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Abstract. Snowfall prediction is important in winter and
early spring because snowy conditions generate enormous
economic damages. However, there is a lack of previous stud-
ies dealing with snow prediction, especially using land sur-
face models (LSMs). Numerical weather prediction models
directly interpret the snowfall events, whereas LSMs evalu-
ate the snow cover, snow albedo, and snow depth through
interaction with atmospheric conditions. Most LSMs include
parameters based on empirical relations, resulting in uncer-
tainties in model solutions. When the initially developed em-
pirical parameters are local or inadequate, we need to opti-
mize the parameter sets for a certain region. In this study,
we seek the optimal parameter values in the snow-related
processes — snow cover, snow albedo, and snow depth — of
the Noah LSM, for South Korea, using the micro-genetic al-
gorithm and the in situ surface observations and remotely
sensed satellite data. Snow data from observation stations
representing five land cover types — deciduous broadleaf for-
est, mixed forest, woody savanna, cropland, and urban and
built-up lands — are used to optimize five snow-related pa-
rameters that calculate the fractional snow cover, maximum
snow albedo of fresh snow, and fresh snow density associ-
ated with the snow depth. Another parameter, reflecting the
dependence of fractional snow cover on the land cover types,
is also optimized. Optimization of these six snow-related pa-
rameters has led to improvement in the root mean squared

errors by 17.0%, 6.2%, and 3.3 % in snow depth, snow
albedo, and fractional snow cover, respectively. In terms of
the mean bias, the underestimation problems of snow depth
and overestimation problems of snow albedo have been al-
leviated through optimization of parameters calculating the
fresh snow by about 44.2 % and 31.0 %, respectively.

1 Introduction

Land surface models (LSMs) act as the lower boundary con-
ditions for regional numerical weather prediction (NWP) and
climate models, to which they provide the surface fluxes (Ek
etal., 2003). However, LSMs include inevitable uncertainties
due to insufficient knowledge of surface layer processes and
characteristics; for instance, unreasonable representation of
the spatiotemporal surface heterogeneity and the inaccuracy
of the parameters based on empirical relations contribute to
the uncertainties in LSMs. In particular, uncertainties in the
snow-related processes of LSMs are appreciable and exert
significant impacts on the performance of regional climate
models to which the LSMs are coupled (e.g., Zhao and Li,
2015; Suzuki and Zupanski, 2018; Giinther et al., 2019; Kim
and Park, 2019; Xu et al., 2019; Jiang et al., 2020).
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Intense snowfall events often occur on the Korean Penin-
sula during winter and early spring. In South Korea (SK),
heavy snowfalls are the third-most serious source of natural
disasters, following typhoons and heavy rainfalls (Kim et al.,
2018), with severe economic consequences. Most of the pre-
vious studies focused on classification of snowfall (Cheong
et al., 2006), investigation of synoptic characteristics (Jung
etal., 2012), and comparisons of different LSM options in the
coupled atmosphere—land surface prediction system (Wang
and Sun, 2018; Kim and Park, 2019). Being coupled to the
atmospheric models, the LSMs play an important role in pre-
dicting the snowfall in NWP because they calculate the frac-
tional snow cover, snow albedo, and snow depth through in-
teractions with the atmosphere. For example, the choice of
land surface scheme is crucial for simulating the spatial dis-
tributions of snowfall in the land-surface-coupled NWP mod-
els (e.g., Wang and Sun, 2018; Kim and Park, 2019). In other
words, the numerical snowfall forecast is strongly affected
by the performance of the coupled LSM; thus, improvement
in the snow process parameterizations of the offline LSMs
can bring about better performance in NWP models.

Uncertainties in parameterized physical processes have
been observed and quantified in various numerical models
(e.g., Mallet and Sportisse, 2006; Gubler et al., 2012; Shutts
and Pallares, 2014; Folberth et al., 2019; Li et al., 2020; Olaf-
sson and Bao, 2020; Pathak et al., 2020; Souza et al., 2020).
Such uncertainties can be reduced by estimating optimal pa-
rameter values in the subgrid-scale parameterization schemes
(e.g., Annan and Hargreaves, 2004; Lee et al., 2006; Neelin
etal., 2010; Yu et al., 2013; Zhang et al., 2015; Kotsuki et al.,
2018; Li et al., 2018; Chinta and Balaji, 2020). Because em-
pirical parameters are commonly derived from the observa-
tions or theoretical calculations, their estimated values are
strongly dependent on the local characteristics of the region
and period where the observations are made. Thus, parame-
ter estimation that fits the model outputs to the observations
is essentially required to obtain an adequate parameter (Duan
et al., 2017). It may be done using a trial-and-error man-
ual approach, but the optimization algorithm helps to replace
enormous experiments by automatically minimizing the dif-
ference between model and observations (Duan et al., 2006).
For example, a global optimization tool, called the micro-
genetic algorithm (micro-GA), has been effectively used for
estimating the optimal parameter values in the NWP model
(e.g., Yuetal., 2013).

Most snow processes in the LSMs are parameterized based
on the observations in specific local regions, and hence they
may not represent adequately the situation in SK and be the
source of uncertainties for numerical snow prediction over
SK. We aim at obtaining the optimal parameter values of
the snow-related processes — snow cover, snow albedo, and
snow depth — in a LSM using the micro-GA, which causes a
better LSM performance over SK. This study represents the
first attempt to develop a coupled system of the micro-GA
and Noah LSM for parameter estimation of the snow pro-
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cesses. Section 2 describes the methodology, including the
snow processes of the LSM and the micro-GA optimization
tool. Section 3 explains the experiment design. Results and
the conclusions and outlook are provided in Sects. 4 and 5,
respectively.

2 Methodology

2.1 Snow-related processes in the Noah land surface
model

In this study, we employ the Noah LSM (Chen et al., 1996;
Koren et al., 1999; Ek et al., 2003) to simulate the single-
site land surface processes (Mitchell, 2005), including the
surface energy and water flux, and to verify energy and wa-
ter budgets in the near-surface atmospheric layer by simulat-
ing the soil moisture, soil temperature, and snowpack. The
Noah LSM is a stand-alone and one-dimensional column
model, developed through multi-institutional cooperation. In
the soil, to simulate soil moisture and soil temperature, we se-
lected four layers with thicknesses of 10, 30, 60, and 100 cm,
respectively, from top to bottom, for a total depth of 2m.
The model also evaluates various other variables, including
skin temperature, snow depth, snow water equivalent, snow
density, and canopy water content (Mitchell, 2005). The en-
ergy and water fluxes are calculated through the surface en-
ergy and water balance equations, respectively. Due to its
adequate complexity and computational efficiency (Mitchell
et al., 2004), the Noah LSM has been coupled to the oper-
ational NWP model of the Korea Meteorological Adminis-
tration (KMA), named the Korean Integrated Model (KIM;
Hong et al., 2018) — see Koo et al. (2017) for details of the
coupled KIM—Noah LSM system.

The current Noah LSM (version 3.4.1) uses a single-
layer representation of the snow processes considering a bulk
snow—soil canopy layer (Sultana et al., 2014). If air tempera-
ture is less than 0 °C, the resulting precipitation is considered
snow. The fractional snow cover is determined as a function
of snow water equivalent (SWE) using a generalized snow
depletion curve. Snow albedo is calculated based on the frac-
tional snow cover and the maximum snow albedo (Ek et al.,
2003). Snow depth is represented by SWE and the bulk snow
density (Jonas et al., 2009). The equations in the Noah LSM
describe the heat exchanges at the snow—atmosphere and
snow—soil interfaces as well as snow accumulation, sublima-
tion, and melting (Suzuki and Zupanski, 2018). The above-
mentioned snow processes contain certain estimated coef-
ficients or constants, known as parameters, which employ
typical, empirical, or a priori values. The parameters are pro-
vided as lookup tables based on their samples in the field
or lab. Traditionally, they are tuned by trial and error to cal-
ibrate the model against historical observations in a specific
location; however, a systematic and objective procedure is es-
sentially required for a large number of stations (Duan et al.,
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2006; Rosolem et al., 2013). We explain below the details
of the snow-related parameters to be optimized for various
stations in SK.

2.1.1 Fractional snow cover (FSC)

The FSC (oy) is important for the accumulation and ablation
processes (Livneh et al., 2010). As a function of SWE (W;
in meters) extracted by the atmospheric input values (Livneh
etal., 2010), o5 varies nonlinearly as in Eq. (1), following the
empirical snow depletion curves of Anderson (1973):

oszl—efﬂw—i—We*Ps. (1)
Here, P is the distribution shape parameter, and W =
Ws/Wmax, Where Wi is the threshold of Wy above which
o 1s 100 %. Note that, from Eq. (1), oy is a function of P
and Wpax — these two parameters are to be optimized.

Figure 1 represents the responses of the snow variables
to the variations in the snow-related parameters for given
ranges. It is noteworthy that Pg has a positive correlation
with snow cover (Fig. 1a). For example, oy increases as P
increases, resulting in relatively slow snowmelt. In Eq. (1),
the value of P usually ranges between 2 and 4 (e.g., Ander-
son, 1973; Koren et al., 1999), and its default value in the
Noah LSM is 2.6. We seek the optimal value of P, which
lies between 2 and 4 and is suited to SK.

The SWE threshold, Wy, has a negative correlation with
snow cover, as shown in Eq. (1), and it is more sensitive
compared to P within a given parameter’s range (Fig. 1b).
In the Noah LSM, the values of Wy, are prespecified in a
table (VEGPARM.TBL), varying with the land cover types
(LCTs). Whax has the largest value over forest, reflecting the
irregular geometry of forest cover (Livneh et al., 2010). Pre-
vious studies suggest the uncertainty range in the values of
Whax; for instance, Livneh et al. (2010) used 0.04 m for for-
est and 0.02m for non-forest, respectively, whereas Wang
and Zeng (2010) used 0.2 m for tall vegetation and 0.01 m
for short vegetation. The default values in the Noah LSM are
0.08 m for forest and 0.04 m for non-forest. We estimate the
optimal Wy« values, suited to SK, in the range between 0.01
and 2 m.

2.1.2 Snow albedo (SA)

SA is defined as the fraction of incident radiation reflected
by the snowpack and is crucial for evaluating surface-energy
balance, particularly during snowmelt (Warren and Wis-
combe, 1980; Warren, 1982); however, accurate representa-
tion of SA is difficult due to numerous complexities (Livneh
et al., 2010).

Surface albedo generally increases over snow, but it may
react differently over a shallow snowpack: when accumula-
tion starts by snowfall or diminution occurs by snowmelt,
patchy areas can be generated and corresponding model grid
boxes may not be covered by snow (Ek et al., 2003). The
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Noah LSM reflects this patchiness effect by calculating sur-
face albedo («) as a composite of snow-covered surface
albedo (o) and snow-free surface albedo (cg) as

a =+ os(as — o). (2

Note that SA is generally highest over the fresh snow and
decays thereafter, and the decay rate depends on the seasonal
snow phase — faster during the ablation phase and slower dur-
ing the accumulation phase. By reflecting this fact, o is eval-
uated as a function of the fresh SA (o¢tmax), the number of days
after the last snowfall (¢), and the albedo-decay rates (A and
B) as

B
Qs = O5max-’4t s 3)

where the default values of empirical parameters A and B are
0.94 and 0.58, respectively, during the accumulation phase,
and 0.82 and 0.46, respectively, during the ablation. How-
ever, the current Noah LSM activates only the accumulation
phase in Eq. (3), and both A and B are excluded from our
optimization.

Spatial variation in SA is taken into consideration in o/max
by incorporating the satellite-based maximum SA (max.sat)
from Robinson and Kukla (1985) and by imposing adjust-
ment to a maximum SA (o¢max,cofE) from USACE (1956) (see
also Livneh et al., 2010) as

Omax = max,sat T C(amaX,CofE - Olmax,sat), 4)

where C is a proportionality coefficient. We optimize two
empirical parameters that show a positive relation to SA —
Omax,CofE and C, whose default values are 0.85 and 0.5, re-
spectively (Fig. 1c—d): SA shows similar sensitivities to both
parameters within the same range but is a bit more sensitive
to C. Some other values have been used in previous studies
(e.g., Livneh et al., 2010), such as 0.6 to 0.95 for amax,CofE
and 1.0 for C. For the parameter estimation in this study, we
set the ranges from 0.1 to 1.0 for both parameters.

2.1.3 Snow depth (SD)

In the Noah LSM, SD is evaluated as the ratio of SWE
(Wy) to snow density (us), i.e., Ws/us (Gotleib, 1980; Ko-
ren et al., 1999). While SWE is determined by precipitation
in the model, snow density is determined by several other pa-
rameters such as the compression and melting of snow (Ko-
ren et al., 1999). Fresh snow density (us, fresh) depends on air
temperature (7i;), i.e., 2 m temperature (Gotleib, 1980), as

s, fresh = P1 + P2 (Tuir + 1517, )

where P; =0.05gcm™> and P, =0.0017 gcm™3°C~! are
the default values of the coefficients. If Ty;; is less than
—15°C, s, fresh 1S set to 0.05gcm_3; otherwise, (i, fresh
tends to increase as Ty, increases. As the empirical param-
eters P; and P are directly associated with (s fresh, We seek
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Figure 1. Responses of the snow variables to the variations in the snow-related parameters for given ranges. (a, b) Responses of FSC, for

Ws = 0.02 m, to variations in Ps (with Wnax = 0.08 m) and in Winax (with Ps = 2.6), respectively. (¢, d) Responses of SA, for ¢max, sat =

0.2

and t = 104d, to variations in o,y cofg (With C =0.5) and in C (with apm,x cofE = 0.85), respectively. (e, f) Responses of SD (cm), for
Ws = 0.02m and Tyjr = —5 °C, to variations in P; (with P, =0.0017 gem™3 °C~1) and in P, (with P| =0.05 gcm ™).

optimal values of these parameters. Because snow density is
inversely proportional to SD, both P; and P, have negative
correlations with the SD (Fig. le—f), where the SD shows
similar sensitivities to both parameters.

2.2 Optimization tool: micro-genetic algorithm

The genetic algorithm (GA) is a global optimization algo-
rithm developed by John Holland in the 1970s (e.g., Holland,
1973, 1975) and is based on Darwinian principles of natu-
ral selection (Golberg, 1989). It uses reproduction selection,
crossover, and mutation to operate a set of potential solu-
tions, i.e., population or individuals, which are expressed by
a string, called a chromosome: its binary form is called a gene
(Krishnakumar, 1990; Rudnaya and Santosa, 2000). The se-
lection operator first selects good solutions or eliminates bad
solutions based on the fitness value; then, the crossover oper-
ator exchanges the genetic information between the solutions
using the single-point or uniform types. The mutation oper-
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ator modifies the value of each gene of the chromosomes by
replacing it with the opposite value, e.g., 0 with 1, which pre-
vents premature convergence. When a new generation is cre-
ated, the above processes are repeated until the convergence
condition or the prescribed number of iterations is satisfied.
The micro-GA is an advanced and simplified GA with
smaller generation sizes, thus requiring less computational
time than the conventional GA (Krishnakumar, 1990; Wang
et al., 2010). It has been used in meteorology for optimal
parameter estimation (e.g., Yu et al., 2013) or scheme-based
optimization (e.g., Hong et al., 2014, 2015; Park and Park,
2021; Yoon et al., 2021). Its main difference from the conven-
tional GA is the population size; for example, the micro-GA
uses 5 individuals, while the conventional GA uses more than
30 individuals. Note that the conventional GA with a small
population quickly converges to non-optimal solutions due to
insufficient information; however, the micro-GA solves this
problem by using elitism, which assigns the best individual
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among the five individuals based on the fitness evaluation and
carries it to the next generation — this guarantees the preser-
vation of the good solutions during the generations. Further-
more, the micro-GA does not take mutation to achieve diver-
sity; instead, it uses the re-initialization which starts with a
new individual whenever the diversity is lost.

2.2.1 Coupling the micro-GA with the Noah LSM and
parallelization

Figure 2 describes the process of parameter optimization in
the micro-GA-Noah LSM coupled system. (1) The micro-
GA initializes the snow parameter combinations repre-
sented by the binary encoding through the random sam-
ples of the individual. (2) The micro-GA controls the Noah
LSM by editing the parameter-related files, such as GEN-
PARM.TBL, VEGPARM.TBL, and the Fortran code (mod-
ule_sf_noahlsm.F), and prepares the forcing data for each
station. (3) As recommended in Carroll (1996), the five in-
dividuals configured with the different snow parameters exe-
cute the ensemble runs of the Noah LSM in parallel. (4) The
performance of each Noah LSM is evaluated in comparison
with the observation through a given fitness function. (5) The
micro-GA selects the highest fitness by comparing a num-
ber of individuals through the tournament selection. (6) New
combinations for the next generation are produced through
the crossover using the selected ones in the previous step. (7)
When the convergence is satisfied, the other four individuals
except the best individual marked by elitism are randomly
regenerated. (8) The micro-GA repeats these processes until
the prescribed entire iteration converges into a global maxi-
mum of the fitness function.

Although the micro-GA is computationally more efficient
than the conventional GA, it still demands substantial com-
puting time because each individual serially executes the
model. Therefore, we have developed a parallel processing
system in the micro-GA—Noah LSM coupled system. Instead
of sequentially performing each individual and calculating
the fitness within a generation, we run the model simultane-
ously for all populations to obtain the fitness and select the
best individual when all tasks are finished (see the dashed
box in Fig. 2). This new parallel system linearly reduces the
execution time, which is proportional to the number of indi-
viduals. In addition, since the coupling system was created
in a shell script, it is possible to assign multiple cores for
model execution for various stations. The new parallel pro-
cessing system, created by reflecting these two main points,
improves the computation time — making it different from the
non-parallel processing of a coupled system, e.g., the coupled
micro-GA and the Noah LSM with multiple physics options
(Noah-MP) model (see Hong et al., 2014).
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2.2.2 Fitness function

The fitness function is a performance index to evaluate how
well potential solutions fit the objective. In the GA optimiza-
tion, the fitness function should be carefully defined because
it is used for all generations and individuals. Generally, the
root mean squared error (RMSE) is a widely used indicator
for evaluating the performance of a model (e.g., Yan et al.,
2019). Since our aim is to improve the snowfall prediction,
we simultaneously evaluate all related snow variables — FSC,
SA, and SD. We have first calculated the RMSE for each
snow variable as

RMSE(x) = , (©6)

where x is a vector representing the three snow variables and
N is the total number of observation times. Here, X is the pre-
dicted values in the Noah LSM, while x is the observed val-
ues. The number of observations is dependent on the obser-
vational types: the Automated Synoptic Observing System
(ASOS) produces hourly data for SD, while the MODerate
resolution Imaging Spectroradiometer (MODIS), a sensor on
board the polar-orbiting satellite Terra, produces daily data
for FSC and SA. To calculate the RMSE between the model
solutions and observations, the Noah LSM simulations are
made over the observation locations. For SD, the RMSE is
directly obtained on the same grid point. As the MODIS data
have a coarser resolution, we use the observation point near-
est the ASOS location (see the details in Sect. 2.3).

We then obtain the improvement ratio, 7 (x), by comparing
the RMSEs from the model runs with non-optimized param-
eters (say, CNTL) and optimized parameters (say, OPTM),
respectively, as

_ RMSE(x)cntL — RMSE(x)optm

T RMSE(X)cnrL

(7

Lastly, we have averaged all the improvement ratios for the
snow variables to define the fitness function, f(x), as

A r(x)4)
x)=) ———, (®)
f ; m
where M is the number of stations and ¢g is a quality control
flag (QCF) — either O or 1. The QCF is employed to secure a
sufficient number of snow observations. It is set to O (i.e., the
fitness function is not accumulated) for the following cases:
(1) snow events are not simulated after optimization and (2)
the number of snow observations is less than two. Further-
more, when the performance deteriorates after optimization,
we give a penalty by doubling Eq. (7) to prevent degradation
of the optimization.
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Figure 2. A flowchart of parameter optimization from the micro-GA—Noah LSM coupled system. The dashed box depicts the parallel system

for the Noah LSM, running for each individual.

We finally define the normalized fitness function, f;,(x),

as
f(FSC) + f(SA) + f(SD)
3 9

whose values lie in the range [—1, 1]. Thus, the micro-GA
finds the maximum fitness based on Eq. (9).

folx) =

(€))

2.3 Data

The land surface processes were forced by six meteorolog-
ical fields from ASOS (https://data.kma.go.kr, last access:
24 October 2022): wind speed (ms~!), wind direction (de-
grees), temperature (K), relative humidity (%), surface pres-
sure (hPa), and precipitation rate (kgm™2s~!). When miss-
ing data exist in less than 72h, linear interpolation was
performed except for precipitation. Stations with a missing
rate greater than 1 %, during the entire experimental period,
have been excluded. For the initial and boundary conditions,

Geosci. Model Dev., 15, 8541-8559, 2022

downward shortwave/longwave radiation (W m™2), precipi-
tation rate (kg m~2s71), soil temperature (K), soil moisture
(m3 m_3), and surface temperature (K) have been obtained
from the European Centre for Medium-Range Weather Fore-
casts (ECMWEF) — the fifth-generation ECMWF reanalysis-
Land (ERASL) hourly data (Mufioz-Sabater, 2019) — having
a spatial resolution of 9 km and four soil layers with thick-
nesses of 7, 21, 72, and 189 cm, respectively, from top to
bottom for a total depth of 2.89 m. We have used the data at
the ERASL grid’s nearest point to the ASOS station.

The snow observations (i.e., SD, FSC, and SA) are used
for the model verification and the fitness function calcula-
tion. For SD, the hourly model outputs are evaluated using
the hourly ASOS data. To confirm the snow season, we have
excluded the SD observations lower than 0.1 cm. For FSC
and SA, we have no ASOS observations over SK; thus, we
have used the MODIS/Terra Snow Cover Daily L3 Global
500 m SIN Grid radiance data (Hall and Riggs, 2021). They

https://doi.org/10.5194/gmd-15-8541-2022


https://data.kma.go.kr

S. Lim et al.: Optimization of snow-related parameters in the Noah land surface model

are generated from the MODIS/Terra Snow Cover 5-Min L2
Swath 500 m data (Hall et al., 2006) by selecting the best ob-
servation based on a scoring algorithm when they are closest
to nadir with maximum coverage of the cell (Hall and Riggs,
2007). In particular, FSC is generated by the normalized dif-
ference snow index (NDSI). The MODIS snow data at the
points nearest to the ASOS locations were extracted and used
for verification of the model-generated FSC and SA. Being
a polar-orbiting satellite, MODIS contains only one observa-
tion per day; thus, we have extracted the model output for
verification at 02:00 UTC, when the satellite (Terra) passes
over SK. For the calculations, we have converted the percent
values of FSC and SA to the decimal values; then, we ex-
cluded observational data with values below 0.05 (i.e., 5 %)
for both FSC and SA.

For the optimization experiment, we have selected some
stations that represent different land covers in SK, aiming
at having a representative combination of snow-related pa-
rameters over SK. We have defined a representative set of
LCTs within a 2.5 km radius from the ASOS observations,
excluding the water body. The LCTs have been taken from
the MODIS (on board Terra and Aqua) Land Cover Type
Yearly Climate Modeling Grid (CMG) Version 6 (Friedl and
Sulla-Menashe, 2015), in which maps are provided from
the land cover classification schemes of the International
Geosphere-Biosphere Programme (IGBP), the University of
Maryland (UMD), and the leaf area index (LAI), all at a
0.05° spatial resolution in geographic latitude/longitude pro-
jection (see Sulla-Menashe and Friedl, 2018), for the entire
globe from 2001 to 2019. Finally, we have compiled a set
of five representative stations for each different LCT — de-
ciduous broadleaf forest (DBF), mixed forest (MF), woody
savanna (WS), cropland (CL), and urban and built-up lands
(UB) — as shown in Table 1.

3 Experimental design

We have designed the following two GA optimization exper-
iments: (1) OPT_S5 that optimizes five snow parameters (P,
O'max,CofE> C, P1, and Py); (2) OPT_W that optimizes Wpax.
These parameters are all constants and do not vary with time
and space. Among the six parameters, only Wpax depends
on the LCTs, though it is still fixed for a given LCT. Thus,
we conducted OPT_5 and OPT_W separately. Note that SK
is represented by five different LCTs considering the suffi-
cient days of snowfall and ASOS observation (see Table 1).
Because OPT_5 optimizes with more parameters and gener-
ations, we have selected 10 stations (i.e., 2 stations per LCT)
based on snowfall amount to reduce the computation time
(see Fig. 3a). To investigate the performance of snow predic-
tion through optimized snow parameters, we have designed
the following three verification experiments for the 25 obser-
vation stations: (1) CNTL using non-optimized (i.e., default)
parameters; (2) VRF_5 using the five optimized parameters
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obtained from OPT_5; and (3) VRF_6 using the six opti-
mized parameters obtained from both OPT_5 and OPT_W
(see Fig. 3b).

For the micro-GA optimization, we have prespecified the
following input parameters: (1) the population size, i.e., a
collection of individuals; (2) the number of parameters to
be used for optimization; (3) the number of chromosomes
expressing an arbitrary solution; (4) the maximum number
of generations to iterate the optimization; (5) the type of
crossover operator that creates a new structure of chromo-
somes through the exchange of the chromosome; (6) the
elitism to decide whether the most suitable individual would
be preserved for the next generation. The micro-GA—Noah
LSM coupled system has been repeatedly performed to find
a parameter combination within the specified generations.

Table 2 describes the input parameters for the micro-GA
used in this study. We follow the options known as the best
performance in the micro-GA; this is done with a population
size of five and a uniform crossover (i.e., crossover opera-
tor = 1.0) with elitism (Carroll, 1996; Yu et al., 2013; Yoon
et al., 2021). The uniform crossover in which each gene is se-
lected randomly from one of the parent chromosomes makes
all populations perform a crossover at every generation to
acquire diversity (Lee et al., 2005). The number of parame-
ters to be optimized is five for OPT_5 and one for OPT_W.
The number of chromosomes determines the number of cases
expressed in a binary format. For example, the selected pa-
rameters — Ps, &max,CofE, C, P1, P2, and Wi,y — use different
chromosomes, i.e., 5, 5, 5, 6, 4, and 5, respectively; thus,
the total number of chromosomes is 30 for OPT_5 and 5 for
OPT_W. The maximum value of generations at the end of op-
timization is generally set to 100 (Yu et al., 2013; Yoon et al.,
2021; Zhu et al., 2019), whereas we increased generations up
to 200 in OPT_S5 due to the larger number of parameters to
be optimized.

In this study, we have conducted the optimization ex-
periments from 00:00 UTC 1 May 2009 to 23:00 UTC
30 April 2018. During this 9-year period, the number of snow
observations was continuously secured. Data from the first 5
months (May—October in 2009) were utilized for model ini-
tialization and spinup, and thus they were not considered for
the verification. Cross-validation has been conducted using
the 1-year data from 00:00 UTC 1 May 2018 to 23:00 UTC
30 April 2019. Since they showed similar aspects, we only
discuss the results of optimization periods with sufficient
samples.

4 Results
4.1 Spinup analysis
Numerical prediction models generally require spinup to

reach a statistical equilibrium state where the initial condi-
tions under a forcing are adjusted to the model’s own physic-
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Table 1. Five representative LCTs over SK, following the IGBP classification — DBF, MF, WS, CL, and UB. For each LCT, five selected
stations are shown with the station name (abbreviation in parentheses), location in latitude (° N) and longitude (° E), ratio of LCT in a
2.5 km buffer (%), soil type, and missing ratio (%). The OPT_5 experiment employs only the stations highlighted in bold, while the other

experiments use all the stations.

IGBP  Station name Latitude Longitude Ratio of LCT  Soil type Missing
LCT in the 2.5 km buffer ratio
DBF  Ulleungdo (UL) 37.481 130.899 82.7 Silt loam 0.15
Taebaek (TB) 37.170 128.989 67.0 Loam 0.15
Inje (17) 38.060 128.167 62.7  Sandy loam 0.07
Chupungnyeong (CP) 36.220 127.995 56.8  Silt loam 0.04
Youngwol (YW) 37.181 128.457 42.6 Clay 0.09
MF Bongwha (BW) 36.944 128.914 38.7 Loam 0.11
Hapcheon (HP) 35.565 128.170 32.1 Loam 0.51
Hongcheon (HC) 37.683 127.880 26.3  Silty clay loam 0.05
Miryang (MY) 35491 128.744 22.5 Sandy loam 0.16
Gumi (GM) 36.131 128.321 24.1 Sandy loam 0.05
WS Imsil (IS) 35.612 127.286 53.1 Sandy loam 0.12
Andong (AD) 36.573 128.707 43.9 Loamy sand 0.04
Boeun (BE) 36.488 127.734 41.2  Sandy loam 0.07
Uljin (UJ) 36.992 129.413 39.2 Loam 0.19
Bukgangneong (NG) 37.805 128.855 37.5 Sandy loam 0.04
CL Buan (BA) 35.730 126.717 87.8 Loam 0.03
Icheon (IN) 37.264 127.484 74.6  Sandy loam 0.16
Haenam (HN) 34.554 126.569 63.7  Sandy loam 0.29
Boryeong (BR) 36.327 126.557 53.8 Silty clay loam 0.14
Jeongeup (JE) 35.563 126.839 51.7 Silt loam 0.28
UB Gwangju (GJ) 35.173 126.892 94.6 Loam 0.03
Seoul (SL) 37.571 126.966 90.8 Loam 0.08
Daejeon (DJ) 36.372 127.372 72.2  Sandy loam 0.03
Suwon (SW) 37.257 126.983 71.4 Sandy loam 0.10
Incheon (IC) 37.478 126.625 70.1 Loam 0.07

Table 2. The input parameters for micro-GA in experiments OPT_5
and OPT_W.

Input parameter OPT_5 OPT_W
Population size 5 5
Crossover operator 1.0 1.0
Elitism On On
Number of parameters 5 1
Number of chromosomes 30 5
Maximum value of generations 200 100

s/dynamics and numerics (Bonekamp et al., 2018). Without
sufficient spinup, the LSMs can generate severe bias of initial
conditions (Cosgrove et al., 2003). Prior to the optimization
experiments, we have conducted a spinup experiment in one
of the stations, Seoul, to check the appropriate spinup time. It
was carried out in two ways: (1) using a spinup period recur-
sive in 9 years (e.g., Jun et al., 2020) and (2) using a spinup
period that was not included in the analysis.

Geosci. Model Dev., 15, 8541-8559, 2022

First, the Noah LSM has been repeatedly executed using
the atmospheric forcing for 9 years. This recursive simula-
tion has been conducted from 1 May 2009 to 30 April 2018
to see whether the model was able to reach an equilibrium by
setting the repetition loop to 0, 300, 600, and 1000. Our re-
sults indicated no significant differences; thus, we concluded
that repetition was not required. Second, we have performed
sensitivity tests to identify the spinup period due to changes
in the initial conditions by adding biases (0.1 m>m~3 for
soil moisture and +3 K for soil temperature) to the ERASL
data. As a result, we found that the adequate spinup periods
were about 3 months and 1 year for soil moisture and soil
temperature, respectively; however, the snow variables were
insensitive to the initial condition changes, thus requiring no
spinup period. Although the spinup is not necessary for this
study that focuses on the snow processes, we have performed
the optimization experiments starting from May when snow
is absent.
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Figure 3. Stations used for experiments (a) OPT_5 and (b) OPT_W, CNTL, VRF_5, and VRF_6. Different colors in the station abbreviations
represent different LCTs: DBF (black), MF (blue), WS (green), CL (yellow), and UB (red). See Table 1 for the abbreviations of the stations

and LCTs.

4.2 Optimal estimation of snow parameters

To optimize snow parameters specialized in SK, we have
employed the micro-GA—Noah LSM coupled system using
the observations over SK. Figure 4a shows the evolution
of the fitness function for OPT_5 in a total of 200 gener-
ations and Fig. 4b for OPT_W in a total of 100 genera-
tions. Since OPT_W optimizes solely the Wy,x parameter, it
has smaller generations. In OPT_5, the fitness function con-
verges at the 160th generation, while the fitness function of
OPT_W quickly converges in all LCTs (Fig. 4b). The conver-
gence occurs at the 3rd generation for DBF, 70th generation
for MF, 7th generation for both WS and CL, and 12th gener-
ation for UB.

As a result, we have obtained the optimized six snow pa-
rameters over SK (Table 3). OPT_5 simultaneously generates
the optimized five snow parameters (Ps, &max,CofE, C, P1,
and P,) associated with the FSC, SA, and SD, while OPT_W,
depending on the LCTs, generates the optimized Wy, asso-
ciated with the FSC. The first snow parameter, P;, is opti-
mized from its standard value of 2.6 to 2.7097, which results
in an increase in the FSC. The second snow parameter, Wix,
is optimized depending on each LCT. In detail, the Wi,x in
DBF and WS increases from 0.08 to 0.1632 m and from 0.03
to 0.0406 m, respectively. They lead to a decrease in the FSC
due to a negative correlation. On the other hand, the Wy«
in MF and UB decreases from 0.08 to 0.0529 m and from
0.04 to 0.0284 m, respectively, thus increasing the FSC. The
optimized CL shows a similar value from 0.04 to 0.0406 m,
which means that the current value was correct for SK. The
third snow parameter related to the SA, amax, cofE, decreases
from 0.85 to 0.7387, inducing a decrease in SA. The fourth
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snow parameter, C, also shows a similar value from 0.5 to
0.5355, and thus this value was correct for SK. The fifth
snow parameter, Py, increases from 0.05 to 0.0698 gcm ™3,
resulting in a decrease in SD. The last snow parameter, P,
decreases from 0.0017 to 0.0002 gcm ™3 °C~!, leading to an
increase in SD.

We have investigated the mean bias (MB) using the box
plot expressing the quartile and the distribution of extreme
values: it explains how much the bias of the CNTL is reduced
in optimization experiments by comparing the model with
the observations. Before optimization, the CNTL showed un-
derestimated FSC and SD and overestimated SA (—0.133,
—4.39cm, and 0.0408, respectively; see Fig. 5). However,
the bias patterns in FSC and SA vary for each station owing
to the lower spatial and temporal resolution of satellite obser-
vations. On the other hand, the SD shows an underestimation
at all stations; the increase in the SD due to fresh snow was
underestimated, and snowmelt was proceeding faster than the
observation.

The performance has been evaluated using the improve-
ment ratio, which indicates how much the RMSE, MB, and
coefficient of determination (R?) of experiments using op-
timized parameters (i.e., VRF_5 and VRF_6) are improved
compared to CNTL, as shown in Eq. (7) (Table 4). In VRF_5,
new parameter values — P, dmax,cofE, C, P1, and Py — op-
timized by the micro-GA result in an improvement in the
RMSE:s for FSC, SA, and SD of 0.7 %, 5.4 %, and 13.7 %,
respectively. However, the RMSE of FSC relatively weakly
improved by about 0.7 % because the other parameter, Wiax,
is not yet optimized. In terms of MB, we anticipate that the
increase in P will overcome the underestimated FSC. How-
ever, VRF_5 strengthens the underestimation of FSC from
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Table 3. Summary of optimized snow parameters related to snow variables. Minimum (min), default, and maximum (max) are the ranges
used in the optimization process. Default is the empirical value used in the Noah LSM.

Snow variable  Snow parameter LCTs Min/default/max  Optimized value
FSC Ps - 2.0/2.6/4.0 2.7097
Wmax DBF 0.01/0.08/2.00 0.1632

MF 0.01/0.08/2.00 0.0529

WS 0.01/0.03/2.00 0.0406

CL 0.01/0.04/2.00 0.0406

UB 0.01/0.04/2.00 0.0284

SA Qmax, CofE - 0.10/0.85/1.00 0.7387
Cc - 0.1/0.5/1.0 0.5355

SD P - 0.00/0.05/0.10 0.0698
Py - 0.0002/0.0017/0.003 0.0002

—0.133 to —0.145, and thus it deteriorates the MB by about
9.1 % (Table 4 and Fig. 5a). Regarding the SA, the opti-
mized omax, coff decreases the SA to solve the overestima-
tion in CNTL. The other parameter, C, has been optimized
to its default value, 0.5355, which means that this was an
appropriate constant for SK snowfall prediction. Therefore,
the MB of the SA is improved by 26.9 % by reducing the
SA from 0.0408 to 0.0298 (Table 4 and Fig. 5b). Next, SD
shows the greatest RMSE improvement of 13.7 %. In fact,
the Noah LSM suffers from a negative bias for SWE, espe-
cially in early spring (Sheffield et al., 2003; Ek et al., 2003;
Pan et al., 2003; Mitchell et al., 2004; Jin and Miller, 2007;
Livneh et al., 2010). Because SD is proportional to SWE,
the underestimation can be exhibited due to negative bias of
the SWE. However, the optimized P; leads to a decrease in
SD, and thus it intensifies the underestimation for SD. On
the other hand, the optimized P, increases the SD as fol-
lows: when the air temperature is warmer than —15 °C, the
fresh snow density slowly increases, which quickly induces
an increase in SD following Eq. (5). Therefore, the optimiza-
tion of P, solves the underestimated SD by about 35.9 % due
to the increased SD from —4.39 to —2.81 cm within most of
the temperature ranges (Table 4 and Fig. 5¢). We also inves-
tigated R?, which measures the proportion of variation for
a dependent variable that can be explained by an indepen-
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dent variable. Although the R? values are low in FSC and
SA, the difference between CNTL and the verification ex-
periment (e.g., VRF_5) has 95 % statistical significance, as
evaluated with a two-tailed ¢ test. After optimization, the R2
values in VRF_5 improve by 3.3 % and 1.5 % for FSC and
SD, respectively. However, these changes are insignificant
compared to the other statistics such as RMSE and MB.

To supplement insufficient improvement in the FSC, we
have additionally optimized W,y as a function of LCT
(OPT_W) using the optimized values of five parameters from
OPT_5. Here, we have only used the FSC to define the fit-
ness function, not considering SA and SD; thus, the fitness
function is defined using Eq. (8), where the FSC is the only
element of x, and the normalized process with Eq. (9) is not
necessary. As a result, OPT_W further improves the RMSE
of the FSC in VRF_6 compared to VRF_5 in most stations:
the significant decreases in Wax over MF and UB lead to an
increase in the FSC, possibly alleviating the underestimation
problem of the FSC in VRF_5.

Finally, all six parameters related to the snow variables
have been verified in VRF_6 with the same 25 stations used
in CNTL. When the optimized five parameters are used ex-
cept Wiax (VRE_S), SA and SD are improved, and FSC
shows a weak improvement in RMSE performance (Table 4).
However, when the optimized Wyy,x depending on the LCTs
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Table 4. The RMSE, MB, and R? of snow variables and improvement ratios (%) in parentheses from CNTL to VRF_5, and VRF_6 over
the 25 representative stations. The difference between CNTL and verification experiments (i.e., VRF_5 and VRF_6) has 95 % statistical

significance, as evaluated with a two-tailed ¢ test.

Experiments | CNTL \ VRF_5 \ VRF_6

Snow variable | FSC SA SD | FSC SA SD | FSC SA SD

RMSE 0249 0132 9.094 | 0.247 0.125 7.847 0.124 0.125 7.547
07%) (4%  (137%) | 33%) 62%)  (17.0%)

MB —0.133 00408 —4.39 | —0.145  0.0298  —2.81 | —0.149 00281  —2.45
(=91%) (269%) (35.9%) | (-11.9%) (31.0%) (442%)

R? 0257 0281  0.808 | 0.265 0.276 0.821 0.277 0.274 0.834
(B3%)  (—17%) (15%) | (8.0%) (—22%) (3.0%)

from OPT_W is used (VRF_6), the FSC appears in a larger
positive impact with other variables. As a result, an improve-
ment in RMSE for FSC, SA, and SD is 3.3 %, 6.2 %, and
17.0 %, respectively. However, the MB for the FSC strength-
ens from 9.1 % to 11.9 % in VRF_6 (Table 4 and Fig. 5a) due
to larger negative bias, especially in the DBF. On the other
hand, SA and SD reduce the MB against the CNTL and en-
hance the improvement ratio from 26.9 % to 31.0 % and from
35.9 % to 44.2 %, respectively (Table 4 and Fig. 5b—c). Like
the RMSE, the R? of FSC and SD also improved in VRF_5
and VRF_6. The SA worsened in VRF_5 and was a bit more
severe in VRF_6. However, they are still small impacts com-
pared to RMSE and MB.

To understand more details of the improvements due to
the optimization, we analyzed the scatter plots that compare
the observations and the model results in Fig. 6 and listed
their RMSE and R? in Table 5. Since the observation pat-
terns are different for different stations, we selected the rep-
resentative station for each LCT. For FSC, it is relatively hard
to recognize the explicit bias patterns, as shown in Fig. 6
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(left panels); however, compared to CNTL, the RMSE de-
creased in VRF_5 and further reduced in VRF_6 (see Ta-
ble 5). The VRF_6 revealed the largest R? values over most
LCTs, except WS (station NG) and CL (station BR). In par-
ticular, VRF_6 produced the highest FSC over MF (station
GM) (see Fig. 6d), with the smallest RMSE and the largest
R?, which significantly alleviated the underestimation prob-
lem. For SA, its overestimation in CNTL has been promi-
nently reduced in both VRF_5 and VRF_6 — see Fig. 6 (mid-
dle panels). For instance, SA decreased over DBF (station
UL) in both VRF_5 and VRF_6, with a larger decrease for
VRF_6 (Fig. 6b). The performance statistics of both VRF_5
and VRF_6 demonstrated improvements over most LCTs ex-
cept UB (station SL) (see Table 5). For SD, the parameter op-
timization brought about remarkable improvement compared
to FSC and SA - see Fig. 6 (right panels). Note that SD is
optimized using the hourly in situ observations (i.e., larger
amount of data), while both FSC and SA are optimized us-
ing the daily satellite observations. For example, VRF_6 with
DBF produced notably large SD values (Fig. 6¢) with the

Geosci. Model Dev., 15, 8541-8559, 2022
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Figure 6. Scatter plots of observations (OBS) and model results (LSM) for snow variables FSC (left panels), SA (middle panels), and SD
(cm; right panels) from the verification experiments — CNTL (black dots), VRF_5 (blue dots), and VRF_6 (orange dots), which are evaluated
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Figure 7. Time series of the snow variables for DBF (e.g., UL) from May 2009 to April 2018: (a) FSC, (b) SA, and (¢) SD (cm). Observations
are in gray dots, and model results are in black dots for CNTL and in orange dots for VRF_6.

lowest RMSE and the highest R? (Table 5), diminishing the
underestimation problem in CNTL. It is hard to say which
verification experiment gives the best results (i.e., VRF_5
versus VRF_6), but the performance with optimized param-
eters is usually better than CNTL in terms of RMSE (e.g.,
for most LCTs such as DBF, MF, WS, and UB) and R? (e.g.,
for LCTs including DBF, MF, and CL). Overall, both VRF_5
and VRF_6 produced snow variables that are closer to obser-
vations than CNTL for most LCTs (i.e., stations), and VRF_6
generally showed the lowest RMSE and the highest R in all
the snow variables.

Figure 7 shows temporal changes in the snow variables
after parameter optimization by comparing their time series
of the observations and the model simulations (CNTL ver-
sus VRF_6) for DBF represented by UL. The CNTL shows
positive or negative biases in FSC, positive bias (overestima-
tion) in SA, and negative bias (underestimation) in SD: these
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biases are all reduced down in VRF_6. The bias patterns in
Fig. 7 are consistent with those in Fig. 6a—c.

Lastly, we have investigated how the optimized snow pa-
rameters can affect the other variables in the LSM. Figure 8
depicts the time series of the differences of LSM variables
(soil temperature, sensible heat flux, and soil moisture) be-
tween VRF_6 and CNTL (i.e., VRF_6 minus CNTL) follow-
ing the changes in SD. Although the LSM variables here are
not directly optimized, they respond to the optimized snow
parameters through associated physical processes. Note that
the underestimation of SD in CNTL has been alleviated in
VRF_6 by using the optimized snow parameters (see Figs. 7c
and 8a). Next, soil temperature in the first soil layer (7 cm)
increases as SD increases after optimization, which conse-
quently increases sensible heat flux. The residual of the sur-
face energy balance is close to zero, implying that the sur-
face energy balance is well conserved even after optimiza-
tion. Soil moisture depends on snowmelt, following the trend

Geosci. Model Dev., 15, 8541-8559, 2022
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Table 5. Statistics of model performance using non-optimized parameters (CNTL) and optimized parameters (VRF_5 and VRF_6) over
different LCTs represented by different stations — DBF represented by UL, MF by GM, WS by NG, CL by BR, and UB by SL. The RMSEs

and R? values are shown for three snow variables — FSC, SA, and SD.

Statistics \ RMSE \ R?
LCT Snow variable | CNTL  VRF_S VRF_6 | CNTL VRF_5 VRF_6
DBF (UL) FSC 0328 0327 0252 | 0248 0215 0256
SA 0218  0.197 0159 | 0.157  0.157  0.176
SD 15763 13.640 12616 | 0764  0.781  0.796
MF (GM) FSC 0208 0206  0.178 | 0388 0408  0.520
SA 0105  0.103  0.103 | 0411 0421  0.460
SD 1789 1526  1.542 | 0435 0502 0493
WS (NG)  FSC 0279 0269 0249 | 0354 0333 0341
SA 0.196  0.160  0.156 | 0314 0328  0.324
SD 9.836 8231  8.009 | 0.895  0.887  0.888
CL(BR)  FSC 0.163  0.160  0.160 | 0363 0385  0.384
SA 0132 0122 0122 | 0443 0457 0456
SD 2542 2583 2590 | 0478 0540  0.539
UB(SL)  FSC 0255 0252 0242 | 0.184  0.195  0.195
SA 0071 0070 0073 | 0.150  0.148  0.124
SD 4790 4286  4.699 | 0484 0449  0.385

of increased snowfall in the previous winter. Extreme fluc-
tuations sometimes appear in the time series analyses due to
nonlinear effects, but we can understand the overall tendency
according to the increased SD on the land surface.

5 Conclusions and outlook

The Noah land surface model (Noah LSM) generally under-
estimates snow amount during the peak winter and shows
earlier snowmelt in spring, whereas it overestimates snow
albedo (SA) over Eurasia, mainly due to uncertain parame-
terization processes (Saha et al., 2017). Our experiment with
no optimization (CNTL) reveals underestimation of snow
depth (SD) and fractional snow cover (FSC) and overestima-
tion of SA compared to the in situ or satellite observations.
Therefore, we have developed a coupled system of the micro-
genetic algorithm (micro-GA) and the Noah LSM to reduce
the uncertainties in parameterized snow processes through
optimization of parameter values. This parameter estimation
is an effort to further improve the model performance by re-
ducing uncertainty in pre-existing parameterization schemes
by optimizing the parameter values inside the schemes based
on the observational data that reflect local characteristics
to improve snow simulation. If the employed parameteriza-
tion scheme has less uncertainty, improvement by parame-
ter estimation in that scheme may not be significant; if the
scheme has large uncertainty in parameter values, parameter
estimation may bring about prominent improvement in the
scheme’s performance.

Geosci. Model Dev., 15, 8541-8559, 2022

The coupling system of the micro-GA and Noah LSM au-
tomatically estimates the optimal snow-related parameters
by objectively comparing observations and model solutions
through the fitness function. Instead of trial-and-error proce-
dures, it has the advantage of reducing a substantial amount
of computational time. The original micro-GA reduces the
computational time using the elitism and re-initialization
methods in the small number of individuals. However, we
have developed a parallel system on the coupled system to
further improve the computational efficiency in this studys; it
enables us to simultaneously execute multiple individuals in
one generation and multiple Noah LSM runs in one individ-
ual.

Six parameters included in the snow processes in the Noah
LSM have been optimized by using a micro-GA during the
period 2009-2018 in South Korea (SK). The first parame-
ter is the distribution shape parameter that participates in the
FSC calculation and shows a positive correlation with the
FSC: the optimized value is expected to increase the FSC, but
it is not sufficient to alleviate its underestimation problems.
The second parameter is the snow water equivalent threshold
value that implies 100 % snow cover and is also used in the
FSC calculation depending on the land cover type: its opti-
mized value improves the FSC in terms of RMSE and mean
bias over some stations. The third parameter is the max-
imum SA coefficient: its optimized (decreased) value im-
proves the RMSE by reducing the overestimation of SA. The
fourth parameter is the coefficient in the maximum albedo of
fresh snow, and its optimized value was similar to the default
one. The other two parameters are related to the fresh snow
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Figure 8. Time series of the difference between CNTL and VRF_6 for the UL in DBF from May 2009 to April 2018: (a) SD (cm), (b) soil
temperature in the top soil layer (7 cm) (ST; K), (c) sensible heat flux (SH; W mfz), and (d) soil moisture in the top soil layer (7 cm) (SM;

m3 m_3).

density used for the SD calculation. In particular, the sixth
parameter depends on air temperature, and its optimization
brings about the largest improvement in SD: the optimized
(reduced) value remarkably reduces the RMSE, which ame-
liorates the underestimation problem of SD. This significant
improvement in SD is due to the high spatial and temporal
resolutions of observations.

The best combinations of snow parameters optimized for
SK can be used to improve the snowfall prediction. Our re-
sults showed improvement in all snow variables in terms of
RMSE by 3.3 %, 6.2 %, and 17.0 % for FSC, SA, and SD,
respectively. Furthermore, SD increased after optimization,
which led to increases in both soil temperature and sensible
heat flux via an insulating response; soil moisture also in-
creased due to increased SD in previous years. This implies
that the optimized snow parameters not only let the model so-
lutions close to the observations, but also act in a physically
consistent manner. Satellite observations proved to be effec-
tive in the optimization; however, their coarse resolution as
well as insufficient number of stations used for optimization
often restrict improvement in the snow variables, as shown in
some discouraging statistics including the mean bias and the
coefficient of determination (R2).

Based on the encouraging optimization results in the of-
fline Noah LSM, we plan to optimize the Noah LSM in a cou-
pled land—atmosphere prediction system. The online Noah
LSM can produce a spatial distribution of model variables
over the land surface, which allows a two-dimensional as-
sessment of model performance and a three-dimensional ex-
tension through various interactions between the land surface
and the atmosphere. We anticipate that the optimized snow
parameters can lead to positive effects on the atmospheric
variables through the changes in heat fluxes as well as snow
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variables in the Noah LSM. As a result, we can identify how
optimal parameters are appreciated in SK in terms of both
horizontal and vertical distributions. Furthermore, the micro-
GA-Noah LSM coupled system can be utilized to optimize
other parameters in the Noah LSM, including the ones that
indirectly affect the snow processes.

Code availability. The current version of the Noah LSM pro-
vided by National Center for Atmospheric Research (NCAR) is
available from the website: https://ral.ucar.edu/solutions/products/
unified-wrf-noah-Ism (last access: 24 October 2022) (National
Center for Atmosphere Research, 2022). The current version of
the GA developed by David L. Carroll is available from the web-
site: https://cuaerospace.com/products-services/genetic-algorithm/
ga-drive-free-download (last access: 24 October 2022) (Carroll,
2022). The exact versions of the Noah LSM and GA used in this
study are archived at https://doi.org/10.5281/zenodo.6873384 (Lim
et al., 2021). They also contain the forcing data and output files of
the Noah LSM and micro-GA-Noah LSM coupled system and the
scripts to plot the same figures as in this paper.

Data availability. The 1-hourly forcing data (i.e., ASOS) for the
Noah LSM are obtained from the Open MET Data Portal, which
is available at https://data.kma.go.kr/data/grnd/selectAsosRItmList.
do?pgmNo=36 (last access: 24 October 2022) (Korea Meteorolog-
ical Administration, 2022), and ERAS5-Land is provided by the
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS), which is available at https://doi.org/10.24381/cds.e2161bac
(Muiioz-Sabater, 2019). The snow depth is also obtained from
the Open MET Data Portal. The daily fractional snow cover and
snow albedo from the MODIS/Terra Snow Cover Daily L3 Global
500 m SIN Grid, version 61, are available at https://doi.org/10.5067/
MODIS/MODI10A1.061 (Hall and Riggs, 2021).
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