Articles | Volume 15, issue 23
https://doi.org/10.5194/gmd-15-8765-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8765-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transfer learning for landslide susceptibility modeling using domain adaptation and case-based reasoning
Department of Geography, Friedrich Schiller University Jena,
Loebdergraben 32, 07743 Jena, Germany
Jason Goetz
Department of Geography, Friedrich Schiller University Jena,
Loebdergraben 32, 07743 Jena, Germany
Alexander Brenning
Department of Geography, Friedrich Schiller University Jena,
Loebdergraben 32, 07743 Jena, Germany
Related authors
No articles found.
Alexander Brenning, Guillermo F. Azócar, Pablo Iribarren Anacona, Kenji Yoshikawa, Gino Casassa, Pedro Straub-Bustamante, Duilio Fonseca-Gallardo, and Jorge Huenante
EGUsphere, https://doi.org/10.5194/egusphere-2025-5090, https://doi.org/10.5194/egusphere-2025-5090, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We created the first high-resolution map of mountain permafrost distribution in mainland Chile. Using field evidence from rock glaciers and boreholes with climate and terrain data, we found that more than 8,000 km2, mainly in the dry Andes of northern and central Chile, offer suitable conditions. Permafrost affects water resources, slope stability, and infrastructure, and our model provides a baseline for planning and future research under climate change.
Matthias Schlögl, Laura Waltersdorfer, Peter Regner, Andrea Siposova, and Alexander Brenning
EGUsphere, https://doi.org/10.5194/egusphere-2025-5210, https://doi.org/10.5194/egusphere-2025-5210, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Reproducibility is essential for reliable scientific research, yet it remains challenging in (geo-)scientific practice. This perspective explores how to improve reproducibility in geospatial analyses by identifying key barriers and proposing actionable solutions. By encouraging both a cultural shift and offering strategies tailored to the unique needs of the field, our aim is to provide clear implementation strategies that foster transparent and reproducible geospatial research.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023, https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary
Short summary
In summer 2009 and 2014, rainfall events occurred in the Styrian Basin (Austria), triggering thousands of landslides. Landslide storylines help to show potential future changes under changing environmental conditions. The often neglected uncertainty quantification was the aim of this study. We found uncertainty arising from the landslide model to be of the same order as climate scenario uncertainty. Understanding the dimensions of uncertainty is crucial for allowing informed decision-making.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Jason Goetz, Robin Kohrs, Eric Parra Hormazábal, Manuel Bustos Morales, María Belén Araneda Riquelme, Cristián Henríquez, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, https://doi.org/10.5194/nhess-21-2543-2021, https://doi.org/10.5194/nhess-21-2543-2021, 2021
Short summary
Short summary
Debris flows are fast-moving landslides that can cause incredible destruction to lives and property. Using the Andes of Santiago as an example, we developed tools to finetune and validate models predicting likely runout paths over large regions. We anticipate that our automated approach that links the open-source R software with SAGA-GIS will make debris-flow runout simulation more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Cited articles
Ai, X., Sun, B., and Chen, X.: Construction of small sample seismic
landslide susceptibility evaluation model based on transfer learning: a case
study of Jiuzhaigou earthquake, B. Eng. Geol. Environ., 81, 116, https://doi.org/10.1007/s10064-022-02601-6, 2022.
Baktashmotlagh, M., Harandi, M. T., Lovell, B. C., and Salzmann, M.:
Unsupervised domain adaptation by domain invariant projection, IEEE
I. Conf. Comp. Vis., 1–8 December, 769–776,
https://doi.org/10.1109/ICCV.2013.100, 2013.
Bannour, W., Maalel, A., and Ben Ghezala, H. H.: Emergency management
case-based reasoning systems: a survey of recent developments, J.
Exp. Theor. Artif. In., 1–24,
https://doi.org/10.1080/0952813x.2021.1952654, 2021.
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and
Vaughan, J. W.: A theory of learning from different domains, Mach.
Learn., 79, 151–175, https://doi.org/10.1007/s10994-009-5152-4, 2010.
Bordoni, M., Galanti, Y., Bartelletti, C., Persichillo, M. G., Barsanti, M.,
Giannecchini, R., Avanzi, G. D., Cevasco, A., Brandolini, P., Galve, J. P.,
and Meisina, C.: The influence of the inventory on the determination of the
rainfall-induced shallow landslides susceptibility using generalized
additive models, Catena, 193, 104630,
https://doi.org/10.1016/j.catena.2020.104630, 2020.
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45–57, https://doi.org/10.5194/nhess-15-45-2015, 2015.
Ciccarese, G., Mulas, M., and Corsini, A.: Combining spatial modelling and
regionalization of rainfall thresholds for debris flows hazard mapping in
the Emilia-Romagna Apennines (Italy), Landslides, 18, 3513–3529,
https://doi.org/10.1007/s10346-021-01739-w, 2021.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A.: Optimal transport
for domain adaptation, IEEE T. Pattern Anal., 39, 1853–1865, https://doi.org/10.1109/Tpami.2016.2615921,
2017.
Dou, J., Chang, K. T., Chen, S. S., Yunus, A. P., Liu, J. K., Xia, H., and
Zhu, Z. F.: Automatic case-based reasoning approach for landslide detection:
integration of object-oriented image analysis and a genetic algorithm,
Remote Sensing, 7, 4318–4342, https://doi.org/10.3390/rs70404318, 2015.
Dou, J., Yunus, A. P., Merghadi, A., Shirzadi, A., Nguyen, H., Hussain, Y.,
Avtar, R., Chen, Y., Pham, B. T., and Yamagishi, H.: Different sampling
strategies for predicting landslide susceptibilities are deemed less
consequential with deep learning, Sci. Total Environ., 720,
137320, https://doi.org/10.1016/j.scitotenv.2020.137320, 2020.
European Union:
EU-DEM, https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem,
last access: 29 November 2022.
Fang, B., Chen, G., Pan, L., Kou, R., and Wang, L. Z.: GAN-based siamese
framework for landslide inventory mapping using bi-temporal optical remote
sensing images, IEEE Geosci. Remote Sens., 18, 391–395,
https://doi.org/10.1109/LGRS.2020.2979693, 2021.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Gasser, D., Gusterhuber, J., Krische, O., Puhr, B., Scheucher, L., Wagner,
T., and Stüwe, K.: Geology of Styria: an overview, Mitteilungen des
naturwissenschaftlichen Vereines für Steiermark, 139, 5–36, 2009.
Goetz, J. N., Brenning, A., Petschko, H., and Leopold, P.: Evaluating
machine learning and statistical prediction techniques for landslide
susceptibility modeling, Compu. Geosci., 81, 1–11,
https://doi.org/10.1016/j.cageo.2015.04.007, 2015.
Goetz, J. N., Guthrie, R. H., and Brenning, A.: Integrating physical and
empirical landslide susceptibility models using generalized additive models,
Geomorphology, 129, 376–386, https://doi.org/10.1016/j.geomorph.2011.03.001,
2011.
Gong, B., Grauman, K., and Sha, F.: Connecting the dots with landmarks:
discriminatively learning domain-invariant features for unsupervised domain
adaptation, International conference on machine learning (ICML), Proceedings of the 30th International Conference on Machine
Learning, 28,
222–230, https://proceedings.mlr.press/v28/gong13.html (last access: 2 December 2022), 2013.
Gong, B., Grauman, K., and Sha, F.: Geodesic flow kernel and landmarks:
kernel methods for unsupervised domain adaptation, in: Domain Adaptation in
Computer Vision Applications, Springer, 59–79,
https://doi.org/10.1007/978-3-319-58347-1_3, 2017.
Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola, A.: A
kernel method for the two-sample-problem, Adv. Neur. In., 19, 513–520, https://doi.org/10.48550/arXiv.0805.2368,
2006.
Hammond, K. J.: Case-based planning: viewing planning as a memory task,
Academic Press, San Diego, Elsevier, ISBN 0-12-322060-2, 2012.
Haque, U., da Silva, P. F., Devoli, G., Pilz, J., Zhao, B. X., Khaloua, A.,
Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu,
J. H., and Glass, G. E.: The human cost of global warming: deadly landslides
and their triggers (1995–2014), Sci. Total Environ., 682,
673–684, https://doi.org/10.1016/j.scitotenv.2019.03.415, 2019.
Hosmer, D. W., Lemeshow, S., and Sturdivant, R. X.: Applied Logistic
Regression Third Edition Preface, John Wiley & Sons, 398 pp.,
https://doi.org/10.1002/9781118548387, 2013.
Huang, Y. and Zhao, L.: Review on landslide susceptibility mapping using
support vector machines, Catena, 165, 520–529,
https://doi.org/10.1016/j.catena.2018.03.003, 2018.
Humphreys, P., McIvor, R., and Chan, F.: Using case-based reasoning to
evaluate supplier environmental management performance, Expert Syst.
Appl., 25, 141–153, https://doi.org/10.1016/S0957-4174(03)00042-3,
2003.
Jiang, J. and Zhai, C.: Instance weighting for domain adaptation in NLP,
Proceedings of the 45th Annual Meeting of the Association Computational
Linguistics, 23–30 June, Prague, Czech Republic, 264–271,
https://ink.library.smu.edu.sg/sis_research/1253 (last access: 29 November 2022), 2007.
Kavzoglu, T., Colkesen, I., and Sahin, E. K.: Machine learning techniques
in landslide susceptibility mapping: a survey and a case study, Landslides, 50, 283–301,
https://doi.org/10.1007/978-3-319-77377-3_13, 2019.
Knevels, R., Petschko, H., Leopold, P., and Brenning, A.: Geographic
object-based image analysis for automated landslide detection using open
source GIS software, ISPRS Int. J. Geo-Inf., 8, 551,
https://doi.org/10.3390/ijgi8120551, 2019 (data available at: https://www.mdpi.com/2220-9964/8/12/551/s1, last access: 2 December 2022).
Knevels, R., Petschko, H., Proske, H., Leopold, P., Maraun, D., and
Brenning, A.: Event-based landslide modeling in the Styrian Basin, Austria:
accounting for time-varying rainfall and land cover, Geosciences, 10, 217,
https://doi.org/10.3390/geosciences10060217, 2020.
Knevels, R., Brenning, A., Gingrich, S., Heiss, G., Lechner, T., Leopold,
P., Plutzar, C., Proske, H., and Petschko, H.: Towards the use of land use
legacies in landslide modeling: current challenges and future perspectives
in an Austrian case study, Land, 10, 954,
https://doi.org/10.3390/land10090954, 2021 (data available at: https://www.mdpi.com/article/10.3390/land10090954/s1, last access: 2 December 2022).
Liang, P., Qin, C. Z., Zhu, A. X., Hou, Z. W., Fan, N. Q., and Wang, Y. J.:
A case-based method of selecting covariates for digital soil mapping,
J. Integr. Agr., 19, 2127–2136,
https://doi.org/10.1016/S2095-3119(19)62857-1, 2020a.
Liang, P., Qin, C. Z., Zhu, A. X., Zhu, T. X., Fan, N. Q., and Hou, Z. W.:
Using the most similar case method to automatically select environmental
covariates for predictive mapping, Earth Sci. Inf., 13, 719–728,
https://doi.org/10.1007/s12145-020-00466-5, 2020b.
Liang, P., Qin, C. Z., and Zhu, A. X.: Comparison on two case-based
reasoning strategies of automatically selecting terrain covariates for
digital soil mapping, T. GIS, 25, 2419–2437,
https://doi.org/10.1111/tgis.12831, 2021.
Lin, Q. G., Lima, P., Steger, S., Glade, T., Jiang, T., Zhang, J. H., Liu,
T. X., and Wang, Y.: National-scale data-driven rainfall induced landslide
susceptibility mapping for China by accounting for incomplete landslide
data, Geosci. Front., 12, 101248,
https://doi.org/10.1016/j.gsf.2021.101248, 2021.
Liu, D., Li, J., and Fan, F.: Classification of landslides on the
southeastern Tibet Plateau based on transfer learning and limited labelled
datasets, Remote Sens. Lett., 12, 286–295,
https://doi.org/10.1080/2150704X.2021.1890263, 2021.
Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. S.: Transfer feature
learning with joint distribution adaptation, IEEE I. Conf.
Comp. Vis., 1–8 December, 2200–2207,
https://doi.org/10.1109/ICCV.2013.274, 2013.
Lu, H., Ma, L., Fu, X., Liu, C., Wang, Z., Tang, M. and Li, N.: Landslides
information extraction using object-oriented image analysis paradigm based
on deep learning and transfer learning, Remote Sensing, 12, 752,
https://doi.org/10.3390/rs12050752, 2020.
Mboga, N., D'Aronco, S., Grippa, T., Pelletier, C., Georganos, S.,
Vanhuysse, S., Wolff, E., Smets, B., Dewitte, O., Lennert, M., and Wegner,
J. D.: Domain adaptation for semantic segmentation of historical
panchromatic orthomosaics in Central Africa, ISPRS Int. J.
Geo-Inf., 10, 523, https://doi.org/10.3390/ijgi10080523, 2021.
Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T.,
Avtar, R., and Abderrahmane, B.: Machine learning methods for landslide
susceptibility studies: a comparative overview of algorithm performance,
Earth-Sci. Rev., 207, 103225,
https://doi.org/10.1016/j.earscirev.2020.103225, 2020.
Mezaal, M. R. and Pradhan, B.: An improved algorithm for identifying shallow
and deep-seated landslides in dense tropical forest from airborne laser
scanning data, Catena, 167, 147–159,
https://doi.org/10.1016/j.catena.2018.04.038, 2018.
Muenchow, J.:
Geomorphic process rates of landslides along a humidity gradient in the tropical Andes, https://cran.r-project.org/package=sperrorest,
last access: 29 November 2022.
Muenchow, J., Brenning, A., and Richter, M.: Geomorphic process rates of
landslides along a humidity gradient in the tropical Andes, Geomorphology,
139, 271–284, https://doi.org/10.1016/j.geomorph.2011.10.029, 2012.
Pan, S. J.: Transfer learning, in: Data Classification: Algorithms and
Applications, Vol. 21, edited by: Aggarwal, C. C. and Reddy, C. K.,
CRC Press, Roca, Bosa, Italy, 537–570, ISBN 9780429102639, 2014.
Pan, S. J. and Yang, Q. A.: A survey on transfer learning, IEEE T.
Knowl. Data En., 22, 1345–1359,
https://doi.org/10.1109/TKDE.2009.191, 2010.
Patel, V. M., Gopalan, R., Li, R. N., and Chellappa, R.: Visual domain
adaptation, IEEE Signal Proc. Mag., 32, 53–69,
https://doi.org/10.1109/MSP.2014.2347059, 2015.
Petschko, H.: Challenges and solutions of modelling landslide susceptibility
in heterogeneous regions, PhD thesis, University of Vienna, Vienna, AC Nummer: AC12052251, 2014.
Petschko, H., Bell, R., Brenning, A., and Glade, T.: Landslide
susceptibility modeling with generalized additive models–facing the
heterogeneity of large regions, in: Landslides and Engineered Slopes,
Protecting Society through Improved Understanding, Vol. 1, edited by:
Eberhardt, E., Froese, C., Turner, A. K., and Leroueil, S., Taylor and
Francis, Banff, Alberta, Canada, 769–777, ISBN 0415621232, 9780415621236, 2012.
Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.: Assessing the quality of landslide susceptibility maps – case study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95–118, https://doi.org/10.5194/nhess-14-95-2014, 2014.
Petschko, H., Bell, R., and Glade, T.: Effectiveness of visually analyzing
LiDAR DTM derivatives for earth and debris slide inventory mapping for
statistical susceptibility modeling, Landslides, 13, 857–872,
https://doi.org/10.1007/s10346-015-0622-1, 2016.
Piacentini, D., Troiani, F., Daniele, G., and Pizziolo, M.: Historical
geospatial database for landslide analysis: the Catalogue of Landslide
OCcurrences in the Emilia-Romagna Region (CLOCkER), Landslides, 15, 811–822,
https://doi.org/10.1007/s10346-018-0962-8, 2018.
Qin, C. Z., Zhu, A. X., Shi, X., Li, B. L., Pei, T., and Zhou, C. H.:
Quantification of spatial gradation of slope positions, Geomorphology, 110,
152–161, https://doi.org/10.1016/j.geomorph.2009.04.003, 2009.
Qin, C.-Z., Wu, X.-W., Jiang, J.-C., and Zhu, A.-X.: Case-based knowledge formalization and reasoning method for digital terrain analysis – application to extracting drainage networks, Hydrol. Earth Syst. Sci., 20, 3379–3392, https://doi.org/10.5194/hess-20-3379-2016, 2016.
Qin, S., Guo, X., Sun, J., Qiao, S., Zhang, L., Yao, J., Cheng, Q., and
Zhang, Y.: Landslide detection from open satellite imagery using distant
domain transfer learning, Remote Sensing, 13, 3383,
https://doi.org/10.3390/rs13173383, 2021.
Regione Emilia-Romagna public administration:
Geology, soil and seismic risk in the Emilia-Romagna region, https://ambiente.regione.emilia-romagna.it/it/geologia/cartografia/webgis-banchedati/cartografia-dissesto-idrogeologico#consulta-dati-shp,
last access: 29 November 2022.
Rossi, M., Witt, A., Guzzetti, F., Malamud, B. D., and Peruccacci, S.:
Analysis of historical landslide time series in the Emilia-Romagna region,
northern Italy, Earth Surf. Proc. Land., 35, 1123–1137,
https://doi.org/10.1002/esp.1858, 2010.
Rudy, A. C. A., Lamoureux, S. F., Treitz, P., and van Ewijk, K. Y.:
Transferability of regional permafrost disturbance susceptibility modelling
using generalized linear and generalized additive models, Geomorphology,
264, 95–108, https://doi.org/10.1016/j.geomorph.2016.04.011, 2016.
Segoni, S., Rosi, A., Fanti, R., Gallucci, A., Monni, A., and Casagli, N.: A
regional-scale landslide warning system based on 20 years of operational
experience, Water, 10, 1297, https://doi.org/10.3390/w10101297, 2018.
Segoni, S., Pappafico, G., Luti, T., and Catani, F.: Landslide
susceptibility assessment in complex geological settings: sensitivity to
geological information and insights on its parameterization, Landslides, 17,
2443–2453, https://doi.org/10.1007/s10346-019-01340-2, 2020.
Sequeira, A. M. M., Mellin, C., Lozano-Montes, H. M., Vanderklift, M. A.,
Babcock, R. C., Haywood, M. D. E., Meeuwig, J. J., and Caley, M. J.:
Transferability of predictive models of coral reef fish species richness,
J. Appl. Ecol., 53, 64–72,
https://doi.org/10.1111/1365-2664.12578, 2016.
SGSS (Servizio Geologico Sismico e dei Suoli): Carta Inventario delle frane
e Archivio storico delle frane,
https://ambiente.regione.emilia-romagna.it/it/geologia/cartografia/webgis-banchedati/cartografia-dissesto-idrogeologico
(last access: 28 March 2022), 2019.
Shi, X., Zhu, A. X., Burt, J. E., Oi, F., and Simonson, D.: A case-based
reasoning approach to fuzzy soil mapping, Soil Sci. Soc. Am.
J., 68, 885–894, https://doi.org/10.2136/sssaj2004.8850, 2004.
Shi, X., Long, R., Dekett, R., and Philippe, J.: Integrating different types
of knowledge for digital soil mapping, Soil Sci. Soc. Am.
J., 73, 1682–1692, https://doi.org/10.2136/sssaj2007.0158, 2009.
Shimodaira, H.: Improving predictive inference under covariate shift by
weighting the log-likelihood function, J. Stat. Plan. Infer., 90, 227–244,
https://doi.org/10.1016/S0378-3758(00)00115-4, 2000.
Steger, S., Brenning, A., Bell, R., and Glade, T.: The influence of
systematically incomplete shallow landslide inventories on statistical
susceptibility models and suggestions for improvements, Landslides, 14,
1767–1781, https://doi.org/10.1007/s10346-017-0820-0, 2017.
Van Den Eeckhaut, M., Hervas, J., Jaedicke, C., Malet, J. P., Montanarella,
L., and Nadim, F.: Statistical modelling of Europe-wide landslide
susceptibility using limited landslide inventory data, Landslides, 9,
357–369, https://doi.org/10.1007/s10346-011-0299-z, 2012.
Wang, D. L., Wan, K. D., and Ma, W. X.: Emergency decision-making model of
environmental emergencies based on case-based reasoning method, J.
Environ. Manage., 262, 110382,
https://doi.org/10.1016/j.jenvman.2020.110382, 2020.
Wang, H., Wang, L., and Zhang, L.: Transfer learning improves landslide
susceptibility assessment, Gondwana Res., 1–17,
https://doi.org/10.1016/j.gr.2022.07.008, online first, 2022.
Wang, K., Zhang, S. J., Delgado-Téllez, R., and Wei, F. Q.: A new slope
unit extraction method for regional landslide analysis based on
morphological image analysis, B. Eng. Geol. Environ., 78, 4139–4151, https://doi.org/10.1007/s10064-018-1389-0, 2019.
Wang, M. and Deng, W. H.: Deep visual domain adaptation: a survey,
Neurocomputing, 312, 135–153, https://doi.org/10.1016/j.neucom.2018.05.083,
2018.
Wang, Z., Hu, Z., Liu, H., Gong, H., Zhao, W., Yu, M., and Zhang, M.:
Application of the relief degree of land surface in landslide disasters
susceptibility assessment in China, 2010 18th International Conference on
Geoinformatics, 18–20 June, 1–5,
https://doi.org/10.1109/GEOINFORMATICS.2010.5567734, 2010.
Wang, Z. H. and Brenning, A.: Active-learning approaches for landslide
mapping using support vector machines, Remote Sensing, 13, 2588,
https://doi.org/10.3390/rs13132588, 2021.
Wenger, S. J. and Olden, J. D.: Assessing transferability of ecological
models: an underappreciated aspect of statistical validation, Methods
Ecol. Evol., 3, 260–267,
https://doi.org/10.1111/j.2041-210X.2011.00170.x, 2012.
Wilson, G. and Cook, D. J.: A survey of unsupervised deep domain adaptation,
ACM T. Intel. Syst. Tec., 11, 1–46,
https://doi.org/10.1145/3400066, 2020.
Wood, S. N.: Generalized additive models: an introduction with R, Chapman and Hall/CRC, New York, U.S., ISBN 9780429093159, https://doi.org/10.1201/9781420010404, 2006.
Xu, Q., Ouyang, C., Jiang, T., Yuan, X., Fan, X., and Cheng, D.: MFFENet and
ADANet: a robust deep transfer learning method and its application in high
precision and fast cross scene recognition of earthquake induced landslides,
Landslides, 19, 1617–1647, https://doi.org/10.1007/s10346-022-01847-1,
2022.
Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F.,
Parnell, S., Fielding, A. H., Bamford, A. J., Ban, S., Barbosa, A., Dormann,
C. F., Elith, J., Embling, C. B., Ervin, G. N., Fisher, R., Gould, S., Graf,
R. F., Gregr, E. J., Halpin, P. N., Heikkinen, R. K., Heinanen, S., Jones,
A. R., Krishnakumar, P. K., Lauria, V., Lozano-Montes, H., Mannocci, L.,
Mellin, C., Mesgaran, M. B., Moreno-Amat, E., Mormede, S., Novaczek, E.,
Oppel, S., Crespo, G. O., Peterson, A. T., Rapacciuolo, G., Roberts, J. J.,
Ross, R. E., Scales, K. L., Schoeman, D., Snelgrove, P., Sundblad, G.,
Thuiller, W., Torres, L. G., Verbruggen, H., Wang, L., Wenger, S.,
Whittingham, M. J., Zharikov, Y., Zurell, D., and Sequeira, A. M. M.:
Outstanding challenges in the transferability of ecological models, Trends
Ecol. Evol., 33, 790–802,
https://doi.org/10.1016/j.tree.2018.08.001, 2018.
Wang, Z.: W-Zhihao/GMD_slidetransfer: scripts and test data for manuscript “Transfer learning for landslide susceptibility modelling using domain adaptation and case-based reasoning” (v0.1.0-landslideTL), Zenodo [code], https://doi.org/10.5281/zenodo.7376782, 2022.
Zhu, A.-X. and Band, L. E.: A knowledge-based approach to data integration
for soil mapping, Can. J. Remote Sens., 20, 408–418,
https://doi.org/10.1080/07038992.1994.10874583, 2014.
Zhu, Q., Chen, L., Hu, H., Pirasteh, S., Li, H., and Xie, X.: Unsupervised
feature learning to improve transferability of landslide susceptibility
representations, IEEE J. Sel. Top. Appl., 13, 3917–3930,
https://doi.org/10.1109/JSTARS.2020.3006192, 2020.
Short summary
A lack of inventory data can be a limiting factor in developing landslide predictive models, which are crucial for supporting hazard policy and decision-making. We show how case-based reasoning and domain adaptation (transfer-learning techniques) can effectively retrieve similar landslide modeling situations for prediction in new data-scarce areas. Using cases in Italy, Austria, and Ecuador, our findings support the application of transfer learning for areas that require rapid model development.
A lack of inventory data can be a limiting factor in developing landslide predictive models,...