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Abstract. Deep-learning frameworks can effectively fore-
cast the air pollution data for individual stations by decod-
ing time series data. However, most of the existing time-
series-based deep-learning models use offline spatial interpo-
lation strategies and thus cannot reliably project the station-
based forecast to the spatial region of interest. In this study,
the station-based long short-term memory (LSTM) technique
was extended for spatial air quality forecasting by com-
bining a novel deep-learning layer, termed the broadcasting
layer, which incorporates a learnable weight decay parame-
ter designed for point-to-area extension. Unlike most exist-
ing deep-learning-based methods that isolate the interpola-
tion from the model training process, the proposed end-to-
end LSTM broadcasting framework can consider the tempo-
ral characteristics of the time series and spatial relationships
among different stations. To validate the proposed deep-
learning framework, PM2.5 and O3 forecasts for the next 48 h
were obtained using 3D chemical transport model simulation
results and ground observation data as the inputs. The root
mean square error associated with the proposed framework
was 40 % and 20 % lower than those of the Weather Research
and Forecasting–Community Multiscale Air Quality model
and an offline combination of the deep-learning and spatial
interpolation methods, respectively. The novel LSTM broad-

casting framework can be extended for air pollution forecast-
ing in other regions of interest.

1 Introduction

Aggravated by industrialization and economic development,
air pollution has received increasing attention in recent years.
Fine suspended particulate matter (PM2.5) and ozone (O3),
as prominent secondary air pollutants, can adversely influ-
ence human health and society (e.g., poor visibility may lead
to traffic delays). Accurately forecasting the levels of these
two pollutants at the regional scale can provide the infor-
mation necessary for relevant parties and the general pub-
lic to address the threats posed by air pollution and imple-
ment appropriate counteractive measures (e.g., emission re-
duction or curtailment of unnecessary outdoor activities). To
this end, several forecasting models have been developed.
Three-dimensional (3D) numerical models have been ap-
plied worldwide to obtain regional forecasts of air pollution
levels. Based on historical emission inventories and physi-
cal or chemical parameterization schemes, these numerical
models simulate the formation, transmission, and destruction
of air pollutants and forecast the regional air quality over
a long prediction horizon (e.g., 120 h). However, the fore-
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casts provided by such numerical models are prone to sig-
nificant errors, owing to the uncertainty and hysteresis of the
emission inventories and bias in the simplified parameteriza-
tion schemes and meteorological simulations (Gilliam et al.,
2015; Holnicki and Nahorski, 2015; Tang et al., 2009).

In recent years, machine learning algorithms have been
widely applied to predict air quality (Janarthanan et al., 2021;
Mao et al., 2021; Samal et al., 2021; Wu and Lin, 2019; Kim
et al., 2019). As the future air quality is correlated with his-
torical values, ground observations can be input to machine
learning models to obtain forecasts. The forecasting process
can be formulated as a time series task, with the input and
training targets being hourly ground observations. Most stud-
ies (Ayturan et al., 2018; Huang and Kuo, 2018; Tsai et al.,
2018; Zhao et al., 2019) have applied long short-term mem-
ory (LSTM; Hochreiter and Schmidhuber, 1997) frameworks
– a variant of recurrent neural networks (RNNs) and a state-
of-the-art deep-learning technique – to accomplish the time
series tasks. Different LSTM frameworks (or other variants
of RNNs) can be applied for different time series tasks. For
example, if the output temporally postdates the input, then
LSTM encoder–decoders (Sutskever et al., 2014) can be ap-
plied. In contrast, if the output and input are in the same
temporal domain, then bidirectional LSTMs (Schuster and
Paliwal, 1997) can be used. However, because the air quality
depends on many factors other than historical values, the cor-
relation between the future air pollution conditions and past
ground observations is weak, especially in the case of large
time lags, and the effective prediction horizon is constrained,
typically to no more than 24 h (Bui et al., 2018; Li et al.,
2020; Qin et al., 2019). Moreover, most of the abovemen-
tioned studies focused on obtaining accurate forecasts for
specific ground monitoring stations, and thus, deep-learning
models that can forecast the air quality on a regional scale
are lacking.

Several studies have attempted to develop deep-learning-
based models to obtain regional air pollution forecasts by
combining ground observation data and numerical model re-
sults through spatial interpolation methods. For example, the
LSTM 3D-variational assimilation (3D-VAR) model (X. Lu
et al., 2021) combines ground observations and 3D numerical
models with the LSTM and 3D-VAR data assimilation tech-
niques. This model can achieve accurate regional forecasts
with a prediction horizon of 24 h; however, substantial com-
putation power is required (1 h of computing time is required
to obtain a 24 h forecast using two AMD EPYC 32 core
processors). The LSTM Weather Research and Forecasting–
Community Multiscale Air Quality (WRF-CMAQ) model
(Sun et al., 2021) combines ground observations and WRF-
CMAQ models to achieve highly accurate regional forecasts
with a prediction horizon of 48 h. However, the system re-
quires a customized spatial correction (SC) scheme (e.g., nu-
merical interpolation methods), and the accuracy at general
locations is lower than that at the ground monitoring sta-
tions, the data of which are used for deep-learning model

training. Sayeed et al. (2021a, b) and H. Lu et al. (2021) im-
proved the accuracy of CMAQ forecast by ground observa-
tions using deep-learning techniques, but the improvements
were still limited to the ground monitor stations rather than
the whole region. On the other hand, Lyu et al. (2019) devel-
oped an ensemble model that combines the chemical trans-
port models and the ground observations, but the regional
forecast still depends on the traditional kriging method. Sim-
ilarly, Bi et al. (2022) used the random forest algorithm to
calibrate the numerical simulation based on chemical trans-
port models. However, this model also relies on interpolation
methods (e.g., ordinary kriging). Moreover, the parameters
needed for the spatial interpolation schemes are not included
in the training process when constructing the deep-learning
framework, and the spatial correlations between different sta-
tions cannot be introduced as a constraint (Zhou et al., 2020;
Hähnel et al., 2020).

With advances in deep-learning techniques, sophisticated
architectures have been developed to incorporate spatiotem-
poral correlations for regional air pollution forecasting. Pak
et al. (2020) developed a spatiotemporal convolutional neu-
ral network (CNN) LSTM network to predict the next day’s
daily average PM2.5 concentration in Beijing, China. Qi et
al. (2019) applied a graph neural network (GNN) to take
into account the spatial correlations of multiple ground mon-
itoring stations in the Jing-Jin-Ji region, China, and enhance
the forecast accuracy at these stations. Han et al. (2021)
proposed a MasterGNN structure to explore the spatiotem-
poral information and forecast the air quality and weather
at a given set of ground monitoring stations. However, the
forecasts obtained by these architectures are restricted to a
city-wide average or fixed set of ground monitoring stations.
Therefore, these models cannot be applied for regional fore-
casting and predicting the pollutant concentrations at specific
locations.

In this study, to obtain accurate forecasts for a longer pe-
riod and consider the spatial characteristics, an end-to-end
deep-learning model that can forecast the regional air pollu-
tion values for the next 48 h (starting at 09:00 LT (local time
hereinafter, unless otherwise indicated) on each day) was
developed. A novel broadcasting layer was incorporated in
the model to introduce a spatial interpolation parameter into
the deep-learning model training, and various LSTM-based
deep-learning structures were used to support the end-to-end
computation.

The proposed model, which combines ground observation
data and WRF-CMAQ numerical models as the inputs, can
forecast the air quality for any location within a region. In
tests pertaining to China’s Guangdong–Hong Kong–Macau
Greater Bay Area (GBA) and the surrounding regions, the
proposed model outperformed the CMAQ model and an of-
fline combination of the LSTM and SC methods in terms of
the forecasting accuracy.
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2 Method

2.1 Data

Ground observation data and WRF-CMAQ results from 2015
to 2021 in the GBA and surrounding regions (21.6–24.5◦ N,
111.2–115.6◦ E; referred to as the target region hereinafter),
with a spatial resolution of 3 km, were extracted. Details
of the model domain coverage and configuration of the pa-
rameterization schemes can be found in the work of Lu et
al. (2015, 2018). The proposed model was built using the
data from 2015 to 2020 (training period) and tested using the
data from 2021 (testing period) to ensure temporal general-
izability.

The ground observation data of air pollutant concentra-
tions from several ground monitoring stations distributed
across the region were used to partially represent the spa-
tial distribution of the pollutants. In the training period, the
ground monitoring stations with at least 90 % valid records
(2015 to 2020) for both the target species, PM2.5 and O3,
were selected as the training target stations. The same crite-
rion was applied to select the testing target stations (2021)
from the testing period. The ground monitoring stations with
at least 95 % valid records for both the target species in both
periods were selected as the source stations (denoted S), and
the corresponding data were used as the ground truth for
model training. Given these criteria, each source station was
automatically a target station in both periods. As shown in
Fig. 1, the criteria yielded 32 source stations, 90 training
target stations, and 61 testing target stations. A total of 21
testing target stations that were neither source stations nor
training target stations were used as the primary benchmark
for quantitatively evaluating the results (referred to as bench-
mark stations hereinafter; see Sect. 3). As the model did not
encounter the data of these stations during training, satisfac-
tory performances for these stations were expected to be in-
dicative of spatial and temporal generalizability.

Note that the threshold values of the selection criterion are
determined adaptively from the nature of the dataset. The val-
ues were set relatively high, such that the quality of the data
could be guaranteed. However, to ensure that an adequate
number of stations are selected to represent different areas
of the target region, the threshold values could not be set too
close to 100 %.

The WRF and CMAQ models can output the future
weather situations and air pollutant concentrations, which
represent valuable information for the deep-learning model.
Therefore, the hourly WRF and CMAQ results for the fore-
cast period at the locations of interest were input to the
model. In other words, the WRF and CMAQ results for the
training target stations were used for the model training, and
those for the testing target stations were used for the model
testing. The WRF and CMAQ features are given in List 1 in
the Supplement.

Figure 1. Locations of the source and target stations (including the
benchmark stations).

For each day, d, the proposed model took the following
inputs:

1. The hourly ground observation data at the source sta-
tions from 09:00 on day d − 3 to 08:00 on day d (both
ends inclusive; 72 time steps).

2. The hourly WRF-CMAQ data at the locations of in-
terest from 09:00 on day d to 08:00 on day d + 2 (48
time steps). Note that the WRF-CMAQ model can also
work as a forecasting model, and therefore, these data
are available and can be used before the beginning of
the forecast.

The model then outputs the hourly forecast of PM2.5 and O3
concentrations at the locations of interest from 09:00 on day
d to 08:00 on day d + 2 (48 time steps).

2.2 LSTM encoder–decoders

The ground observation data at the source stations were
processed using LSTM encoder–decoders, with one LSTM
encoder–decoder associated with each source station. The
LSTM encoder–decoder fs :Xs→H of a source station s is
assumed to map the source-station-specific space Xs of the
past 72 h ground observation data (which may contain a dif-
ferent number of features for different source stations) to a
homogeneous space H , which represents the information re-
lated to the PM2.5 and O3 concentrations for the future 48 h
of any location in the target region as derived from the past
ground observations.

Figure 2 shows the structure of the LSTM encoder–
decoders used in this study. The LSTM encoder–decoder
contains an encoder LSTM, a decoder LSTM, and a dense
layer. First, the ground observation data for the past air pol-
lutant concentrations and meteorological factors (denoted{
x(t)

}Tin
t=1, where Tin = 72 h is the length of the past obser-
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Table 1. Overall performance values for the PM2.5 forecast. Note: mean bias error (MBE), mean absolute value (MAE), root mean square
error (RMSE), symmetric mean absolute percentage error (SMAPE), and Pearson correlation coefficient (R) are shown. NN is for neural
network, and IDW is for inverse distance weighting.

Time lags Model MBE (µg m−3) MAE (µg m−3) RMSE (µg m−3) SMAPE (%) R

0–23 h CMAQ 0.37 13 22 59 0.56
SC (NN) 0.29 12 19 63 0.50
SC (IDW) 0.30 11 18 54 0.51
SC (kriging) 0.20 10 17 56 0.50
Broadcasting 0.026 6.5 9.2 41 0.74

24–47 h CMAQ 0.40 13 22 60 0.55
SC (NN) 0.35 13 20 65 0.47
SC (IDW) 0.37 12 19 57 0.49
SC (kriging) 0.27 11 17 59 0.48
Broadcasting 0.097 7.2 9.8 45 0.70

The boldface values represent the highest performance for each period and metric.

vations) are input to the encoder LSTM to generate the en-
coding vector of the input time series, h. Subsequently, h

is passed to the decoder LSTM with Tout time steps, where
Tout = 48 h is the length of the prediction. The hidden states

of each time step
{
h(t)

}Tout

t=1
are subsequently passed to a

dense layer, activated by the rectified linear unit function
(ReLU), where ReLU(z)=max(0, z), and applied to the
output of the dense layer in an element-wise manner.

In this study, the LSTM encoder–decoder associated with
each source station, regardless of the number of ground ob-
servation features, had an encoding dimension of 64. The
output dimension of the dense layer was set as 64 (for each
time step). The mathematical and technical details of encoder
LSTM and decoder LSTM can be found in Sects. S1 and S2
in the Supplement.

2.3 Bidirectional LSTM

Because several inputs and intermediate outputs (e.g., the
WRF-CMAQ input at the locations of interest and outputs
of the LSTM encoder–decoders) were in the same temporal
space as that of the final output, bidirectional LSTMs were
applied to extract the information embedded in these time
series. A bidirectional LSTM contains two ordinary LSTM
structures. When a time series

{
x(t)

}T
t=1 is input to a bidirec-

tional LSTM, then it is passed to the two LSTM layers in the
ordinary and reversed temporal orders, and the two hidden
states of each time step are concatenated as the output of the
bidirectional LSTM. More details regarding the bidirectional
LSTM (as a variant of bidirectional RNNs) can be found in
the work of Schuster and Paliwal (1997).

2.4 Broadcasting layer

The spatial correction (SC) method, which is based on nu-
merical interpolation, has been introduced into the process

of forecasting regional air quality to address the asymmetry
between the availability of information at a limited number
of locations and the need to predict the air quality for a com-
plete region. For example, Sun et al. (2021) used the inverse
distance weight to calibrate the difference between the deep-
learning forecast and CMAQ forecast. Ma et al. (2019) pro-
posed a geolayer to filter the data used for interpolation and
combined this layer with LSTM-based models. However, in
such offline combinations, the hidden connection among dif-
ferent stations cannot be included in the deep-learning model
building procedure. In addition, offline numerical interpola-
tion methods do not have degrees of freedom. Several meth-
ods of this type are not differentiable (e.g., nearest interpola-
tion) or may incur numerical problems (e.g., inverse distance
interpolation). Therefore, in order to better reveal the spatial
characteristics of the air pollutant concentration field, we in-
troduced a novel broadcasting layer to enable the end-to-end
deep-learning model for a regional air quality forecast.

In this framework, each ground observation station s ∈ S
is associated with a learnable weight decay parameter θs ≥

0 (which can be trained while building the deep-learning
model). At any target location t , when the input {Ys}s∈S is
received from the source stations, the output of the layer at
location t is computed as a weighted sum as follows:

Yt
′
=

∑
s∈S
ws,tYs, (1)

with the weights calculated as

ws,t =
exp(−θsd (s, t))∑

s′∈S exp(−θs′d (s′, t))
, (2)

where d(·, ·) denotes the distance between two locations,
measured in kilometers. The computation of the weights
is similar to that implemented in the conventional softmax
function. Therefore, the weights sum to 1 for each location
t , and the numerical problems that may occur during the dif-
ferentiation of other forms (e.g., the inverse of the distance)
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Figure 2. LSTM encoder–decoder.

Table 2. Overall performance values for the O3 forecast. Note: ppbv is parts per billion by volume.

Time lags Model MBE (ppbv) MAE (ppbv) RMSE (ppbv) SMAPE (%) R

0–23 h CMAQ 0.33 16 21 60 0.61
SC (NN) −0.065 12 17 58 0.66
SC (IDW) −0.050 12 16 54 0.68
SC (kriging) −0.051 11 16 54 0.70
Broadcasting −0.018 11 14 46 0.74

24–47 h CMAQ 0.33 16 21 61 0.60
SC (NN) −0.069 13 17 59 0.64
SC (IDW) −0.047 12 16 55 0.66
SC (kriging) −0.052 12 16 55 0.68
Broadcasting 0.017 11 15 48 0.71

The boldface values represent the highest performance for each period and metric.

are avoided. Because the weighted sum preserves the dimen-
sions, the output of the broadcasting layer (at a target location
t) is a time series of 48 time steps and 64 dimensions.

2.5 Model structure and training

Figure 3 shows the architecture of the proposed model.
First, the ground observations of the source stations are
passed through the LSTM encoder–decoders, as described in
Sect. 2.2. Broadcasting to any location in the target region
that requires using the novel layer is introduced in Sect. 2.4
(such a location is referred to as a target location). Then, the
WRF-CMAQ result for the target location and target hours
(as a time series with a length of 48 and dimension of 10)
is passed through two bidirectional LSTM layers, both of
which have an output dimension of 64. Next, the outputs of
the broadcasting layers and bidirectional LSTM layers are
concatenated at each time step, forming a time series with 48
time steps and 128 dimensions. Finally, the combined time
series is passed to another bidirectional LSTM layer with an
output dimension of 64 and a time-distributed dense layer
(i.e., a dense layer associated with each of the 48 time steps)
with an output dimension of 2, corresponding to the 48 h
forecasts of the two air pollutant species.

In this study, the model was trained for 32 epochs using
the ADAM optimizer (Kingma and Ba, 2014) by minimizing
the mean absolute error (MAE) of the prediction for all valid
records, with a learning rate of 10−3 and batch size of 64. The
following measures were introduced to prevent overfitting:

1. A dropout layer (Srivastava et al., 2014) with a rate of
0.5 was applied before the dense layer in each LSTM
encoder–decoder and before the final time-distributed
dense layer.

2. A batch-normalization layer (Ioffe and Szegedy, 2015)
was applied after each bidirectional LSTM layer (in-
cluding the layers enclosed in the broadcasting layer).
The WRF-CMAQ results and ground observations of
the PM2.5 and O3 concentrations of the multiple train-
ing target stations were simultaneously fed to the model
during each minibatch to attain a larger batch size for
the batch normalization layers to take effect.

This model is referred to as the broadcasting model here-
inafter.

3 Results

The effectiveness of the broadcasting model was evaluated
by comparing its results with the following two baselines:

1. The CMAQ model simulation.

2. The SC method introduced by Sun et al. (2021). Dif-
ferent interpolation methods (nearest neighbor, NN, in-
verse distance weighting, IDW, and kriging) were used
to enhance the performance of the SC method on the
test set.

The performance was evaluated using five metrics, namely
mean bias error (MBE), mean absolute value (MAE), root
mean square error (RMSE), symmetric mean absolute per-
centage error (SMAPE), and Pearson correlation coefficient
(R). The formulas to determine these metrics are listed in
Table S1 in the Supplement.
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Figure 3. LSTM broadcasting model structure.

3.1 Overview

This subsection describes the performance evaluation of the
broadcasting model against the baselines on the benchmark
stations. Once the WRF-CMAQ forecast was available, the
LSTM broadcasting model required only several seconds
to obtain the forecast for the next 48 h. Notably, the deep-
learning-based structures of the SC were directly optimized
to maximize the performance over the source stations. There-
fore, the performance of SC on the target stations that were
also source stations could not be taken to represent its re-
gional forecast performance.

The broadcasting model outperformed the baselines for all
metrics for both PM2.5 and O3. Tables 1 and 2 summarize the
performance values of the broadcasting model and baselines,
temporally differentiated by two classes of time lag, i.e., 0–
23 and 24–47 h.

In terms of PM2.5, the performance of all models in the
first 24 h was superior to that in the second 24 h. According
to the MBE values, the CMAQ model was highly biased, and
the SC only partially resolved this issue. The broadcasting
model exhibited a significantly decreased bias for both the
24 h periods, and the forecast for the first 24 h was generally
unbiased. Moreover, although the SC method outperformed
the CMAQ model in terms of the MAE, RMSE, and SMAPE
(especially with NN and IDW interpolations), it exhibited an
inferior R value. In contrast, the broadcasting model exhib-
ited an improved R value, indicating a decreased variance.
Therefore, the overall error for the proposed model was con-
siderably lower than those for the baselines. For example, the

RMSE was 60 % and 50 % lower than those for the CMAQ
and SC models, respectively, and the improvement margins
for the other metrics were significantly broader than those for
the SC.

For O3, similar to the case of PM2.5, all models were more
accurate in forecasting the O3 concentrations in the first 24 h
than in the latter 24 h. However, unlike PM2.5, the SC mod-
els outperformed the CMAQ model in terms of all metrics
for O3 forecasting, including R. The CMAQ was severely
biased for both 24 h periods, although the SC solved the bias
issue more effectively than that in the case of PM2.5. No-
tably, the broadcasting model calibrated the bias such that
the model was generally unbiased for both 24 h periods. In
terms of the other metrics, the SC (especially with NN and
IDW interpolations) exhibited significant improvements over
the CMAQ model (approximately 25 % in terms of the MAE
and RMSE and approximately 10 % in terms of the SMAPE
and R). Nevertheless, the broadcasting model outperformed
the SC, with improvements of nearly 10 % for all the metrics.

Figure 4 shows the hourly RMSE (representing the abso-
lute error) and SMAPE (representing the relative error) of the
forecasts for the two pollutants. Owing to the daily scale vari-
ations in the pollution levels, the RMSE and SMAPE trends
were not always consistent with one another, especially for
O3. In the case of PM2.5, the performance of the baselines
was unsatisfactory at certain time lags (e.g., 11, 22, 35, and
46 h, corresponding to 08:00 and 07:00 on each day). In com-
parison, the broadcasting model achieved satisfactory perfor-
mance values over all time lags. In the case of O3, the SC (es-
pecially with IDW and kriging interpolations) outperformed

Geosci. Model Dev., 15, 8439–8452, 2022 https://doi.org/10.5194/gmd-15-8439-2022
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Table 3. Quartiles of PM2.5 and O3 concentrations. Note: ppbv is parts per billion by volume.

Pollutant Q1 Q2 Q3 Q4

PM2.5 (µg m−3) [0, 9.833) [9.833, 15.68) [15.68, 24.10) [24.10, +∞)
O3 (ppbv) [0, 17.44) [17.44, 25.51) [25.51, 36.89) [36.89, +∞)

the CMAQ model for all metrics. The performance of the
LSTM broadcasting model at each time lag was comparable
to, if not better than, those of the baselines, and for most time
lags, a significant margin of improvement was observed.

Figure 5 compares the forecasts of the broadcasting model
and baselines with the ground observation data in February,
May, August, and November 2021 (rows 1–4, respectively),
considering the daily average over the benchmark stations.
Consistent with the previous analyses, the forecast for the
first 24 h was more accurate than that for the second 24 h. In
the case of PM2.5, the broadcasting model could better cap-
ture the trends of ground observations and was less vulner-
able to systematic bias over long periods than the baselines.
In the case of O3, the SC model considerably outperformed
CMAQ, and the broadcasting model was not evidently more
accurate than SC. Nevertheless, the results of the previous
quantitative analysis demonstrated the excellent capability of
the broadcasting model in O3 forecasting.

3.2 Performance for different pollution levels

As described in Sect. 3.1, the proposed model achieved en-
hanced predictions compared with the baselines. The effec-
tiveness of the broadcasting model was further evaluated
considering different levels of air pollution. The same 21
benchmark stations as those in the analysis described in
Sect. 3.1 were used.

For each target pollutant, the daily averages of the ground
observation values at the different stations were divided into
four quartiles (Q1, Q2, Q3, and Q4, in increasing order), as
indicated in Table 3.

Figures 6 and 7 show the performance values (absolute and
relative errors, indicated by the RMSE and SMAPE, respec-
tively) of the broadcasting model and baselines for the four
quartiles. For both the pollutants and all models, as the pol-
lution levels increased, the absolute error increased, and the
relative error decreased. Similar to the overall performance
trends, different models were generally more accurate in the
first 24 h in each quartile. However, the broadcasting model
achieved significantly improved PM2.5 forecasts for all pol-
lution levels. In particular, the RMSE of the broadcasting
model was around 50 % lower than that of the strongest base-
line (SC with kriging interpolation) and was especially low
at higher levels of pollution. A clear margin of improvement
in the SMAPE was also observed at each quartile.

The improvements in the broadcasting model for the O3
forecasts were not as significant as those for the PM2.5 fore-

casts. In certain cases (e.g., RMSE of the second 24 h for
Q1), the broadcasting model did not outperform the SC (but
still significantly outperformed the CMAQ model). However,
in most cases, the broadcasting model still outperformed the
CMAQ and SC models, even given that SC (especially with
IDW and kriging interpolations) already supersedes CMAQ
by a large margin in many cases.

In conclusion, in addition to the overall improvement in
the forecast performance, as described in Sect. 3.1, the broad-
casting model exhibits a satisfactory performance at different
pollution levels. Therefore, the broadcasting model is robust
against different scenarios and can be applied for high or low
pollution levels.

3.3 Regional forecast

Figure 8 shows the regional forecast of the broadcasting
model and baselines considering the monthly average of
February 2021. The monthly average of the ground observa-
tions at the testing target stations is also shown for compar-
ison. The regional forecasts for May, August, and Novem-
ber 2021 are presented in the Supplement (Figs. S1–S3).

The ground observations (dots) were typically inconsis-
tent with the predictions (background) made by the CMAQ
model. In other words, the CMAQ forecasts were generally
inaccurate and biased (mainly positively) and could not ac-
curately model the regional air pollution. The SC only par-
tially resolved this issue, with occasional incompatibilities
between the ground observations and forecasts. Moreover,
owing to the mathematical characteristics of the different in-
terpolation methods, the spatial distribution modeled using
the SC framework was evidently unrealistic. For example,
the SC forecast with NN interpolation exhibited apparent
spatial discontinuities over several straight-line segments in
the region, which is highly unrealistic.

In comparison, the ground observations and forecasts of
the broadcasting model were consistent, which indicated that
the broadcasting model could resolve the inaccuracies, espe-
cially the bias issue, encountered by the other models. An-
other key observation of the broadcasting model’s predic-
tion is that the spatial distribution simulated by the broad-
casting model was smoother than those of the other mod-
els. However, the model that achieved the most realistic spa-
tial smoothness cannot be identified from the given informa-
tion owing to the lack of data in other regions. In fact, the
smoothing effect may not align with the fact that some cities
(e.g., Guangzhou and Foshan) have higher emission levels
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Figure 4. Forecasting performance at each time lag.

than other locations in the target region. However, this in-
consistency may also be attributable to the limited number
of source stations in these cities (see Fig. 1). Nevertheless,
in Hong Kong, in which the source stations are densely dis-
tributed, the broadcasting model successfully predicted a sig-
nificantly lower pollution level, especially for PM2.5.

Moreover, the running time of the Broadcasting model is
also reasonable. With the graphics processing unit (GPU;
K80 in the Google Colaboratory (CoLab) environment) sup-
port, it only takes several seconds to finish the computation
for the regional forecast of 1 d after the ground observation
results and WRF-CMAQ data are available. Therefore, the
broadcasting model satisfies the efficiency requirements of
real applications (Lee et al., 2020; Zhang et al., 2012). On
the other hand, SC may take several seconds (NN and IDW)
to about 3–5 min (kriging), depending on whether interpo-
lation methods can be fully parallelized. By contrast, the
LSTM 3D-VAR-CAMx (Comprehensive Air Quality Model
with Extensions) will cost about 90 min (tested on a cluster
machine with 40 cores and 128 GB of memory), given the
ground observation and WRF-CAMx results as input, which
may render the approach infeasible when instant forecasts
are needed.

4 Discussion

This paper proposes an end-to-end deep-learning model for
a regional air pollution forecast. The key structure enabling
this feature is the broadcasting layer, which inputs the in-
formation extracted from the past ground observations at the

discrete source stations and projects it to any location in the
target region as a weighted sum over all source stations. This
layer can help overcome the geographical barrier and is a
promising alternative to traditional customized SC methods
that are typically based on inflexible assumptions and result
in exacerbated inaccuracies relative to the data of the ground
monitoring stations. In addition, owing to the small number
of parameters, the proposed model is unlikely to overfit spa-
tially to the ground observation stations. The described struc-
ture can also be extended to regional air pollution forecasting
or other deep-learning tasks for regions for which informa-
tion for only a limited number of locations is available. How-
ever, this study only assumed that the impact of a source sta-
tion decreases exponentially with the increase in the distance.
Future work can be aimed at considering different patterns
and factors other than the distance (e.g., terrains).

Also, our study has extensively exploited the power of
LSTM in time-series-related deep-learning tasks. LSTM is
one of the most powerful deep-learning tools for time series
forecasting (Greff et al., 2017; Karim et al., 2017; Siami-
Namini et al., 2018). As a variation in RNNs, it resolves the
inherent gradient explosion and vanishing problem, signif-
icantly extending the forecast horizon. By carefully exam-
ining the nature of different input and output components,
we proposed combining two variations in LSTM, i.e., LSTM
encoder–decoders and bi-directional LSTMs to construct the
model, and achieved relatively good results. From this, we
find that, in complex time-series-related deep-learning tasks,
careful and ad hoc analysis of the nature of the different in-
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Figure 5. Comparisons of ground observations and forecasts for February, May, August, and November 2021 (rows 1–4, respectively).

put and output time series is needed to construct the most
effective model and achieve higher accuracy.

Moreover, the end-to-end deep-learning forecast does not
incur a significant overhead, given that the ground observa-
tions and WRF-CMAQ results are available. As in Sect. 3.3,
with GPU acceleration, the proposed model can obtain fore-
casts for thousands or even tens of thousands of locations
spread across the target region within several seconds. In
contrast, if the interpolation methods (e.g., kriging) used by

SC cannot be fully parallelized, then the forecasting is asso-
ciated with a prohibitive runtime, which decreases the appli-
cability of such methods.

Instead of the conventional random splitting of the training
and test sets, two disjoint periods were used for training and
testing in this study. This design was motivated by the sys-
tematic long-term changes in the probability distributions of
the pollutant concentrations, which partially arise because of
the implementation of emission reduction (Lu et al., 2020)
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Figure 6. PM2.5 forecast performances at each quartile.

Figure 7. O3 forecast performances at each quartile.

and COVID-19 control measures (Fan et al., 2020), which
must be considered when fine-tuning the model. If random
splitting were applied, then the trained and fine-tuned mod-
els would only be guaranteed to be valid on the data from
2015 to 2021 and may fail beyond this period.

In this study, a fixed set of source stations was considered,
assuming that these stations would continuously output valid
results over the years. However, this design may result in loss
of information. For example, if a ground observation station
produced high-quality records between 2015 and 2018 but
was later demolished, then it was not selected as a source sta-

tion. Moreover, this setting may cause some selected source
stations to be invalidated in the future (e.g., if they are de-
molished in 2023). This problem could only be solved by
considering an alternative setting in which the source stations
are not selected statically but dynamically at each time step
(i.e., hour). However, this alternative setting would require
the efficient management of the varying source stations (and
even the variations in the number of these stations).

In our setting, the source and training target stations play
an essential role in the model’s accuracy. The forecast qual-
ity generally increases as the number of source and training
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Figure 8. Regional forecast results for February 2021.

target stations increases. Therefore, the model’s performance
has been uneven across different areas of the target region.
For example, as shown in Sect. 3.3, the performance in Hong
Kong is generally better than that in other regions. In future
works, other selection criteria of source stations and training
target stations, in place of those introduced in Sect. 2.1, may
be developed to resolve this issue.

WRF-CMAQ simulation shows severe overestimations for
both the PM2.5 and O3 forecasts, especially during 24–47 h.
The errors can be caused by several factors, such as the emis-
sion inventory, boundary and initial conditions, chemical and
physical parameterization schemes, and meteorological fac-
tors simulation. The emission inventory cannot always be
up-to-date, since substantial efforts are needed to compile a
new set of regional emission inventories in high resolution.
In addition, the scientific community has not yet fully un-
derstood many of the chemical and physical mechanisms in
the atmosphere. Therefore, current state-of-the-art parame-
terization schemes still have a long way to go to be further
improved. Besides devoting time and effort to improving the
performance of the prognostic model from the abovemen-
tioned perspectives, from this work, we can find that com-
bining the observation data-driven skills (e.g., deep-learning
methods) can work as a feasible and efficient option to make
up the current deficiency inherent in 3D chemical transport
model and thus improve the forecast performance.

5 Conclusions

Ground observations of recent hours can provide information
regarding the most immediate meteorological and air pollu-
tion conditions. However, this information is typically avail-
able only for ground monitoring stations, and the absence of
information regarding the forecast period limits the accuracy
of forecasts in the spatial and temporal dimensions. In this
study, the parameters of spatial interpolation were incorpo-
rated into the training process by introducing a novel broad-
casting layer. This configuration could overcome the prob-
lems related to the offline SC methods and the spatial bar-
rier, allowing information to be broadcast to all locations in
the target region. Combined with the broadcasting layer, the
end-to-end deep-learning model incorporated the ground ob-
servation and WRF-CMAQ results through different LSTM-
based structures suitable for various formats of time series
data. The proposed model outperformed the existing mod-
els in terms of the PM2.5 and O3 forecasts. For the two
pollutants, the absolute error (e.g., RMSE) of the proposed
model was 55 % and 30 % lower than those of the CMAQ
model and 45 % and 10 % lower than those of the SC model.
SMAPE of the proposed model was 30 % and 20 % lower
than those of the CMAQ and 25 % and 15 % lower than those
of the SC model. The proposed model structure can serve
as a novel framework for regional air pollution forecasting.
Specifically, this model can be applied to forecast the con-
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centrations of PM2.5, O3, and other pollutants in different re-
gions worldwide if adequate ground observations for the re-
gion are available and the numerical models (not necessarily
WRF-CMAQ) can cover the target hours. The broadcasting
layer may also be further applied to a wide range of tasks
that would otherwise require interpolation, thereby facilitat-
ing the development of end-to-end deep-learning models for
these tasks. Considering the diverse nature of different tasks,
ad hoc variations in the broadcasting layer may be designed
to adapt to task-specific requirements.

Code and data availability. The ground air pollutant observa-
tion data were released by the China National Environmen-
tal Monitoring Center and the Hong Kong Environmental Pro-
tection Department. The ground observation data used in this
study can be found at https://doi.org/10.5281/zenodo.6598377
(Sun et al., 2022a). The PM2.5 and O3 forecast results
from different models and the setting of the WRF-CMAQ
model are available at https://doi.org/10.5281/zenodo.6833673
(Sun et al., 2022b). The WRF model v3.7 and CMAQ model
v5.0.2 can be downloaded from https://www2.mmm.ucar.edu/
wrf/users/download/get_source.html (Skamarock et al., 2008)
and https://doi.org/10.5281/zenodo.1079898 (United States Envi-
ronmental Protection Agency, 2014). The official implementa-
tion of this work is at https://doi.org/10.5281/zenodo.7019243
(Sun, 2022), and the deep-learning model parameters and the
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tively.
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