Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8541-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8541-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Sujeong Lim
Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, 03760, Republic of Korea
Severe Storm Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
Hyeon-Ju Gim
Korea Institute of Atmospheric Prediction System (KIAPS), Seoul, 07071, Republic of Korea
Ebony Lee
Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, 03760, Republic of Korea
Severe Storm Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
Department of Climate and Energy System Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
Seungyeon Lee
Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, 03760, Republic of Korea
Severe Storm Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
Department of Climate and Energy System Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
Won Young Lee
Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, 03760, Republic of Korea
Severe Storm Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
Yong Hee Lee
High Impact Weather Research Department, National Institute of Meteorological Sciences, Gangneung, 25457, Republic of Korea
Claudio Cassardo
Department of Physics and NatRisk Centre, University of Turin, Turin, 10125, Italy
Center for Climate/Environment Change Prediction Research, Ewha Womans University, Seoul, 03760, Republic of Korea
Severe Storm Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
Department of Climate and Energy System Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
Related authors
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28, https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary
Short summary
The ensembles in the numerical weather prediction system are under-dispersed near the land surface; therefore, an inflation method is required to increase it. In this study, we perturbed soil temperature and soil moisture to represent the near-surface uncertainty. Perturbations were obtained by the optimization algorithm taking into account diurnal variations in soil states. Consequently, it indirectly inflated the temperature and water vapor mixing ratio in the planetary boundary layer.
S. Lim, S. K. Park, and M. Zupanski
Atmos. Chem. Phys., 15, 10019–10031, https://doi.org/10.5194/acp-15-10019-2015, https://doi.org/10.5194/acp-15-10019-2015, 2015
Short summary
Short summary
In this study, the impact of O3 observations on the tropical cyclone (TC) structure is examined using the WRF-Chem with an ensemble-based data assimilation (DA) system. For a TC case that occurred over East Asia, the ensemble forecast is reasonable and the O3 assimilation affects both chemical and atmospheric variables near the TC area. All measures indicate a positive impact of DA on the analysis – the cost function and root mean square error have decreased by 16.9% and 8.87%, respectively.
S. K. Park, S. Lim, and M. Zupanski
Geosci. Model Dev., 8, 1315–1320, https://doi.org/10.5194/gmd-8-1315-2015, https://doi.org/10.5194/gmd-8-1315-2015, 2015
Short summary
Short summary
The structure of an ensemble-based coupled atmosphere-chemistry forecast error covariance is examined using the WRF-Chem, a coupled atmosphere-chemistry model. It is found that the coupled error covariance has important cross-variable components that allow a physically meaningful adjustment of all control variables. Additional benefit of the coupled error covariance is that a cross-component impact is allowed; e.g., atmospheric observations can exert impact on chemistry analysis, and vice versa.
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech., 18, 1471–1484, https://doi.org/10.5194/amt-18-1471-2025, https://doi.org/10.5194/amt-18-1471-2025, 2025
Short summary
Short summary
Air pollutants such as particulate matter with diameters of 10 µm and 2.5 µm or less (PM10 and PM2.5) can cause adverse public health and environment effects; therefore their regular monitoring is crucial to keep pollutant concentrations under control. Our study demonstrates the potential of high-resolution aerosol optical depth (AOD) data from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate ground-level PM concentrations using machine learning models.
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-114, https://doi.org/10.5194/gmd-2024-114, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study evaluates the WRF-Chem model's prediction of a mega Asian Dust Storms (ADSs) over South Korea on March 28–29, 2021. We assessed five dust emission and four land surface schemes for predicting ADSs. Using surface observations and remote sensing data, we examined variables, such as temperature, humidity, wind speed, PM10, and aerosol optical depth. The UoC04 dust emission and CLM4 land surface scheme combination reduced RMSE for PM10 by up to 29.6 %, showing the best performance.
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech., 16, 5403–5413, https://doi.org/10.5194/amt-16-5403-2023, https://doi.org/10.5194/amt-16-5403-2023, 2023
Short summary
Short summary
A camera-based imager and convolutional neural network (CNN) were used to estimate ground cloud cover. Image data from 2019 were used for training and validation, and those from 2020 were used for testing. The CNN model exhibited high performance, with an accuracy of 0.92, RMSE of 1.40 tenths, and 93% agreement with observed cloud cover within ±2 tenths' difference. It also outperformed satellites and ceilometers and proved to be the most suitable for ground-based cloud cover estimation.
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28, https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary
Short summary
The ensembles in the numerical weather prediction system are under-dispersed near the land surface; therefore, an inflation method is required to increase it. In this study, we perturbed soil temperature and soil moisture to represent the near-surface uncertainty. Perturbations were obtained by the optimization algorithm taking into account diurnal variations in soil states. Consequently, it indirectly inflated the temperature and water vapor mixing ratio in the planetary boundary layer.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Won Young Lee, Hyeon-Ju Gim, and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-319, https://doi.org/10.5194/tc-2021-319, 2021
Manuscript not accepted for further review
Short summary
Short summary
Snow cover or snow albedo plays a vital role in the atmosphere and land surface interaction. Especially, direct observation of snow is difficult and scarce. That's why a reliable Land Surface Model (LSM), including snow physical processes, is significant. In this study, we tried to give meaningful insights for improving the LSM in the future by identifying the main variables or parameters used and examining the different formulas for snow-related processes of the eight LSMs.
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, Jung-Hoon Kim, YongHee Lee, and GyuWon Lee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-100, https://doi.org/10.5194/acp-2021-100, 2021
Preprint withdrawn
Short summary
Short summary
This study examines a strong downslope wind event during ICE-POP 2018 using Doppler lidars, and observations. 3D winds can be well retrieved by
WISSDOM. This is first time to document the mechanisms of strong wind in observational aspect under fine weather. The PGF causing by adiabatic warming and channeling effect are key factors to dominate the strong wind. The values of this study are improving our understanding of the strong wind and increase the predictability of the weather forecast.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Da-Eun Kim and Seon Ki Park
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-15, https://doi.org/10.5194/tc-2019-15, 2019
Preprint withdrawn
Short summary
Short summary
An accurate prediction of the Eurasian snow is essentially important in predicting the climate and weather phenomena in Asia. Regional climate models are mostly coupled with several land surface models (LSMs) in which the land surface process parameters are calculated under their own physical principles and parameterization schemes. We show that prediction of the Eurasian snow cover is sensitive to the choice of LSMs coupled to regional climate models, and hence the future climate projections.
Sojung Park, Seon Ki Park, Jeung Whan Lee, and Yunho Park
Hydrol. Earth Syst. Sci., 22, 3435–3452, https://doi.org/10.5194/hess-22-3435-2018, https://doi.org/10.5194/hess-22-3435-2018, 2018
Short summary
Short summary
Understanding the precipitation characteristics is essential to design an optimal observation network. We studied the spatial and temporal characteristics of summertime precipitation systems in Korea via geostatistical analyses on the ground-based precipitation and satellite water vapor data. We found that, under a strict standard, an observation network with higher resolution is required in local areas with frequent heavy rainfalls, depending on directional features of precipitation systems.
Claudio Cassardo, Seon Ki Park, Marco Galli, and Sungmin O
Hydrol. Earth Syst. Sci., 22, 3331–3350, https://doi.org/10.5194/hess-22-3331-2018, https://doi.org/10.5194/hess-22-3331-2018, 2018
Short summary
Short summary
Temperature and precipitation can have abnormal states due to climate change and exert a significant impact on the regional hydrologic cycle. We assess the hydrologic component changes in the Alps and northern Italy, on the basis of regional future climate (FC) conditions, using the UTOPIA land surface model. The annual mean number of dry (wet) days increase remarkably (slightly) in FCs, thus increasing the risk of severe droughts and slightly increasing the risk of floods coincidently.
Mattia Vaccarono, Renzo Bechini, Chandra V. Chandrasekar, Roberto Cremonini, and Claudio Cassardo
Atmos. Meas. Tech., 9, 5367–5383, https://doi.org/10.5194/amt-9-5367-2016, https://doi.org/10.5194/amt-9-5367-2016, 2016
Short summary
Short summary
The data quality of radars must be ensured and continuously monitored. The aim of this paper is to provide an integrated approach able to monitor the calibration of operational dual-polarization radars. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. This is considered adequate to automatically detect any unexpected change in the radar system requiring further investigations.
Sojung Park and Seon Ki Park
Geosci. Model Dev., 9, 1073–1085, https://doi.org/10.5194/gmd-9-1073-2016, https://doi.org/10.5194/gmd-9-1073-2016, 2016
Short summary
Short summary
Snow albedo varies with snow grain size, snow cover thickness, etc. It also depends on the spatial characteristics of land cover and on the canopy density and structure. The Noah-MP model shows a bias error of albedo in winter due to no proper reflection of the vegetation effect. We developed new parameters, called leaf index and stem index, which reflect the vegetation effect on winter albedo. The Noah-MP's performance in albedo has prominently improved with about 69 % decrease in the RMSE.
J. Kim and S. K. Park
Hydrol. Earth Syst. Sci., 20, 651–658, https://doi.org/10.5194/hess-20-651-2016, https://doi.org/10.5194/hess-20-651-2016, 2016
Short summary
Short summary
This study examined the uncertainty in climatological precipitation in East Asia, calculated from five gridded analysis data sets based on in situ rain gauge observations from 1980 to 2007. It is found that the regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or very high elevations. Thus, care must be taken in using long-term trends calculated from gridded precipitation analysis data for climate studies over such regions in East Asia.
S. Lim, S. K. Park, and M. Zupanski
Atmos. Chem. Phys., 15, 10019–10031, https://doi.org/10.5194/acp-15-10019-2015, https://doi.org/10.5194/acp-15-10019-2015, 2015
Short summary
Short summary
In this study, the impact of O3 observations on the tropical cyclone (TC) structure is examined using the WRF-Chem with an ensemble-based data assimilation (DA) system. For a TC case that occurred over East Asia, the ensemble forecast is reasonable and the O3 assimilation affects both chemical and atmospheric variables near the TC area. All measures indicate a positive impact of DA on the analysis – the cost function and root mean square error have decreased by 16.9% and 8.87%, respectively.
S. K. Park, S. Lim, and M. Zupanski
Geosci. Model Dev., 8, 1315–1320, https://doi.org/10.5194/gmd-8-1315-2015, https://doi.org/10.5194/gmd-8-1315-2015, 2015
Short summary
Short summary
The structure of an ensemble-based coupled atmosphere-chemistry forecast error covariance is examined using the WRF-Chem, a coupled atmosphere-chemistry model. It is found that the coupled error covariance has important cross-variable components that allow a physically meaningful adjustment of all control variables. Additional benefit of the coupled error covariance is that a cross-component impact is allowed; e.g., atmospheric observations can exert impact on chemistry analysis, and vice versa.
S. Hong, X. Yu, S. K. Park, Y.-S. Choi, and B. Myoung
Geosci. Model Dev., 7, 2517–2529, https://doi.org/10.5194/gmd-7-2517-2014, https://doi.org/10.5194/gmd-7-2517-2014, 2014
Related subject area
Atmospheric sciences
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
The third Met Office Unified Model-JULES Regional Atmosphere and Land Configuration, RAL3
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
UA-ICON with NWP physics package (version: ua-icon-2.1): mean state and variability of the middle atmosphere
Assessment of object-based indices to identify convective organization
Diagnosis of winter precipitation types using Spectral Bin Model (SBM): Comparison of five methods using ICE-POP 2018 field experiment data
The Global Forest Fire Emissions Prediction System version 1.0
Sensitivity Studies of Four‐Dimensional Local Ensemble Transform Kalman Filter Coupled With WRF-Chem Version 3.9.1 for Improving Particulate Matter Simulation Accuracy
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
A Novel Method for Quantifying the Contribution of Regional Transport to PM2.5 in Beijing (2013–2020): Combining Machine Learning with Concentration-Weighted Trajectory Analysis
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Low-level jets in the North and Baltic Seas: Mesoscale Model Sensitivity and Climatology
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Wonbae Bang, Jacob Carlin, Kwonil Kim, Alexander Ryzhkov, Guosheng Liu, and Gyuwon Lee
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-179, https://doi.org/10.5194/gmd-2024-179, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Microphysics model-based diagnosis such as the spectral bin model (SBM) recently has been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM have relatively higher accuracy about snow and wetsnow events whereas lower accuracy about rain event. When microphysics scheme in the SBM was optimized for the corresponding region, accuracy about rain events was improved.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
EGUsphere, https://doi.org/10.5194/egusphere-2024-3321, https://doi.org/10.5194/egusphere-2024-3321, 2024
Short summary
Short summary
The effectiveness of assimilation system and its sensitivity to ensemble member size and length of assimilation window have been investigated. This study advances our understanding about the selection of basic parameters in the four-dimension local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate matter polluted environment.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-157, https://doi.org/10.5194/gmd-2024-157, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study combines Machine Learning with Concentration-Weighted Trajectory Analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Bjarke Tobias Eisensøe Olsen, Andrea Noemi Hahmann, Nicolás González Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3123, https://doi.org/10.5194/egusphere-2024-3123, 2024
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere, important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely-used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Cited articles
Anderson, E. A.: National Weather Service River Forecast System: Snow Accumulation and Ablation Model, Tech. Mem., US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, vol. 17, https://repository.library.noaa.gov/view/noaa/13507 (last access: 24 October 2022), 1973. a, b
Annan, J. D. and Hargreaves, J. C.: Efficient parameter estimation for a highly
chaotic system, Tellus A, 56, 520–526, 2004. a
Bonekamp, P. N. J., Collier, E., and Immerzeel, W. W.: The impact of spatial
resolution, land use, and spinup time on resolving spatial precipitation
patterns in the Himalayas, J. Hydrometeorol., 19, 1565–1581, 2018. a
Carroll, D. L.: Fortran Genetic Algorithm Front-End Driver Code, CU Aerospace [code], https://cuaerospace.com/products-services/genetic-algorithm/ga-drive-free-download, last access: 24 October 2022. a
Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan,
Q. Y., Ek, M., and Betts, A.: Modeling of land surface evaporation by four
schemes and comparison with FIFE observations, J. Geophys. Res.-Atmos.,
101, 7251–7268, 1996. a
Cheong, S.-H., Byun, K.-Y., and Lee, T.-Y.: Classification of snowfalls over
the Korean Peninsula based on developing mechanism, Atmosphere, 16, 33–48,
2006 (in Korean with English abstract). a
Chinta, S. and Balaji, C.: Calibration of WRF model parameters using
multiobjective adaptive surrogate model-based optimization to improve the
prediction of the Indian summer monsoon, Clim. Dynam., 55, 631–650, 2020. a
Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F.,
Schaake, J. C., Robock, A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W.,
Pinker, R. T., and Tarpley, J. D.: Land surface model spin-up behavior in
the North American Land Data Assimilation System (NLDAS), J. Geophys.
Res.-Atmos., 108, 8845, https://doi.org/10.1029/2002JD003316, 2003. a
Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H. V.,
Gusev, Y. M., Habets, F., Hall, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E. F.: Model Parameter Estimation
Experiment (MOPEX): An overview of science strategy and major results from
the second and third workshops, J. Hydrol., 320, 3–17, 2006. a, b
Duan, Q., Di, Z., Quan, J., Wang, C., Gong, W., Gan, Y., Ye, A., Miao, C.,
Miao, S., Liang, X., and Fan, S.: Automatic model calibration: A new way to
improve numerical weather forecasting, B. Am. Meteorol. Soc., 98,
959–970, 2017. a
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model
advances in the National Centers for Environmental Prediction operational
mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851,
https://doi.org/10.1029/2002JD003296, 2003. a, b, c, d, e
Folberth, C., Elliott, J., Müller, C., Balkovič, J.,
Chryssanthacopoulos, J., Izaurralde, R. C., Jones, C. D., Khabarov, N., Liu,
W., Reddy, A., Schmid, E., Skalský, R., Yang, H., Arneth, A., Ciais, P.,
Deryng, D., Lawrence, P. J., Olin, S., Pugh, T. A. M., Ruane, A. C., and
Wang, X.: Parameterization-induced uncertainties and impacts of crop
management harmonization in a global gridded crop model ensemble, PLoS One,
14, e0221862, https://doi.org/10.1371/journal.pone.0221862, 2019. a
Friedl, M. and Sulla-Menashe, D.: MCD12C1 MODIS/Terra+Aqua Land Cover Type
Yearly L3 Global 0.05 Deg CMG V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD12C1.006, 2015. a
Golberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine
Learning, 1st edn., Addion-Wesley, Reading, MA, USA, 372 pp., ISBN 978-0-201-15767-3, 1989. a
Gubler, S., Gruber, S., and Purves, R. S.: Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation., Atmos. Chem. Phys., 12, 5077–5098, https://doi.org/10.5194/acp-12-5077-2012, 2012. a
Günther, D., Marke, T., Essery, R., and Strasser, U.: Uncertainties in
snowpack simulations – Assessing the impact of model structure, parameter
choice, and forcing data error on point-scale energy balance snow model
performance, Water Resour. Res., 55, 2779–2800, 2019. a
Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow products,
Hydrol. Process., 21, 1534–1547, 2007. a
Hall, D. K. and Riggs, G. A.: MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 61. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA [data set], https://doi.org/10.5067/MODIS/MOD10A1.061, 2021. a, b
Hall, D. K., Riggs, G. A., and Salomonson, V. V.: MODIS/Terra Snow Cover 5-Min
L2 Swath 500m, Version 5. NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/ACYTYZB9BEOS,
2006. a
Holland, J. H.: Genetic algorithms and the optimal allocation of trials, SIAM
J. Comput., 2, 88–105, 1973. a
Holland, J. H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence,
University of Michigan Press, Ann Arbor, MI, 1975. a
Hong, S., Yu, X., Park, S. K., Choi, Y.-S., and Myoung, B.: Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm, Geosci. Model Dev., 7, 2517–2529, https://doi.org/10.5194/gmd-7-2517-2014, 2014. a, b
Hong, S., Park, S. K., and Yu, X.: Scheme-based optimization of land surface
model using a micro-genetic algorithm: Assessment of its performance and
usability for regional applications, SOLA, 11, 129–133, 2015. a
Hong, S.-Y., Kwon, Y. C., Kim, T.-H., Kim, J.-E. E., Choi, S.-J., Kwon, I.-H.,
Kim, J., Lee, E.-H., Park, R.-S., and Kim, D.-I.: The Korean Integrated Model
(KIM) system for global weather forecasting, Asia-Pac. J. Atmos. Sci., 54,
267–292, 2018. a
Jiang, Y., Chen, F., Gao, Y., He, C., Barlage, M., and Huang, W.: Assessment of
uncertainty sources in snow cover simulation in the Tibetan Plateau, J.
Geophys. Res.-Atmos., 125, e2020JD032674,
https://doi.org/10.1029/2020JD032674, 2020. a
Jin, J. and Miller, N. L.: Analysis of the impact of snow on daily weather
variability in mountainous regions using MM5, J. Hydrometeorol., 8, 245–258,
2007. a
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent
from snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161–167,
2009. a
Jun, S., Park, J.-H., Boo, K.-O., and Kang, H.-S.: Analyzing off-line Noah land
surface model spin-up behavior for initialization of global numerical weather
prediction model, Journal of Korea Water Resources Association, 53, 181–191, 2020 (in Korean with English abstract). a
Jung, S.-H., Im, E.-S., and Han, S.-O.: The effect of topography and sea
surface temperature on heavy snowfall in the Yeongdong region: A case study
with high resolution WRF simulation, Asia-Pac. J. Atmos. Sci., 48, 259–273,
2012. a
Kim, D.-E. and Park, S. K.: Uncertainty in predicting the Eurasian snow: Intercomparison of land surface models coupled to a regional climate model, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2019-15, 2019. a, b, c
Kim, G., Joo, H., and Kim, H.: The study for damage effect factors of heavy
snowfall disasters: Focused on heavy snowfall disasters during the period of
2005 to 2014, Journal of the Korea Academia-Industrial cooperation Society,
19, 125–136, 2018 (in Korean with English abstract). a
Koo, M.-S., Baek, S., Seol, K.-H., and Cho, K.: Advances in land modeling of
KIAPS based on the Noah land surface model, Asia-Pac. J. Atmos. Sci., 53,
361–373, 2017. a
Korea Meteorological Administration: Automated Synoptic Observing System (ASOS), Open MET Data Portal [data set], https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36, last access: 24 October 2022. a
Kotsuki, S., Terasaki, K., Yashiro, H., Tomita, H., Satoh, M., and Miyoshi, T.:
Online model parameter estimation With ensemble data assimilation in the real
global atmosphere: A case With the nonhydrostatic icosahedral atmospheric
model (NICAM) and the global satellite mapping of precipitation data, J.
Geophys. Res.-Atmos., 123, 7375–7392, 2018. a
Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization, in: Intelligent Control and Adaptive Systems, 1989 Symposium on Visual Communications, Image Processing, and Intelligent Robotics Systems, 1989, Philadelphia, PA, United States, vol. 1196, International Society for Optics and Photonics, 289–296, https://doi.org/10.1117/12.969927, 1990. a, b
Lee, J., Kim, S.-M., Park, H.-S., and Woo, B.-H.: Optimum design of cold-formed
steel channel beams using micro Genetic Algorithm, Eng. Struct., 27, 17–24,
2005. a
Lee, Y. H., Park, S. K., and Chang, D.-E.: Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast, Ann. Geophys., 24, 3185–3189, https://doi.org/10.5194/angeo-24-3185-2006, 2006. a
Li, J., Duan, Q., Wang, Y.-P., Gong, W., Gan, Y., and Wang, C.: Parameter
optimization for carbon and water fluxes in two global land surface models
based on surrogate modelling, Int. J. Climatol., 38, e1016–e1031,
https://doi.org/10.1002/joc.5428, 2018. a
Li, J., Chen, F., Lu, X., Gong, W., Zhang, G., and Gan, Y.: Quantifying
contributions of uncertainties in physical parameterization schemes and model
parameters to overall errors in Noah-MP dynamic vegetation modeling, J. Adv.
Model. Earth Sy., 12, e2019MS001914, https://doi.org/10.1029/2019MS001914, 2020. a
Lim, S., Gim, H.-J., Lee, E., Lee, S.-Y., Lee, W. Y., Lee, Y. H., Cassardo, C.,
and Park, S. K.: Code and Data: Optimization of Snow-Related Parameters in
Noah Land Surface Model (v3.4.1) Using Micro-Genetic Algorithm (v1.7a),
Zenodo [code and data set], https://doi.org/10.5281/zenodo.6873384, 2021. a
Mallet, V. and Sportisse, B.: Uncertainty in a chemistry-transport model due to
physical parameterizations and numerical approximations: An ensemble approach
applied to ozone modeling, J. Geophys. Res.-Atmos., 111, D01302,
https://doi.org/10.1029/2005JD006149, 2006. a
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C.,
Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., Higgins,
R. W., Pinker, R. T., Tarpley, J. D., Lettenmaier, D. P., Marshall, C. H.,
Entin, J. K., Pan, M., Shi, W., Koren, V., Meng, J., Ramsay, B. H., and
Bailey, A. A.: The multi-institution North American Land Data Assimilation
System (NLDAS): Utilizing multiple GCIP products and partners in a
continental distributed hydrological modeling system, J. Geophys.
Res.-Atmos., 109, D07S90, https://doi.org/10.1029/2003jd003823, 2004. a, b
Muñoz-Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2019. a, b
National Center for Atmosphere Research: Unified Noah LSM, NCAR [code], https://ral.ucar.edu/solutions/products/unified-wrf-noah-lsm, last access: 24 October 2022. a
Neelin, J. D., Bracco, A., Luo, H., McWilliams, J. C., and Meyerson, J. E.:
Considerations for parameter optimization and sensitivity in climate models,
P. Natl. Acad. Sci., 107, 21349–21354, 2010. a
Olafsson, H. and Bao, J.-W.: Uncertainties in Numerical Weather
Prediction, 1st edn., Elsevier, 364 pp., ISBN 9780128154915, 2020. a
Pan, M., Sheffield, J., Wood, E. F., Mitchell, K. E., Houser, P. R., Schaake,
J. C., Robock, A., Lohmann, D., Cosgrove, B., Duan, Q., Luo, L., Higgins, R. W., Pinker R. T., and Tarpley J. D.: Snow process
modeling in the North American Land Data Assimilation System (NLDAS): 2.
Evaluation of model simulated snow water equivalent, J. Geophys. Res.-Atmos.,
108, 8850, https://doi.org/10.1029/2003JD003994, 2003. a
Park, S. and Park, S. K.: A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea, Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, 2021. a
Pathak, R., Sahany, S., and Mishra, S. K.: Uncertainty quantification based
cloud parameterization sensitivity analysis in the NCAR community atmosphere
model, Sci. Rep., 10, 17499, https://doi.org/10.1038/s41598-020-74441-x, 2020. a
Robinson, D. A. and Kukla, G.: Maximum surface albedo of seasonally
snow-covered lands in the Northern Hemisphere, J. Appl. Meteorol. Clim., 24,
402–411, 1985. a
Rosolem, R., Gupta, H. V., Shuttleworth, W. J., de Gonçalves, L. G. G.,
and Zeng, X.: Towards a Comprehensive Approach to Parameter Estimation in
Land Surface Parameterization Schemes, Hydrol. Process., 27, 2075–2097,
2013. a
Rudnaya, S. and Santosa, F.: Application of a micro-genetic algorithm in
optimal design of a diffractive optical element, in: System Modelling and
Optimization: Methods, Theory and Applications. CSMO 1999, IFIPAICT, vol. 46,
edited by: Powell, M. J. D. and Scholtes, S., Springer, Boston,
MA, USA, 251–267, https://doi.org/10.1007/978-0-387-35514-6_12, 2000. a
Saha, S. K., Sujith, K., Pokhrel, S., Chaudhari, H. S., and Hazra, A.: Effects
of multilayer snow scheme on the simulation of snow: Offline Noah and coupled
with NCEP CFS v2, J. Adv. Model. Earth Sy., 9, 271–290, 2017. a
Sheffield, J., Pan, M., Wood, E. F., Mitchell, K. E., Houser, P. R., Schaake,
J. C., Robock, A., Lohmann, D., Cosgrove, B., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., Tarpley, J. D. and Ramsay, B. H.: Snow process
modeling in the North American Land Data Assimilation System (NLDAS): 1.
Evaluation of model-simulated snow cover extent, J. Geophys. Res.-Atmos.,
108, 8849, https://doi.org/10.1029/2002JD003274, 2003. a
Shutts, G. and Pallarès, A. C.: Assessing parametrization uncertainty
associated with horizontal resolution in numerical weather prediction models,
Philos. T. R. Soc. A., 372, 20130284, https://doi.org/10.1098/rsta.2013.0284, 2014. a
Souza, A. N., Wagner, G. L., Ramadhan, A., Allen, B., Churavy, V., Schloss, J.,
Campin, J., Hill, C., Edelman, A., Marshall, J., Flierl, G., and Ferrari, R.:
Uncertainty quantification of ocean parameterizations: Application to the
K-profile-parameterization for penetrative convection, J. Adv. Model. Earth
Sy., 12, e2020MS002108, https://doi.org/10.1029/2020MS002108, 2020. a
Sulla-Menashe, D. and Friedl, M. A.: User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product, USGS, Reston, VA, USA, 1, 18 pp., 2018. a
Sultana, R., Hsu, K.-L., Li, J., and Sorooshian, S.: Evaluating the Utah Energy Balance (UEB) snow model in the Noah land-surface model, Hydrol. Earth Syst. Sci., 18, 3553–3570, https://doi.org/10.5194/hess-18-3553-2014, 2014. a
USACE: Snow Hydrology: Summary Report of the Snow Investigations,
Tech. Rep., US Army Corps of Engineers, North Pacific
Division, Portland, Orgeon, USA, 437 pp., 1956. a
Wang, Q., Fang, H., and Zou, X.-K.: Application of Micro-GA for optimal cost
base isolation design of bridges subject to transient earthquake loads,
Struct. Multidiscip. O., 41, 765–777, 2010. a
Wang, Z. and Zeng, X.: Evaluation of snow albedo in land models for weather and climate studies, J. Appl. Meteorol. Clim., 49, 363–380, https://doi.org/10.1175/2009JAMC2134.1, 2010. a
Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67–89, 1982. a
Warren, S. G. and Wiscombe, W. J.: A model for the spectral albedo of snow. II:
Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 2734–2745, 1980. a
Xu, Y., Jones, A., and Rhoades, A.: A quantitative method to decompose SWE
differences between regional climate models and reanalysis datasets, Sci.
Rep., 9, 16520, https://doi.org/10.1038/s41598-019-52880-5, 2019. a
Yan, J., Xu, Z., Yu, Y., Xu, H., and Gao, K.: Application of a hybrid optimized
BP network model to estimate water quality parameters of Beihai Lake in
Beijing, Appl. Sci., 9, 1863, https://doi.org/10.3390/app9091863, 2019. a
Yoon, J. W., Lim, S., and Park, S. K.: Combinational optimization of the WRF
physical parameterization schemes to improve numerical sea breeze prediction
using micro-genetic algorithm, Appl. Sci., 11, 11221, https://doi.org/10.3390/app112311221, 2021. a, b, c
Zhang, X., Zhang, S., Liu, Z., Wu, X., and Han, G.: Parameter optimization in
an intermediate coupled climate model with biased physics, J. Climate, 28,
1227–1247, 2015. a
Zhao, W. and Li, A.: A review on land surface processes modelling over complex
terrain, Adv. Meteorol., 2015, 607187,
https://doi.org/10.1155/2015/607181, 2015.
a
Zhu, J., Shu, J., and Yu, X.: Improvement of typhoon rainfall prediction based
on optimization of the Kain-Fritsch convection parameterization scheme using
a micro-genetic algorithm, Front. Earth Sci., 13, 721–732, 2019. a
Short summary
The land surface model (LSM) contains various uncertain parameters, which are obtained by the empirical relations reflecting the specific local region and can be a source of uncertainty. To seek the optimal parameter values in the snow-related processes of the Noah LSM over South Korea, we have implemented an optimization algorithm, a micro-genetic algorithm using the observations. As a result, the optimized snow parameters improve snowfall prediction.
The land surface model (LSM) contains various uncertain parameters, which are obtained by the...