Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8541-2022
https://doi.org/10.5194/gmd-15-8541-2022
Development and technical paper
 | 
22 Nov 2022
Development and technical paper |  | 22 Nov 2022

Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)

Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park

Related authors

Optimized Stochastic Representation of Soil States Model Uncertainty of WRF (v4.2) in the Ensemble Data Assimilation System
Sujeong Lim, Seon Ki Park, and Claudio Cassardo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-28,https://doi.org/10.5194/gmd-2023-28, 2023
Revised manuscript not accepted
Short summary
Ensemble data assimilation of total column ozone using a coupled meteorology–chemistry model and its impact on the structure of Typhoon Nabi (2005)
S. Lim, S. K. Park, and M. Zupanski
Atmos. Chem. Phys., 15, 10019–10031, https://doi.org/10.5194/acp-15-10019-2015,https://doi.org/10.5194/acp-15-10019-2015, 2015
Short summary
Structure of forecast error covariance in coupled atmosphere–chemistry data assimilation
S. K. Park, S. Lim, and M. Zupanski
Geosci. Model Dev., 8, 1315–1320, https://doi.org/10.5194/gmd-8-1315-2015,https://doi.org/10.5194/gmd-8-1315-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025,https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025,https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025,https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary

Cited articles

Anderson, E. A.: National Weather Service River Forecast System: Snow Accumulation and Ablation Model, Tech. Mem., US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, vol. 17, https://repository.library.noaa.gov/view/noaa/13507 (last access: 24 October 2022), 1973. a, b
Annan, J. D. and Hargreaves, J. C.: Efficient parameter estimation for a highly chaotic system, Tellus A, 56, 520–526, 2004. a
Bonekamp, P. N. J., Collier, E., and Immerzeel, W. W.: The impact of spatial resolution, land use, and spinup time on resolving spatial precipitation patterns in the Himalayas, J. Hydrometeorol., 19, 1565–1581, 2018. a
Carroll, D. L.: Genetic algorithms and optimizing chemical oxygen-iodine lasers, Devel. Theor., 18, 411–424, 1996. a, b
Carroll, D. L.: Fortran Genetic Algorithm Front-End Driver Code, CU Aerospace [code], https://cuaerospace.com/products-services/genetic-algorithm/ga-drive-free-download, last access: 24 October 2022. a
Download
Short summary
The land surface model (LSM) contains various uncertain parameters, which are obtained by the empirical relations reflecting the specific local region and can be a source of uncertainty. To seek the optimal parameter values in the snow-related processes of the Noah LSM over South Korea, we have implemented an optimization algorithm, a micro-genetic algorithm using the observations. As a result, the optimized snow parameters improve snowfall prediction.