , (B9)

where 1λ and 1ϕ denote the grid spacing of the underlying
grid. i and j correspond to indices on the grid in the zonal and
meridional direction, respectively. This yields a second-order
accurate discretization on a regular grid (constant spacing in
horizontal directions).

Now, let GX and G
X̂

denote the average of the absolute
horizontal gradient of our target quantity over all grid points
on the domain (apart from the lateral boundaries) for the
ground truth and the predicted data, respectively. The ratio

rG =
G
X̂

GX
(B10)

then measures the averaged local spatial variability ampli-
tude in the predicted field compared to the reference data.
For rG = 1, the amplitude of the horizontal gradient is on av-
erage the same in the prediction and in the ground truth. For
rG < 1 (rG > 1), the horizontal gradient is on average under-
estimated (overestimated) by the model, indicating that the
field is visually too blurry (too sharp) following the discus-
sion in Sect. 3.

Appendix C: Supplementary figures

Figure C1. MSE over 9 h forecast for 2 m temperature with inter-
decile bootstrap confidence intervals (shading area) using Weather-
Bench convolutional neural network and persistence forecasting.
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Figure C2. Averaged (a) MSE, (b) ACC, and (c) SSIM across lead time (x axis) for the SAVP, the ConvLSTM, and the persistence fore-
casts from Experiment 1 in Table A2. Like in Fig. 2, sampling uncertainty is estimated via block bootstrapping. However, the inter-decile
confidence range is now colour shaded for the three cross-validation datasets using different models.

Figure C3. Averaged ACC over the forecast period for 2 m temperature with the SAVP model for different sensitivity experiments using
(a) different domain sizes (red – 92× 56; green – 80× 48; blue – 72× 44), (b) different predictors (red – T2 m, T850 hPa, and TCC; green –
T2 m, T850 hPa; blue – T2 m), and (c) different sizes of the training dataset (red – 11 years; green – 10 years; blue – 8 years). The inter-decile
confidence range (colour shaded) is estimated via block bootstrapping.
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Figure C4. Like Fig. C3 but for SSIM.

Figure C5. Like Fig. C3 but for the gradient ratio rG.
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Figure C6. Analogous to Fig. 6 but for additional lead times (1, 3, 5, 7, 9, and 11 h).

Code availability. The exact version of the model to pro-
duce the results in this paper is archived on Zenodo at
https://doi.org/10.5281/zenodo.6907316 (Gong et al., 2022a) under
an MIT licence (http://opensource.org/licenses/mit-license.php, last
access: 25 July 2022). Further guidelines to run the workflow, to
train the models, and to create the plots presented in this paper are
provided in the README of the code repository.

Data availability. The complete preprocessed ERA5 dataset
to train the models (see Table A1) is archived on data-
pub via https://doi.org/10.26165/JUELICH-DATA/X5HPXP
(Gong et al., 2022b). To run the complete end-to-end work-
flow, the original ERA5 data have to be downloaded from
ECMWF’s MARS archive at https://www.ecmwf.int/en/
forecasts/access-forecasts/access-archive-datasets (ECMWF,
2021). Further instructions are provided in the README of
the code repository. Furthermore, a toy dataset with 1 year
of ERA 5 data (year 2008) is archived on b2share at http:
//doi.org/10.23728/b2share.744bbb4e6ee84a09ad368e8d16713118
(Gong and Langguth, 2022) under the Creative Commons Attri-
bution (CC-BY) Licence. This datasets allows users to run the
end-to-end workflow (including data extraction and preprocessing)
with a minimal amount of data.
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