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Abstract. Transferability of knowledge from well-
investigated areas to a new study region is gaining
importance in landslide hazard research. Considering the
time-consuming compilation of landslide inventories as a
prerequisite for landslide susceptibility mapping, model
transferability can be key to making hazard-related infor-
mation available to stakeholders in a timely manner. In this
paper, we compare and combine two important transfer-
learning strategies for landslide susceptibility modeling:
case-based reasoning (CBR) and domain adaptation (DA).
Care-based reasoning gathers knowledge from previous
similar situations (source areas) and applies it to solve a new
problem (target area). Domain adaptation, which is widely
used in computer vision, selects data from a source area that
has a similar distribution to the target area. We assess the
performances of single- and multiple-source CBR, DA, and
CBR–DA strategies to train and combine landslide suscep-
tibility models using generalized additive models (GAMs)
for 10 study areas with various resolutions (1, 10, and 25 m)
located in Austria, Ecuador, and Italy. The performance
evaluation shows that CBR and combined CBR–DA based
on our proposed similarity criterion were able to achieve
performances comparable to benchmark models trained in
the target area itself. Particularly the CBR strategies yielded
favorable results in both single- and multi-source strategies.
Although DA tended to have overall lower performances
than CBR, it had promising results in scenarios where
the source–target similarity was low. We recommend that
future transfer-learning research for landslide susceptibility
modeling can build on the similarity criterion we used, as
it successfully helped to transfer landslide susceptibility
models by identifying suitable source regions for model
training.

1 Introduction

Landslides are among the most common and severe natural
hazards in mountain areas. Globally, the destruction caused
by landslides continues to have severe impacts on human
activity and life (Froude and Petley, 2018; Haque et al.,
2019). Landslide susceptibility mapping, the modeling of ar-
eas prone to landslide occurrence, is an effective method to
assist land managers in decision-making aimed at minimiz-
ing landslide risk. These models are typically data-driven and
rely heavily on terrain characteristics to capture conditions
that can lead to landslide occurrence (Goetz et al., 2015; Re-
ichenbach et al., 2018). One of the most challenging aspects
of building data-driven landslide susceptibility models is es-
tablishing the landslide inventory data for model training and
testing (Lin et al., 2021). Landslide inventories from differ-
ent areas and time periods can provide relevant knowledge
for predictive landslide susceptibility modeling (Petschko et
al., 2016). In the case where a region has insufficient land-
slide data to produce a susceptibility model, previous studies
in ecology and on landslides have demonstrated that model
transfers can aid the prediction of susceptibility in adjacent
regions (i.e., regional susceptibility modeling), and allow us
to improve process understanding (Wenger and Olden, 2012;
Sequeira et al., 2016; Rudy et al., 2016).

Machine learning is currently the most applied method
for solving the problem of landslide prediction (Goetz et al.,
2015; Kavzoglu et al., 2019; Merghadi et al., 2020). Tradi-
tional machine learning operates on the condition that the
training and test data are taken from the same input fea-
ture space and data distribution (Pan, 2014). In the case of
spatial and temporal predictions, this means that most fitted
machine-learning models are limited to the spatial and tem-
poral bounds of the input data. Thus, when extrapolating or
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transferring traditional machine-learning models to new spa-
tial and temporal domains, model performance can be de-
graded due to differences in feature space and/or data distri-
butions (Shimodaira, 2000; Pan and Yang, 2010; Yates et al.,
2018).

A successful model transfer does not necessarily rely
solely on the extent of geographic or temporal separation,
but rather on the similarity of the environmental conditions
between the source and target areas (Yates et al., 2018). The
field of transfer learning offers various techniques to exploit
this observation, which have yet to be fully utilized by the
geospatial modeling communities – including landslide sus-
ceptibility modeling. For example, Wang et al. (2022) com-
bined deep learning and transfer learning for landslide as-
sessments in Hong Kong and obtained good prediction re-
sults. Xu et al. (2022) demonstrated landslide model trans-
fers for regions with earthquake-induced landslides. Qin et
al. (2021) applied distant domain transfer learning for land-
slide detection in the city of Shenzhen, Guangdong province,
China. However, these studies required training samples
from the target region, which may lead to problems, such
as the timing of sample acquisition, and whether the selected
sample can correctly characterize the entire region. Thus, un-
supervised transfer learning is highly attractive in landslide
assessments. Zhu et al. (2020) proposed unsupervised feature
learning and improved landslide susceptibility model trans-
fer performance in Chongqing, China. These studies were
based on landslide data and predictors from the same or adja-
cent areas with the same spatial resolution as the target area:
i.e., their environmental characteristics and data distributions
were highly similar, which may not always be the case. It is
therefore necessary to find more suitable landslide transfer-
learning methods without the limitation of scale and spa-
tial resolution. Transfer-learning techniques such as domain
adaptation (DA) and case-based reasoning (CBR) are emerg-
ing techniques to tackle the challenge of model transfer. In
general, they have been developed to select the most suitable
data and corresponding models from source areas with simi-
lar data characteristics for predicting a distinct target area in
space and time.

The general concept of transfer learning is to solve new
problems by applying knowledge gained from previous ex-
periences in which similar problems were solved. That is,
transfer learning has the potential to allow us to take exist-
ing knowledge of landslide occurrence from previous mod-
eling experiences and apply it to new locations that lack
any landslide data. Thus, this approach has great potential to
minimize the considerable time and effort needed for build-
ing landslide inventories for susceptibility modeling in new
areas, especially in large and geographically remote areas
where landslide mapping and detection is particularly chal-
lenging.

In CBR, we consider multiple landslide inventories from
various source areas, each of which contains a large amount
of information. The problem is that not all inventories (so-

called “cases”) are suitable for training a model that can
be applied to the new target task. Furthermore, process-
ing the large amount of information for each case is time-
consuming. Therefore, it is desirable to compare the overall
characteristics of each case to transfer the appropriate knowl-
edge. Case-based reasoning is a method to solve these prob-
lems by identifying similar cases and applying them to a new
target area. This CBR similarity analysis can be performed
by considering various attributes, such as data structure and
topographic characteristics (Shi et al., 2004; Qin et al., 2016;
Liang et al., 2020a, b, 2021). In contrast, instead of finding
best cases using the overall similarity of source areas to a tar-
get, which is done by CBR, DA transfer-learning techniques
can be applied to select the observations within a source area
that match the data distribution of the target area. Previous
applications of CBR in the geosciences have focused on se-
lecting one source area to transfer to a target area (Qin et al.,
2016; Liang et al., 2021). Yet, there is also potential for using
CBR and DA to combine cases from multiple source areas to
generate transferable models.

The objective of this study is to assess the potential of
transfer learning using CBR and DA techniques for enhanc-
ing model transferability of machine-learning landslide sus-
ceptibility models. We evaluate the performance of trans-
ferred susceptibility models using DA, CBR and a com-
bined CBR–DA technique, as well as the sensitivity of these
methods to spatial resolution. We consider two scenarios
for training landslide susceptibility models: only one source
area available (single-source area) and multiple source areas
available for model training (multi-source area). We examine
both scenarios and compare them to benchmark situations,
where susceptibility models are applied to a new target area
without using transfer-learning techniques.

2 Methods and data

In transfer learning, the general goal is to train a model
f on data from a single or multiple source areas S =

{S1,S2, . . .,SN } to make predictions in an unseen target area
T with Nt observations, regardless of spatial and temporal
differences. A source area Si consists of NSi observations of
a set of predictors, xj , and the corresponding labels yj (e.g.,
landslide or non-landslide), j = 1, . . .,NSi .

Altogether, we evaluate five different transfer-learning
strategies for landslide susceptibility modeling that consider
the use of data from a single or multiple source areas, which
are applied to CBR, DA, and both combined (CBR–DA)
(Fig. 1). To assess the relative performance of the transfer-
learning strategies, we include benchmark landslide suscep-
tibility models that are simply trained using data from a sin-
gle source area (single-source transfer benchmark), multiple
source areas (multi-source transfer benchmark), and the tar-
get area (target benchmark), and then applied to the target
area. In the case where multiple source areas were used, the
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benchmark transfer model was calculated by averaging the
model predictions of multiple source areas without weight-
ing (Table 2). The target benchmark, which is trained and
tested with all target data, is meant to represent an overop-
timistic yet potentially obtainable performance for a given
target area.

In this section, we first introduce the general CBR and DA
methods separately (Sect. 2.1 and 2.2). We then explain how
CBR and DA models as well as the combined CBR–DA ap-
proach are trained and tested in this work (Sect. 2.3). The
data used for demonstrating the proposed approaches is then
briefly presented, referring the readers to the relevant litera-
ture for more details (Sect. 2.4).

2.1 Case-based reasoning method

In machine learning, case-based reasoning (CBR) is one of
the most well-known methods for solving a new problem
by referring to similar cases, which can translate the knowl-
edge from geographical space to parameter space (Shi et al.,
2004, 2009; Hammond, 2012). It finds cases in a data col-
lection that are similar to the current case in terms of meta-
data and/or data distribution, and then adopts those similar
cases for training models (Liang et al., 2020a). This method
has been reported to reduce the users’ modeling efforts while
achieving good performances in use cases involving terrain
attributes (Qin et al., 2016; Liang et al., 2020b).

The CBR strategies are designed to find source areas S =
{S1,S2, . . .,Sk} that are most similar to the target area based
on statistical summary information and metadata; these se-
lected areas are referred to as related areas. In generating a
CBR model, the individual models trained on the selected
source areas are combined as a weighted sum:

f (x)=
∑k

i=1
wifi (x) , (1)

wherewi are weights that correspond to similarity scores and
are normalized to sum up to 1. The individual models fi may
be trained using conventional sampling strategies as well as
DA strategies, both of which are described in detail below.

Generally, CBR consists of the case problem and the cor-
responding case solution parts (Qin et al., 2016; Liang et al.,
2020b). In our study, the challenge of formalizing the similar-
ity of areas in landslide susceptibility modeling is to contrive
a way to adequately describe the data and areas’ contextual
information, such as how a study area’s spatial data can de-
scribe the pattern of landslide occurrence.

In applying CBR, it is first necessary to define and calcu-
late similarity measures for relevant attributes that describe
the data distributions of the source and target areas. In this
study, we chose geological characteristics, spatial resolution,
and topographic characteristics. Similarities in each attribute
were estimated based on a similarity function (Table 1).

The geological characteristics of a region are an essential
factor that influences multiple landslide conditioning factors
such as the geomechanical and hydrological properties of

hillslopes (Segoni et al., 2020). Considering the difficulties
in matching geological descriptors such as heterogeneous
chronostratigraphic units in different areas, we chose a sim-
plified approach as a first-order approximation. Specifically,
we used an indicator method that is based on whether the
main rock types (igneous, sedimentary, and volcanic rocks)
coincide in source and target areas.

Topographic conditions were described by measures of to-
tal relief, standard deviation of slope angle, and mean slope
angle (Wang et al., 2019). Total relief describes the overall
terrain situation of a study area by subtracting the minimum
elevation from the maximum elevation within the study area.
The relief, which reflects the macroscopic characteristics of
surface topography in a large area, has been found to describe
well landslide susceptibility (Wang et al., 2010). The stan-
dard deviation of the slope is used to describe the topographic
complexity of a study area. It is one of the most influential
topographic variables in landslide susceptibility studies (e.g.,
Van Den Eeckhaut et al., 2012).

The similarity values obtained for each factor were com-
bined into a single indicator by taking their minimum value
(Zhu and Band, 1994; Qin et al., 2009, 2016). In this study,
for a given target area, we referred to source areas that have
an overall (i.e., minimum) similarity score ≥ 0.65 as related
source areas.

2.2 Domain adaptation

The general machine-learning approach of domain adapta-
tion (DA) aims to solve a learning problem in the target area
by utilizing data from different source areas to construct a
learning sample (Wang and Deng, 2018). At first, a latent
feature space is defined in which the source and target ar-
eas have the same distribution; as a consequence, classifiers
trained on labeled data from source areas are likely to per-
form well in the corresponding target area (Baktashmotlagh
et al., 2013; Patel et al., 2015; Wilson and Cook, 2020). There
are supervised DA techniques that require labeled data from
the target area, and unsupervised methods that do not require
such data (Ben-David et al., 2010; Courty et al., 2017). We
adopt unsupervised DA in our study because its smaller data
requirements seem more appealing for practical applications.

Domain adaptation used in our study is a strategy for se-
lecting instances Di ⊂ Si (i.e., sample locations or grid cells
for training) from a source area Si in such a way that their
distribution is more similar to the target area’s data distri-
bution. In situations with multiple source areas, DA is ap-
plied to each of them independently to obtain instance sets
D = {D1,D2, . . .,Dk} on which k models are trained. The
predictions from these models are either averaged (referred
to as “plain” DA), or a weighted average is calculated when
combined with source-area selection from CBR. The DA is
conventionally used as a single-source strategy, which is also
included in this study for comparison, although multi-source
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Figure 1. Flow chart of transfer-modeling strategies and benchmarks for landslide susceptibility mapping in a target area. Case-based
reasoning (CBR) involves selection and weighting steps. In the single-source situation, weighting does not apply. Domain adaptation (DA)
can be used by itself or combined with CBR to select source areas.

Table 1. Similarity functions for the attributes used in CBR to identify related source areas: geological characteristics, data characteristics,
and topographic characteristics of the study area.

Factor group Attribute Similarity function Description

Geological
characteristics

Igneous
Sim= 1

3
∑
g
Ig

where Ig = 1 if unit g present
or absent in the source and the
target area, and 0 otherwise.

Sedimentary
Metamorphic

Data characteristics Resolution [m] Sim= 2−(2|log10Rt−log10Rs |)
0.5

or Sim= 1 The similarity is 1 if the resolu-
tion of the source area is smaller
than in the target area, other-
wise Sim; R is the DEM reso-
lution.

Topographic
characteristics

Total relief [m] Sim= 1− |Relieft−ReliefS |
max(8848−Relieft ,Relieft )

Relief is the total relief.

Standard deviation of slope Sim= 2−(2|log10SDt−log10SDS |)
0.5

SD is the standard deviation of
slope angle.

Mean slope [degree] Sim= 1− |Slopet−SlopeS |
max(40◦−Slopet ,Slopet )

Slope is the mean slope.

Note: Sim is the similarity of each individual attribute between the target area t and a source area S, which is in [0,1]. The following constants were used for normalization: 8848 m is
the elevation of Mount Everest. For mean slope, 40◦ can properly cover the mean slope in all study areas.

strategies may seem more appealing in real-world applica-
tions.

Many DA strategies for transferring or weighting features
can result in models that are difficult to interpret in terms
of the physical process’s modeled influence on the response.
Moreover, not all instances from different source areas may
be suitable for transfer to a target area (Jiang and Zhai, 2007;

Gong et al., 2013; Long et al., 2013). Thus, the landmark-
based domain adaptation (LBDA) approach (Gong et al.,
2013) was applied in our study. This method selects the in-
stances (or landmarks) from source areas with the same or
similar distribution as the target area without creating new
predictors. It aims at minimizing the difference in sample
means in latent feature space.
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In our study, considering computational constraints, a ran-
domly selected set of 50 000 unlabeled (landslide and non-
landslide) points xn from the target area were used as refer-
ence points, and were compared to a randomly selected set
of 30 000 labeled

(
xS,m,yS,m

)
(landslide and non-landslide)

points from the source area S as reference points from which
to select a subset with similar data distribution as the target
area. In the case of some of the smaller source areas in our
study, all observations were used for subset selection.

The DA selects training data by formally solving the opti-
mization problem:

min

∥∥∥∥∥∥∥∥∥
1

NS∑
m=1

αS,m

NS∑
m=1

αS,mφ
(
xS,m

)
−

1
Nt

Nt∑
n=1

φ
(
xt, n

)
∥∥∥∥∥∥∥∥∥

2

H

, (2)

subject to

1
C∑
m=1

αS,m

∑C

m=1
αS,myS,m =

1
NS

∑C

m=1
yS,m, (3)

where indicator variables α = {αm ∈ {0,1}, m = 1, . . .,NS}
are used to judge whether a landslide/non-landslide point in
the source area is a landmark for minimizing the difference
between source and target areas in the latent feature space.
When αm is 1, (xS,m,yS,m) is regarded as a landmark, i.e.,
a landslide/non-landslide point that can provide valuable in-
formation for the landslide susceptibility model of the target
area. In order to determine an optimal α, it is necessary to
apply a selection threshold (for a quantity β in Gong et al.,
2013); we chose 1/NS as this would allow us to select all
source points as landmarks in the ideal situation where the
source and target areas have identical latent feature space dis-
tributions. Furthermore, φ is a nonlinear feature function to
map x to a reproducing kernel Hilbert space (Gretton et al.,
2006). Following Gong et al. (2013, 2017), Gaussian RBF
kernels are used for φ in our study; C is the number of land-
slide or non-landslide points. The collection α is chosen so
that the quantity in Eq. (2) is minimized, i.e., the difference
is minimized. Equation (3) is the constraint that considers the
distribution of labels in the selected landmarks. This problem
can be solved efficiently with convex optimization.

2.3 Susceptibility model training and testing

The transfer-learning strategies were applied using general-
ized additive models (GAMs) for susceptibility modeling.
The logistic GAM, which performs a binomial classification
of the absence or presence of landslides, has been well estab-
lished as a method suitable for landslide susceptibility (Goetz
et al., 2011; Petschko, 2014; Conrad et al., 2015; Bordoni
et al., 2020). In fitting our model, we assumed that the fea-
ture space is the same for source and target areas. We there-
fore only used common predictors of landslide susceptibility

(Goetz et al., 2015) that are available in all source and tar-
get areas, which include local slope angle, plan and profile
curvature, catchment slope angle, and upslope contributing
area. These terrain attributes are intended to act as proxies
for destabilizing forces (slope, catchment slope angle), water
availability (logarithm of upslope contributing area and con-
cave curvatures), and exposure to wind (convex curvatures),
as well as general variability in characteristics of soil and
vegetation (Muenchow et al., 2012).

We used the mgcv package (Wood, 2006) for GAM mod-
eling. We set the dimension of the basis used to represent
the smooth term k as 4. Since it can be difficult to sepa-
rate landslide scarp and body from medium to low-resolution
data (Dou et al., 2020), landslide presence points were ran-
domly sampled from the entire landslide polygon and non-
landslide points were randomly sampled from the area where
the mapped landslides were excluded. At the same time,
landslides that are smaller than one grid cell were excluded
from our study.

In turn, each study area was used as a target area. The land-
slide label data from the target area were not involved in the
training process of all strategies embedded in CBR, DA, or
CBR–DA. Model performance was assessed using test data
only within a target area. The training dataset was composed
of an equal number of landslide and non-landslide observa-
tions. These landslide and non-landslide grid cells were ob-
tained from the whole study area, or a subset of the study
area based on DA.

Altogether, we explored five CBR and DA strategies for
susceptibility modeling based on single and multiple source
areas, which are summarized in Table 2. In our implemen-
tation of CBR, only source areas related to the target area
were used for modeling, where we defined related areas as
source areas that had a (minimum) similarity score ≥ 0.65.
In the case of DA (without CBR), multi-source models were
created for all N source areas, excluding the target area. The
final susceptibility models for multi-source CBR, DA, and
CBR–DA strategies were based on combining model predic-
tions from multiple source areas (described in Table 2).

The area under the receiver operating characteristic (ROC)
curve (AUROC) (Hosmer et al., 2013) was used to assess
the predictive performance of the transferred models based
on their predictions in the target area. In choosing the AU-
ROC, we treated model predictions as relative scores instead
of actual probability estimates, which is common practice in
landslide susceptibility modeling.

2.4 Case study transfer source and target areas

We demonstrated the application of CBR and DA for trans-
fer learning using 10 case study areas for source and target
areas from three distinct geographic regions (Fig. 2): the An-
des of southern Ecuador (the Reserva Biológica San Fran-
cisco (RBSF) area, and a highway corridor; Muenchow et al.,
2012; Brenning et al., 2015), the Emilia Romagna Region in
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Table 2. Transfer strategies and benchmarks adopted in our study.

Transfer strategies Final predictive model f Description

Single source area with DA
(single-source DA)

fi (Di) The final prediction model is trained on the DA-derived subset
of data from each source area.

Single source area with CBR
(single-source CBR)

f
(
Shighest

)
The final prediction model is trained using all data from the
most strongly related source area.

Multiple source areas only
with CBR (multi-source
CBR)

∑k
i=1wifi (Si) The final prediction model is the weighted mean of different

predictive models trained on the k-related source areas.

Multiple source areas only
with DA (multi-source DA)

1
N

∑N
i=1fi (Di) The final prediction model is the average of predictions from all

landslide models trained on the DA-selected data from different
source areas.

Multiple source areas with
CBR and DA (multi-source
CBR–DA)

∑k
i=1wifi (Di) The final prediction model is the weighted mean of predictions

from landslide models trained on the DA-selected data from the
k-related source areas.

Benchmarks

Multiple source areas without
CBR and DA (multi-source
transfer benchmark)

1
N

∑N
i=1fi (Si) The final prediction model is the average of predictions from all

landslide models trained on different source areas.

Single source area without
CBR and DA (single-source
transfer benchmark)

fi (Si) The final prediction model is trained on a (specific) single
source area.

Target benchmark f (T ) The final prediction model is trained on data from the target area
itself (only for comparison – not a model transfer situation).

northern Italy (Bologna, Modena, Parma, Piacenza, and Rim-
ini areas; Rossi et al., 2010; Segoni et al., 2018; Piacentini et
al., 2018; Ciccarese et al., 2021), and eastern Austria (Bur-
genland, Waidhofen and Paldau areas; Gasser et al., 2009;
Petschko et al., 2012; Knevels et al., 2019, 2020). Rainfall is
considered the main trigger of landslides in all study areas.

All study areas have similar types of igneous rocks (e.g.,
basalt), sedimentary rocks (e.g., sandstone), and metamor-
phic rocks (e.g., schist), except that the RBSF area has no ig-
neous and sedimentary rocks. The above references provide
additional detailed information on the study areas. We also
summarized the geological information of all study areas in
Table A1 in the Appendix.

In our study, DEMs with different resolutions were avail-
able for the Austrian, Italian, and Ecuadorian study areas. For
Ecuador, the 10 m× 10 m DEMs were produced by Ekke-
hard Jordan and Lars Ungerechts (Düsseldorf); for Italy, an
EU-DEM with a 25 m× 25 m resolution was used; and an
airborne lidar-derived digital terrain model (DTM) with a
1 m× 1 m resolution was available for the Austrian areas
from the governments of Styria and Burgenland. Landslide
inventories in our study were provided by Jannes Muenchow
(Erlangen) for Ecuador, who also did a more detailed study
in Muenchow et al. (2012). Additional information can fur-

thermore be found in SGSS (2019) for the Emilia-Romagna
region, Knevels et al. (2019) for Burgenland, and Knevels
et al. (2020) for Waidhofen and Paldau. For the Emilia-
Romagna region, we chose the subset of landslides labeled
as active.

We furthermore resampled the DEMs with 1 m resolution
to 10 and 25 m, and the data with 10 m resolution to 25 m
in order to use up to three dataset versions to mimic vari-
ous mismatches in target and source resolution. Resampling
was based on B-spline interpolation in SAGA (System for
Automated Geoscientific Analysis) GIS 7.4.0 (Conrad et al.,
2015). Overall, we therefore had 17 datasets (Table 3). For
brevity, we combined the place name with the resolution,
e.g., Waidhofen 10 for Waidhofen with a 10 m resolution.

3 Results

3.1 CBR similarity analysis

For the majority of the areas, mean slope angle and spatial
resolution were the most limiting and therefore the most in-
fluential similarity attributes in determining which source ar-
eas were related to the target area. For some target areas, mul-
tiple similarity attributes contributed to differentiating candi-
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Figure 2. Overview of study areas for landslide susceptibility mapping in our study. The study areas are shown as DEM map in the same
scale. Landslide inventories of study areas are shown as blue polygons. From top to bottom, study areas are from Austria, Ecuador, and Italy.
Map extents correspond to study areas, with the exception of the Ecuador highway area, where the study area is limited to a 300 m buffer on
both sides of the highway and outside urban areas.

date source areas, while for others, a single attribute (mean
slope or resolution) dominated the exclusion of unrelated
source areas (Fig. 3). For high-resolution datasets, the resolu-
tion attribute was primarily responsible for the overall simi-
larity. The combination of spatial resolution and the standard
deviation of slope or mean slope affected the overall sim-
ilarity as the resolutions of the source and target areas got
closer. In general, as the spatial resolution of the target and
source areas became coarser, the number of related source
areas tended to increase. Mean slope, standard deviation of
slope, and geological units had more influence on the over-
all similarity assessment when resolutions were similar. To-
pographic characteristics and resolution were generally the
main attributes that determined the overall similarity.

Most of the target areas (14 out of 17) had one or more re-
lated source areas. There were only 3 cases where the target
had no related source areas (RBSF 10, 25, and Waidhofen
1), 2 cases with only one source area, and 12 with multiple
related source areas (Fig. 4). Target areas with a resolution
of 25 m tended to have a larger number of related source ar-
eas. Some target areas had related source areas in different
geographic regions (e.g., Italian Alps and Burgenland).

Three representative target areas were selected to show the
contribution of each attribute to the overall similarity because
similar patterns were observed elsewhere (Fig. 3; complete
results in the Supplement).

3.2 Single-source learning

In single-source transfer learning, CBR achieved the highest
model performance overall. The DA resulted in stronger pre-
dictive performances only when source and target areas were
substantially dissimilar (Figs. 5, 6). The AUROCs obtained
by single-source CBR were always distributed between the
median and maximum values of transfer benchmark models
and close to the AUROCs obtained by the model trained us-
ing only target data (Fig. 5 and Table A2 in Appendix). For
example, when Bologna 25 was the target data, the AUROCs
of a model trained in the most related source area Piacenza
25 was 0.762 and that of the model trained with Bologna 25
data as source was also 0.762. Moreover, the majority of me-
dian AUROC performances obtained with single-source DA
were greater than the median AUROC performance of single-
source transfer benchmark models (Fig. 5). This distribution
trend implied to some extent that single-source DA improved
performances, which was consistent with the results shown
in Fig. 6. Specifically, for similarities below 0.27, AUROCs
achieved with DA were up to 0.14 higher than without it.
When the overall similarity of the source area for the target
area gradually increased up to ∼ 0.60–0.65, the difference
values were centered at around+0.03. As the overall similar-
ity was greater than 0.65, the AUROCs obtained by single-
source DA were close to the ones achieved by the single-
source transfer benchmark.
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Table 3. Summary of the landslide datasets used in this study.

Study areas Resolution Number of Mean landslide Main landslide Main triggering Region
(m) landslide Size (m2) types factor

Burgenland
1

382

Earth and debris materials
(Knevels et al., 2019, 2020)

Rainfall Austria

Alpine fringe
10∗ 6330
25∗

Paldau 1 418 Styrian Basin
10∗ 3879
25∗

Waidhofen 1 621 11 235 Ybbstaler Alps
10∗

25∗

RBSF 10 178 733.9 Shallow landslides (Muen-
chow et al., 2012) Rainfall Ecuador

South Ecuadorian
Andes

25∗

Ecuador highway 10 1588 2725.4 Shallow and deep-seated
landslides (Brenning et al.,
2015)

Bologna

25

1354 33 272

Debris flows (Piacentini et
al., 2018)

Rainfall and
earthquake

Italy Italian Alps
Modena 1240 38 816
Parma 1261 41 444
Piacenza 1583 37 502
Rimini 2229 34 679

∗ resolution of resampled data

Figure 3. Similarity scores for three selected representative target areas (Burgenland 1, Paldau 10, and Bologna 25). Light colors represent
smaller similarities. The overall similarity value of each source area is marked with a black box.
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Figure 4. Distribution of related (black points) and unrelated (gray points) source areas for different target areas in the CBR transfer-learning
strategies. Related source areas are defined as having a minimum similarity score ≥ 0.65 (vertical line).

Figure 5. Comparison of single-source strategies: AUROCs obtained by models trained on individual source areas with case-based reasoning
(CBR), domain adaptation (DA), combined CBR–DA, and in the single-source transfer benchmark.

CBR–DA also showed good performances. Its results
were located in the upper part of transfer benchmark results
(Fig. 5). This may be due to the contribution of CBR rather
than DA. Throughout all the results, single-source CBR
demonstrated more stable prediction performances compared
to the results obtained by the strategies involving DA.

From this perspective, it can be concluded that by selecting
the related areas, CBR was effective in identifying a suitable
source area that resulted in favorable performances regard-
less of the use of DA.

3.3 Multi-source learning

The strategies that involved CBR had better prediction per-
formances in multi-source transfer learning compared to
the multi-source transfer benchmark and multi-source DA
(Fig. 7). Multi-source CBR obtained good performances re-
gardless of the number of related source areas and whether
the related source areas were from the same region (Figs. 4

and 7). However, multi-source CBR–DA underperformed in
general, usually having predictive performances lower than
the multi-source transfer benchmark. When comparing the
average of AUROCs of different strategies for all target
areas in multi-source transfer learning, CBR was the best
multi-source strategy followed by the transfer benchmark
and CBR–DA, while DA had the worst multi-source per-
formance. Furthermore, with respect to the stability of the
results, multi-source CBR performed best since the perfor-
mances it obtained were always in the top two of all perfor-
mances obtained by different multi-source transfer-learning
strategies. In contrast, the results obtained for strategies in-
volving DA were highly variable and always inferior to the
results of the corresponding multi-source transfer bench-
mark.
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Figure 6. Similarity scores vs. AUROC differences between models trained on individual source areas with DA and models without DA
(“single-source DA” minus “single-source transfer benchmark”).

Figure 7. AUROCs of models trained on multiple source areas with case-based reasoning (CBR), domain adaptation (DA), combined CBR–
DA, and the multi-source transfer benchmark (averaged across all source areas) and target benchmark.

3.4 Comparing single- and multi-source learning

For the majority of target areas, single-source CBR was the
best-performing transfer-learning strategy, closely followed
by multi-source CBR (Fig. 8). Both were located between the
median and the maximum of single-source transfer bench-
mark and tended to be closer to the maximum, which meant
that CBR-based source selection was highly effective at iden-
tifying the most suitable sources of training data. On average,
the single-source and multi-source CBR AUROCs were be-
low the overoptimistic target benchmark (training and test-
ing in target area) by only ∼ 0.05. The strong performance
of CBR in both single- and multi-source strategies indicated
that the most effective transfer-learning methods were to
train the predictive model using the most related source area
or performing a weighted combination based on the simi-

larity scores of the predictive models trained on the most
strongly related source areas.

3.5 Comparing susceptibility map appearances

The best-performing transfer-learning strategies (single-
source and multi-source CBR and CBR–DA) had spatial pat-
terns of landslide-prone areas that most resembled the target
benchmark (Fig. 9). Strategies with CBR, which considers
target–source similarity, were able to better avoid falsely de-
tecting landslide-prone areas. Using classified landslide sus-
ceptibility maps for Burgenland 10 as an example, the lower-
performing, multi-source DA (Fig. 9h) and the multi-source
benchmark (Fig. 9e) appeared to overpredict susceptibility
in some areas (e.g., on alluvial fans) compared to the target
benchmark (Fig. 9a) and the better-performing CBR-based
transfer-learning strategies (Fig. 9c, f, and g). The suscep-
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Figure 8. Comparison of single- and multi-source CBR strategies and the single-source target benchmark.

tibly maps also showed that if a single source area had a
high similarity (e.g., Paldau 10 and Burgenland 10) to the
target area, DA strategies (Fig. 9d) can also properly detect
landslide-prone areas. The difference in landslide-prone ar-
eas of single- and multi-source benchmarks compared to the
target benchmark also indicates that not all source areas were
suitable for predicting landslides for unseen areas.

4 Discussion

4.1 Case-based reasoning in landslide assessment
studies

By calculating the similarities between source and target ar-
eas to find the most transferable source area(s), CBR is able
to transfer the knowledge from source areas to the target area.
In our study, we considered data from a variety of regions,
and our results provided a comprehensive understanding of
the potential of CBR in single- and multi-source transfer
learning. Consistent with the literature for digital soil map-
ping and digital terrain analysis (Qin et al., 2016; Liang et
al., 2020a, 2021), our results further support the adoption
of CBR and provide useful methodological information for
landslide assessment studies.

Case-based reasoning may give fresh insight into improv-
ing the understanding of knowledge transfer in landslide sus-
ceptibility modeling. It is an effective method to capture past
experiences to improve the predictive capabilities of models
(Wang et al., 2020; Bannour et al., 2021). In particular, it only
needs to consider the basic characteristics of the data and the
region to quickly match historical scenarios to the current
study area and thus solve the task at hand. Additionally, the
use of CBR to compare similarities between datasets makes
it possible to reuse existing predictive models. These attrac-
tive abilities may benefit landslide mapping for emergency
response as well as landslide susceptibility modeling for haz-
ard mitigation. Moreover, we determined that by using sim-

ilarity as the basis for the weight of each related source area
and the strategies involved, CBR in multiple source areas dis-
played good and robust performance in our study (Fig. 7).

Until now, model transfer in landslide modeling have usu-
ally relied on a homogeneous availability of data and a strong
model generalization to avoid local overfitting and allow the
application of a model in an adjacent target region (Goetz et
al., 2011; Wenger and Olden, 2012; Petschko et al., 2014;
Bordoni et al., 2020). Although this approach has been iden-
tified as a robust method for regional susceptibility modeling,
its model transferability is often limited to nearby locations
that have the same feature space and a nearly identical data
distribution. However, when the data distribution is different,
the above approach may not be effective, even though the
training data are from adjacent regions. Yates et al. (2018)
have pointed out that the spatial and temporal separation may
have little impact on model transfers, while environmental
dissimilarity and data resolution are critical factors for suc-
cessful model transfer. These factors could be considered
as the spatial and temporal limits to extrapolation in model
transfers, as well as for landslide susceptibility model trans-
fers; CBR may be able to handle these limits by calculating
the overall similarity, indicating the suitability of landslide
susceptibility model transfers between different study areas.
In Figs. 3 and 7, we found that combining data from multiple
related source areas with CBR yielded excellent results, even
though some of the related source areas are from different
regions than the target area.

After selecting related source areas, the predictors de-
signed for training the model need to be examined. In our
study, we assumed that the source and target areas used
the same predictors and focused on topographic predictors.
However, when the source and target areas have different
predictors, one of the problems is that topographic predic-
tors are not the only factors that play a key role in landslide
prediction. Thus, a method should be implemented to select
suitable predictors for model transfer since not all predictors
can be used in the training process. Liang et al. (2021) se-
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Figure 9. An example of classified landslide susceptibility maps for each benchmark and transfer-learning strategy for the Burgenland 10
target area. Predicted probabilities were classified into five susceptible levels (very high, high, moderate, low, very low) using the top 5th,
10th, 25th, and 50th percentile of each strategy’s predictions. The results of single-source CBR and single-source DA are illustrated using
models trained on Paldau 10 data. The single-source benchmark result is illustrated using a model trained with Waidhofen 10 data.

lected suitable predictors for a new task by using each model
trained by individual predictors of the source area to predict
in the target area; they concluded that this method was effec-
tive. However, since they only focused on terrain attributes, it
is unclear how this approach would work on other predictors
such as antecedent rainfall intensity, which, in addition to re-
gional rainfall pattern variations, can strongly differ from one
region to another. From this perspective, we would suggest
that future research using CBR transfer learning could focus
on the selection of features that are more likely transferable.

4.2 CBR similarity criteria

The proposed similarity scores in this study based on geo-
logic, topographic, and data characteristics (i.e., spatial res-
olution) worked quite well in supporting CBR strategies for
identifying the most similar and thus transferable source ar-
eas. These similarity attributes do not explicitly account for
landslide type, which is an important factor to consider when
modeling landslide susceptibility (Huang and Zhao, 2018).
However, geologic attributes and terrain attributes such as
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slope angle, may work together as a suitable surrogate to
anticipate the most likely landslide types given little to no
landslide data in the target area. Landslide type information
is also difficult to collect and often lacking in landslide in-
ventories (Mezaal and Pradhan, 2018). Prior information on
unseen areas or integrating expert experience may be helpful
in formulating landslide types for transfer learning.

In general, the use of similarity indices can be somewhat
arbitrary since there are currently no clear criteria for how
to select suitable similarity indices. For example, Liang et
al. (2020a) analyzed the importance of each attribute for dig-
ital soil mapping based on previous studies to select the simi-
larity index. Qin et al. (2016) indicated that the similarity in-
dices should be structured to effectively represent the contex-
tual information relevant to digital terrain analysis applica-
tions, hence the similarity indices used were based on knowl-
edge and experience. Wang et al. (2020) selected similarity
indices based on their importance for disaster situations.

For CBR applied to landslide susceptibility modeling,
more elaborate criteria that could be indirectly used to
account for differences in landslide type could focus on
preparatory and triggering conditions such as land use (Ste-
ger et al., 2017; Knevels et al., 2021) and the density of paved
and unpaved road networks (Brenning et al., 2015). Adding
more process-related similarity indices may lead to improved
CBR transfer learning, but this may not be easy to implement
across different study regions in different countries with dif-
ferent mapping agencies and standards. Therefore, similar to
selecting individual features for landslide susceptibility mod-
eling (without model transfer), we recommend the use of ex-
pert knowledge to help guide the selection of similarity at-
tributes.

In terms of choosing related source areas, the minimum
operator method worked well in our study and avoided se-
lecting a “falsely” related source. However, we did observe
a scenario where one area was considered to be related but
the reciprocal area not (Paldau and Waidhofen; Fig. 4). As
pointed out by Humphreys et al. (2003), when using CBR
for similarity evaluation, the evaluation criterion used may
be different in different categories and situations. By anal-
ogy, we can assume that the threshold settings for similarity
may also differ for different attributes in different study areas
in landslide assessment studies. Additionally, there are other
methods to obtain the related area, such as Manhattan dis-
tance, gray relational analysis, or k-nearest neighbors (Dou
et al., 2015).

4.3 Utility of domain adaptation in geospatial learning
and other limitations

Our study showed that DA did not generally improve
transfer-learning performance in landslide susceptibility
modeling. This holds true for single-source as well as multi-
source DA with and without CBR-based source selection.
Nevertheless, DA increased the AUROC performance when

the source area was rather dissimilar to the target area
(Fig. 6), which is less relevant in landslide studies that have
access to a large and geographically diverse case base.

It is impressive that models trained on multiple related
source areas with CBR and DA showed good performances.
For instance, when Paldau with a 1 m× 1 m, and Burgen-
land with a 10 m× 10 m resolution were the target areas, AU-
ROCs obtained by multi-source CBR–DA were nearly equal
to those achieved by the best single-source transfer bench-
mark and higher than the other strategies (Fig. 7). The reason
may lie in the improvement of DA through the weighting of
source areas.

A further consideration is to use labeled data from the tar-
get area. Fang et al. (2021) proposed a new domain adap-
tation for landslide inventory mapping by considering pre-
landslide and post-landslide conditions and concluded that
the proposed method was successful. This new method could
be considered as supervised DA in landslide susceptibility
mapping. In other geospatial learning fields, such as land
cover mapping, Mboga et al. (2021) compared two unsuper-
vised DA strategies (the correlation alignment domain adap-
tation network and the domain adversarial neural network)
and found that classification performance was improved by
adding labeled data from the target area. We suggest that
active-learning strategies (Wang and Brenning, 2021) could
be useful in efficiently generating limited amounts of labeled
data for transfer learning, which should therefore be investi-
gated in a next step.

Although the study areas cover a wide range of climates
with different land cover types and landslide process types,
our set of source areas is by no means complete and the re-
sults may therefore not be fully representative for the perfor-
mances that might be achieved at a global scale. Future work
should therefore broaden the database of source areas.

4.4 The potential of the novel methods for landslide
assessment

Deep learning is getting more and more popular in the study
of landslide model transfer. For example, Ai et al. (2022) pro-
posed a supervised method by combining deep learning and
transfer learning for landslide susceptibility modeling. Liu et
al. (2021) performed landslide classification using VGG-19
and transfer learning based on limited data from the unseen
area. Lu et al. (2020) mapped landslides based on deep learn-
ing and transfer learning. These studies show that deep learn-
ing is a potential method in landslide model transfer studies,
although they are limited to a regional scale or require train-
ing data from the target area.

Combining CBR with deep learning could be a worthy un-
supervised method in landslide assessments. By calculating
similarities between the target area and source areas and se-
lecting related source areas, deep learning can directly use
them to train landslide models for the target area, which
might avoid the need for tuning hyperparameters.
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5 Conclusions

The aim of our study was to examine the performances of ge-
ographically informed case-based reasoning (CBR) and un-
supervised domain adaptation (DA) in geographically trans-
ferring knowledge for landslide susceptibility modeling in
“new” target areas without landslide inventory data. We ex-
tended the study of landslide model transfers to a larger
global scale and considered the effect of different spatial res-
olutions on landslide model transfer. In addition, different
scenarios (single source area and multiple source areas) were
considered, which made methods and results much closer
to practical applications in the real world. Moreover, in the
multi-source scenario, we proposed a method to combine
multiple landslide models based on environmental similarity.
Our comparative study revealed that CBR strategies with a
single source area and multiple related source areas were ro-
bust and effective in developing highly transferable landslide
susceptibility models without requiring prior knowledge of
landslides in the target area. In particular, single-source CBR
was the most effective method for performing model transfer
to the target area in most situations. Its performance was also
very close to that obtained by models trained with data from
the target area itself. The CBR similarity criteria in our study
are still preliminary, and datasets used in our study might not
be enough for an application at a global scale, which should
therefore be considered in future research.

Overall, the findings of this paper demonstrated that the
proposed transfer-leaning approaches can alleviate the bur-
den of collecting and labeling data, resulting in a more expe-
dited preparation of landslide susceptibility maps for large
and data-scarce regions. By calculating the similarity be-
tween data and region characteristics, trained models can di-
rectly be used for the new task, especially in situations that
require rapid model development, such as emergency situa-
tions. Furthermore, we suggest that novel methods such as
deep learning may also benefit greatly for landslide model
transfer studies.
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Table A2. AUROCs of models trained on individual source areas with domain adaptation (DA) versus without domain adaptation. The results
are shown as DA/target benchmark. The bold font indicates that the source area corresponding to this AUROC was the most related for the
current target area.

Target areas

Bologna 25 Burgenland
1

RBSF 10 Ecuador
highway 10

Modena 25 Paldau 1 Parma 25 Piacenza
25

Rimini 25 Waidhofen
1

Bologna 25 0.767 0.515/0.432 0.524/0.505 0.446/0.415 0.719/0.72 0.494/0.47 0.72/0.726 0.754/0.753 0.803/0.806 0.5/0.435
Burgenland 1 – 0.82 – – – 0.611/0.595 – – – 0.562/0.553
RBSF 10 – 0.633/0.617 0.772 0.635/0.634 – 0.547/0.513 – – – 0.543/0.558
Ecuador
highway 10

– 0.536/0.628 0.704/0.713 0.671 – 0.505/0.47 – – – 0.502/0.501

Modena 25 0.756/0.756 0.502/0.493 0.468/0.406 0.448/0.369 0.731 0.512/0.502 0.705/0.715 0.743/0.748 0.802/0.798 0.496/0.48
Paldau 1 – 0.794/0.796 – – – 0.621 – – – 0.587/0.564
Parma 25 0.762/0.762 0.504/0.466 0.629/0.594 0.514/0.482 0.706/0.712 0.499/0.477 0.733 0.753/0.75 0.795/0.795 0.496/0.473
Piacenza 25 0.757/0.76 0.595/0.482 0.54/0.428 0.436/0.422 0.719/0.722 0.51/0.494 0.721/0.72 0.755 0.803/0.804 0.499/0.488
Rimini 25 0.763/0.759 0.508/0.489 0.681/0.552 0.483/0.467 0.709/0.715 0.507/0.497 0.726/0.722 0.753/0.748 0.811 0.533/0.494
Waidhofen 1 – 0.77/0.763 – – – 0.601/0.602 – – – 0.652
Burgenland 10 – – 0.657/0.533 0.542/0.448 – – – – – –
Paldau 10 – – 0.73/0.73 0.63/0.614 – – – – – –
Waidhofen 10 – – 0.709/0.662 0.533/0.542 – – – – – –
Burgenland 25 0.728/0.728 – – – 0.683/0.661 – 0.681/0.663 0.715/0.717 0.782/0.777 –
Paldau 25 0.601/0.588 – – – 0.535/0.515 – 0.563/0.547 0.583/0.585 0.715/0.711 –
Waidhofen 25 0.677/0.657 – – – 0.619/0.619 – 0.643/0.645 0.684/0.661 0.744/0.741 –
RBSF 25 0.67/0.541 – – – 0.615/0.48 – 0.65/0.537 0.654/0.562 0.695/0.67 –

Burgenland
10

Paldau 10 Waidhofen
10

Burgenland
25

Paldau 25 Waidhofen
25

Bologna 25 0.686/0.629 0.5/0.560 0.608/0.575 0.705/0.768 0.639/0.662 0.627/0.617
RBSF 10 0.774/0.766 0.726/0.691 0.587/0.594 – – –
Ecuador
highway 10

0.657/0.669 0.638/0.617 0.530/0.526 – – –

Modena 25 0.753/0.736 0.642/0.6 0.602/0.582 0.722/0.784 0.615/0.645 0.594/0.601
Parma 25 0.510/0.696 0.651/0.591 0.610/0.616 0.728/0.767 0.589/0.619 0.654/0.642
Piacenza 25 0.735/0.681 0.61/0.572 0.572/0.597 0.569/0.791 0.541/0.659 0.632/0.631
Rimini 25 0.756/0.698 0.573/0.587 0.625/0.584 0.691/0.780 0.588/0.682 0.632/0.626
Burgenland 10 0.877 0.603/0.766 0.596/0.616 – – –
Paldau 10 0.845/0.852 0.787 0.616/0.612 – – –
Waidhofen 10 0.807/0.803 0.6845/0.73 0.716 – – –
Burgenland 25 – – – 0.876 0.616/0.760 0.643/0.673
Paldau 25 – – – 0.846/0.835 0.790 0.605/0.588
Waidhofen 25 – – – 0.791/0.805 0.603/0.723 0.726
RBSF 25 – – – 0.765/0.769 0.699/0.681 0.554/0.548
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