Articles | Volume 15, issue 22
https://doi.org/10.5194/gmd-15-8439-2022
https://doi.org/10.5194/gmd-15-8439-2022
Model description paper
 | 
21 Nov 2022
Model description paper |  | 21 Nov 2022

Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement

Haochen Sun, Jimmy C. H. Fung, Yiang Chen, Zhenning Li, Dehao Yuan, Wanying Chen, and Xingcheng Lu

Related authors

Coupling the TKE-ACM2 Planetary Boundary Layer Scheme with the Building Effect Parameterization Model
Wanliang Zhang, Chao Ren, Edward Yan Yung Ng, Michael Mau Fung Wong, and Jimmy Chi Hung Fung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-205,https://doi.org/10.5194/gmd-2024-205, 2024
Preprint under review for GMD
Short summary
Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model
Naveed Ahmad, Changqing Lin, Alexis K. H. Lau, Jhoon Kim, Tianshu Zhang, Fangqun Yu, Chengcai Li, Ying Li, Jimmy C. H. Fung, and Xiang Qian Lao
Atmos. Chem. Phys., 24, 9645–9665, https://doi.org/10.5194/acp-24-9645-2024,https://doi.org/10.5194/acp-24-9645-2024, 2024
Short summary
Spatiotemporal source apportionment of ozone pollution over the Greater Bay Area
Yiang Chen, Xingcheng Lu, and Jimmy C. H. Fung
Atmos. Chem. Phys., 24, 8847–8864, https://doi.org/10.5194/acp-24-8847-2024,https://doi.org/10.5194/acp-24-8847-2024, 2024
Short summary
Development of a new emission reallocation method for industrial sources in China
Yun Fat Lam, Chi Chiu Cheung, Xuguo Zhang, Joshua S. Fu, and Jimmy Chi Hung Fung
Atmos. Chem. Phys., 21, 12895–12908, https://doi.org/10.5194/acp-21-12895-2021,https://doi.org/10.5194/acp-21-12895-2021, 2021
Short summary
Investigating the role of dust in ice nucleation within clouds and further effects on the regional weather system over East Asia – Part 2: modification of the weather system
Lin Su and Jimmy C. H. Fung
Atmos. Chem. Phys., 18, 11529–11545, https://doi.org/10.5194/acp-18-11529-2018,https://doi.org/10.5194/acp-18-11529-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Ayturan, Y. A., Ayturan, Z. C., and Altun, H. O.: Air pollution modelling with deep learning: a review, International Journal of Environmental Pollution and Environmental Modelling, 1, 58–62, 2018. 
Bi, J., Knowland, K. E., Keller, C. A., and Liu, Y.: Combining Machine Learning and Numerical Simulation for High-Resolution PM2.5 Concentration Forecast, Environ. Sci. Technol., 56, 1544–1556, 2022. 
Bui, T.-C., Le, V.-D., and Cha, S.-K.: A deep learning approach for forecasting air pollution in South Korea using LSTM, arXiv [preprint], https://doi.org/10.48550/arXiv.1804.07891, 2018. 
Fan, C., Li, Y., Guang, J., Li, Z., Elnashar, A., Allam, M., and de Leeuw, G.: The impact of the control measures during the COVID-19 outbreak on air pollution in China, Remote Sensing, 12, 1613, https://doi.org/10.3390/rs12101613, 2020. 
Gilliam, R. C., Hogrefe, C., Godowitch, J. M., Napelenok, S., Mathur, R., and Rao, S. T.: Impact of inherent meteorology uncertainty on air quality model predictions, J. Geophys. Res.-Atmos., 120, 12259–12280, 2015. 
Download
Short summary
This study developed a novel deep-learning layer, the broadcasting layer, to build an end-to-end LSTM-based deep-learning model for regional air pollution forecast. By combining the ground observation, WRF-CMAQ simulation, and the broadcasting LSTM deep-learning model, forecast accuracy has been significantly improved when compared to other methods. The broadcasting layer and its variants can also be applied in other research areas to supersede the traditional numerical interpolation methods.
Share