Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-841-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-841-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The importance of turbulent ocean–sea ice nutrient exchanges for simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Philipp Assmy
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Karley Campbell
Department of Arctic and Marine Biology, UiT The Arctic University
of Norway, Tromsø, Norway
Bristol Glaciology Centre, University of Bristol, Bristol, UK
Arild Sundfjord
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Related authors
Hiroshi Sumata, Mats A. Granskog, and Pedro Duarte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3022, https://doi.org/10.5194/egusphere-2025-3022, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
A major shift in Arctic sea ice occurred in 2007, transitioning from thicker, deformed ice to thinner, more uniform ice with reduced surface roughness. This abrupt change likely altered the dynamic and thermodynamic interactions between sea ice and ocean. We present a suite of regional coupled ocean-sea ice simulations designed to assess the potential impact of the regime shift on sea ice-ocean interactions, with a regional focus on the Atlantic sector of the Arctic Ocean.
Letizia Tedesco, Giulia Castellani, Pedro Duarte, Meibing Jin, Sebastien Moreau, Eric Mortenson, Benjamin Tobey Saenz, Nadja Steiner, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-1107, https://doi.org/10.5194/egusphere-2025-1107, 2025
Short summary
Short summary
Sea ice is home to tiny algae that support polar marine life, but understanding how they grow and interact with their environment remains challenging. We compared six computer models that simulate these algae and nutrients in sea ice, testing them against real-world data from Arctic sea ice. Our results show that while models can capture algal growth, they struggle to represent nutrient changes. Improving these models will help in understanding how climate change affects polar marine ecosystems.
Pedro Duarte, Jostein Brændshøi, Dmitry Shcherbin, Pauline Barras, Jon Albretsen, Yvonne Gusdal, Nicholas Szapiro, Andreas Martinsen, Annette Samuelsen, Keguang Wang, and Jens Boldingh Debernard
Geosci. Model Dev., 15, 4373–4392, https://doi.org/10.5194/gmd-15-4373-2022, https://doi.org/10.5194/gmd-15-4373-2022, 2022
Short summary
Short summary
Sea ice models are often implemented for very large domains beyond the regions of sea ice formation, such as the whole Arctic or all of Antarctica. In this study, we implement changes in the Los Alamos Sea Ice Model, allowing it to be implemented for relatively small regions within the Arctic or Antarctica and yet considering the presence and influence of sea ice outside the represented areas. Such regional implementations are important when spatially detailed results are required.
Hiroshi Sumata, Mats A. Granskog, and Pedro Duarte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3022, https://doi.org/10.5194/egusphere-2025-3022, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
A major shift in Arctic sea ice occurred in 2007, transitioning from thicker, deformed ice to thinner, more uniform ice with reduced surface roughness. This abrupt change likely altered the dynamic and thermodynamic interactions between sea ice and ocean. We present a suite of regional coupled ocean-sea ice simulations designed to assess the potential impact of the regime shift on sea ice-ocean interactions, with a regional focus on the Atlantic sector of the Arctic Ocean.
Letizia Tedesco, Giulia Castellani, Pedro Duarte, Meibing Jin, Sebastien Moreau, Eric Mortenson, Benjamin Tobey Saenz, Nadja Steiner, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-1107, https://doi.org/10.5194/egusphere-2025-1107, 2025
Short summary
Short summary
Sea ice is home to tiny algae that support polar marine life, but understanding how they grow and interact with their environment remains challenging. We compared six computer models that simulate these algae and nutrients in sea ice, testing them against real-world data from Arctic sea ice. Our results show that while models can capture algal growth, they struggle to represent nutrient changes. Improving these models will help in understanding how climate change affects polar marine ecosystems.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Øyvind Lundesgaard, Arild Sundfjord, Sigrid Lind, Frank Nilsen, and Angelika H. H. Renner
Ocean Sci., 18, 1389–1418, https://doi.org/10.5194/os-18-1389-2022, https://doi.org/10.5194/os-18-1389-2022, 2022
Short summary
Short summary
In this study, 2-year mooring observations show the evolution of temperature, salinity, and currents in the northern Barents Sea. Inflow of Atlantic Water from the north in autumn and winter was the main driver of the seasonal cycle in the ocean. Winds modulated the inflow on shorter timescales. The upper-ocean state reflected how much sea ice had previously melted in the area. The import of ocean water and sea ice from adjacent regions plays a key role in the complex air–ice–ocean interplay.
Pedro Duarte, Jostein Brændshøi, Dmitry Shcherbin, Pauline Barras, Jon Albretsen, Yvonne Gusdal, Nicholas Szapiro, Andreas Martinsen, Annette Samuelsen, Keguang Wang, and Jens Boldingh Debernard
Geosci. Model Dev., 15, 4373–4392, https://doi.org/10.5194/gmd-15-4373-2022, https://doi.org/10.5194/gmd-15-4373-2022, 2022
Short summary
Short summary
Sea ice models are often implemented for very large domains beyond the regions of sea ice formation, such as the whole Arctic or all of Antarctica. In this study, we implement changes in the Los Alamos Sea Ice Model, allowing it to be implemented for relatively small regions within the Arctic or Antarctica and yet considering the presence and influence of sea ice outside the represented areas. Such regional implementations are important when spatially detailed results are required.
Cited articles
Arrigo, K. R., Kremer, J. N., and Sullivan, C. W.: A Simulated Antarctic
Fast Ice Ecosystem, J. Geophys. Res, 98, 6929–6946, 1993.
Assmy, P., Duarte, P., Dujardin, J., Fernández-Méndez, M., Fransson, A., Hodgson, R., Kauko, H., Kristiansen, S., Mundy, C. J., Olsen, L. M., Peeken, I., Sandbu, M., Wallenschus, J., and Wold, A.: N-ICE2015 water column biogeochemistry, Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2016.3ebb7f64, 2016.
Assmy, P., Dodd, P. A., Duarte, P., Dujardin, J., Elliott, A.,
Fernández-Méndez, M., Fransson, A., Granskog, M. A., Hendry, K.,
Hodgson, R., Kauko, H., Kristiansen, S., Leng, M. J., Meyer, A., Mundy, C.
J., Olsen, L. M., Peeken, I., Sandbu, M., Wallenschus, J., and Wold, A.:
N-ICE2015 sea ice biogeochemistry, Norwegian Polar Institute [data set],
https://doi.org/10.21334/npolar.2017.d3e93b31, 2017.
Brzezinski, M. A.: The Si-C-N Ratio of Marine Diatoms – Interspecific
Variability and the Effect of Some Environmental Variables, J. Phycol., 21,
347–357, 1985.
Campbell, K., Mundy, C. J., Barber, D. G., and Gosselin, M.: Characterizing
the sea ice algae chlorophyll a–snow depth relationship over Arctic spring
melt using transmitted irradiance, J. Mar. Sys., 147, 76–84, https://doi.org/10.1016/j.jmarsys.2014.01.008, 2015.
Campbell, K., Mundy, C. J., Landy, J. C., Delaforge, A., Michel, C., and
Rysgaard, S.: Community dynamics of bottom-ice algae in Dease Strait of the
Canadian Arctic, Prog. Oceanogr., 149, 27–39, https://doi.org/10.1016/j.pocean.2016.10.005, 2016.
Carmack, E.: Circulation and Mixing in Ice-Covered Waters, in: The
Geophysics of Sea Ice. NATO ASI Series (Series B: Physics), edited by:
Untersteiner N. Springer, Boston, MA, 641–712,
https://doi.org/10.1007/978-1-4899-5352-0_11, 1986.
Cota, G. F. and Horne, E. P. W.: Physical Control of Arctic Ice Algal
Production, Mar. Ecol. Prog. Ser., 52, 111–121, https://doi.org/10.3354/meps052111,
1989.
Cota, G. F. and Sullivan, C. W.: Photoadaptation, Growth and Production of
Bottom Ice Algae in the Antarctic, J. Phycol., 26, 399–411, https://doi.org/10.1111/j.0022-3646.1990.00399.x, 1990.
Cota, G. F., Prinsenberg, S. J., Bennett, E. B., Loder, J. W., Lewis, M. R.,
Anning, J. L., Watson, N. H. F., and Harris, L. R.: Nutrient Fluxes during
Extended Blooms of Arctic Ice Algae, J. Geophys. Res.-Oceans, 92, 1951–1962,
https://doi.org/10.1029/Jc092ic02p01951, 1987.
Dalman, L. A., Else, B. G. T., Barber, D., Carmack, E., Williams, W. J.,
Campbell, K. , Duke, P. J., Kirillov, S., and Mundy, C. J.: Enhanced
bottom-ice algal biomass across a tidal strait in the Kitikmeot Sea of the
Canadian Arctic, Elem. Sci. Anth., 7, 1–16, https://doi.org/10.1525/elementa.361, 2019.
Duarte, P.: CICE-Consortium/Icepack: Icepack with bottom drag, heat and
nutrient turbulent diffusion (Version 1.1), Zenodo [code], https://doi.org/10.5281/zenodo.4675021, 2021a.
Duarte, P.: CICE-Consortium/CICE: CICE with bottom drag, heat and nutrient
turbulent diffusion (Version 1.1), Zenodo [code], https://doi.org/10.5281/zenodo.4675097, 2021b.
Duarte, P.: The importance of turbulent ocean-sea ice nutrient exchanges for
simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2
– CICE forcing files (Version v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4672176, 2021c.
Duarte, P.: The importance of turbulent ocean-sea ice nutrient exchanges for
simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2
– model simulations (Version v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4672210, 2021d.
Duarte, P., Meyer, A., Olsen, L. M., Kauko, H. M., Assmy, P., Rosel, A.,
Itkin, P., Hudson, S. R., Granskog, M. A., Gerland, S., Sundfjord, A.,
Steen, H., Hop, H., Cohen, L., Peterson, A. K., Jeffery, N., Elliott, S. M.,
Hunke, E. C., and Turner, A. K.: Sea ice thermohaline dynamics and
biogeochemistry in the Arctic Ocean: Empirical and model results, J.
Geophys. Res.-Biogeo., 122, 1632–1654, https://doi.org/10.1002/2016JG003660,
2017.
Gerland, S., Granskog, M. A., King, J., and Rösel, A.: N-ICE2015 Ice core
physics: temperature, salinity and density, Norwegian Polar
Institute [data set], https://doi.org/10.21334/npolar.2017.c3db82e3, 2017.
Gosselin, M., Legendre, L., Demers, S., and Ingram, R. G.: Responses of
Sea-Ice Microalgae to Climatic and Fortnightly Tidal Energy Inputs
(Manitounuk Sound, Hudson-Bay), Can. J. Fish. Aquat. Sci., 42, 999–1006,
https://doi.org/10.1139/f85-125, 1985.
Graham, R. M., Rinke, A., Cohen, L., Hudson, S. R., Walden, V. P., Granskog,
M. A., Dorn, W., Kayser, M., and Maturilli, M.: A comparison of the two
Arctic atmospheric winter states observed during N-ICE2015 and SHEBA, J.
Geophys. Res.-Atmos., 122, 5716–5737, https://doi.org/10.1002/2016JD025475, 2017.
Graham, R. M., Itkin, P., Meyer, A., Sundfjord, A., Spreen, G., Smedsrud, L.
H., Liston, G. E., Cheng, B., Cohen, L., Divine, D., Fer, I., Fransson, A.,
Gerland, S., Haapala, J., Hudson, S. R., Johansson, A. M., King, J.,
Merkouriadi, I., Peterson, A. K., Provost, C., Randelhoff, A., Rinke, A.,
Rosel, A., Sennechael, N., Walden, V., Duarte, P., Assmy, P., Steen, H., and
Granskog, M. A.: Winter storms accelerate the demise of sea ice in the
Atlantic sector of the Arctic Ocean, Sci. Rep.-UK, 9, 9222, https://doi.org/10.1038/S41598-019-45574-5, 2019.
Granskog, M. A., Fer, I., Rinke, A., and Steen, H.:
Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime:
The Norwegian Young Sea ICE (N-ICE2015) Expedition, J. Geophys. Res.-Oceans,
123, 1586–1594, https://doi.org/10.1002/2017jc013328, 2018.
Hegseth, E. N.: Sub-Ice Algal Assemblages of the Barents Sea – Species
Composition, Chemical-Composition, and Growth-Rates, Polar. Biol., 12,
485–496, 1992.
Hudson, S. R., Cohen, L., and Walden, V.: N-ICE2015 surface meteorology, Norwegian Polar Institute [data
set], https://doi.org/10.21334/npolar.2015.056a61d1, 2015.
Hudson, S. R., Cohen, L., and Walden, V.: N-ICE2015 surface broadband radiation
data, Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2016.a89cb766, 2016.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliot, S.: CICE:
the Los Alamos Sea Ice Model. Documentation and User's Manual Version 5.1,
Los Alamos National Laboratory, USA, LA-CC-06-012, 2015.
Ingram, R. G., Osler, J. C., and Legendre, L.: Influence of Internal
Wave-Induced Vertical Mixing on Ice Algal Production in a Highly Stratified
Sound, Estuar. Coast. Shelf. S., 29, 435–446, https://doi.org/10.1016/0272-7714(89)90078-4, 1989.
Jeffery, N., Hunke, E. C., and Elliott, S. M.: Modeling the transport of
passive tracers in sea ice, J. Geophys. Res.-Oceans, 116, C07020,
https://doi.org/10.1029/2010jc006527, 2011.
Jeffery, N., Elliott, S., Hunke, E. C., Lipscomb, W. H., and Turner, A. K.:
Biogeochemistry of CICE: The Los Alamos Sea Ice Model, Documentation and
User's Manual,Zbgc_colpkg modifications to Version 5, Los
Alamos National Laboratory, Los Alamos, NM, 2016.
Jin, M., Deal, C. J., Wang, J., Shin, K. H., Tanaka, N., Whitledge, T. E.,
Lee, S. H., and Gradinger, R. R.: Controls of the landfast ice–ocean
ecosystem offshore Barrow, Alaska, Ann. Glaciol., 44, 63–72, 2006.
Jin, M., Deal, C., and Jia, W.: A coupled ice-ocean ecosystem model for I-D
and 3-D applications in the Bering and Chukchi Seas, Chinese Journal of
Polar Science, 19, 218–229, 2008.
Krause, J. W., Duarte, C. M., Marquez, I. A., Assmy, P., Fernández-Méndez, M., Wiedmann, I., Wassmann, P., Kristiansen, S., and Agustí, S.: Biogenic silica production and diatom dynamics in the Svalbard region during spring, Biogeosciences, 15, 6503–6517, https://doi.org/10.5194/bg-15-6503-2018, 2018.
Lake, R. A. and Lewis, E. L.: Salt rejection by sea ice during growth,
J. Geophys. Res., 75, 583–597, 1970.
Lannuzel, D., Tedesco, T., van Leeuwe, M., Campbell, K., Flores, H.,
Delille, B., Miller, L., Stefels, J., Assmy, P., Bowman, J., Brown, K.,
Castellani, G., Chierici, M., Crabeck, O., Damm, E., Else, B., Fransson, A.,
Fripiat, F., Geilfus, N. X., Jacques, C., Jones, E., Kaartokallio, H.,
Kotovitch, M., Meiners, K., Moreau, S., Nomura, D., Peeken, I., Rintala, J.
M., Steiner, N., Tison, J. L., Vancoppenolle, M., Van der Linden, F., Vichi,
M., and Wongpan, P.: The future of Arctic sea-ice biogeochemistry and
ice-associated ecosystems, Nat. Clim. Change, 10, 983–992, https://doi.org/10.1038/s41558-020-00940-4, 2020.
Lavoie, D., Denman, K., and Michel, C.: Modeling ice algal growth and
decline in a seasonally ice-covered region of the Arctic (Resolute Passage,
Canadian Archipelago), J. Geophys. Res.-Oceans, 110, C11009, https://doi.org/10.1029/2005jc002922, 2005.
Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin,
M., Juul-Pedersen, T., and Gradinger, R.: Arctic spring awakening – Steering
principles behind the phenology of vernal ice algal blooms, Progr.
Oceanogr., 139, 151–170, https://doi.org/10.1016/j.pocean.2015.07.012, 2015.
Lim, S. M., Moreau, S., Vancoppenolle, M., Deman, F., Roukaerts, A.,
Meiners, K. M., Janssens, J., and Lannuzel, D.: Field Observations and
Physical-Biogeochemical Modeling Suggest Low Silicon Affinity for Antarctic
Fast Ice Diatoms, J. Geophys. Res.-Oceans, 124, 7837–7853,
https://doi.org/10.1029/2018jc014458, 2019.
Mann, K. H. and Lazier, J. R. N.: Dynamics of Marine Ecosystems, Third Edition,
Blackwell Publishing Ltd., Carlton, Victoria 3053, Australia, 503 pp.,
https://doi.org/10.1002/9781118687901, 2005.
McPhee, M.: Air-ice-ocean interaction: Turbulent ocean boundary layer
exchange processes. Springer-Verlag, New York, 216 pp., https://doi.org/10.1007/978-0-387-78335-2, 2008.
McPhee, M. G., Morison, J. H., and Nilsen, F.: Revisiting heat and salt
exchange at the ice-ocean interface: Ocean flux and modeling considerations,
J. Geophys. Res.-Oceans, 113, C06014, https://doi.org/10.1029/2007jc004383, 2008.
Mortenson, E., Hayashida, H., Steiner, N., Monahan, A., Blais, M., Gale, M.
A., Galindo, V., Gosselin, M., Hu, X. M., Lavoie, D., and Mundy, C. J.: A
model-based analysis of physical and biological controls on ice algal and
pelagic primary production in Resolute Passage, Elem. Sci. Anth., 5,
39, https://doi.org/10.1525/Elementa.229, 2017.
Nelson, D. M. and Treguer, P.: Role of Silicon as a Limiting Nutrient to
Antarctic Diatoms – Evidence from Kinetic-Studies in the Ross Sea Ice-Edge
Zone, Mar. Ecol. Prog. Ser., 80, 255–264, https://doi.org/10.3354/meps080255, 1992.
Niedrauer, T. M. and Martin, S.: Experimental-Study of Brine Drainage and
Convection in Young Sea Ice, J. Geophys. Res.-Oceans, 84, 1176–1186, https://doi.org/10.1029/JC084iC03p01176, 1979.
Notz, D. and Worster, M. G.: Desalination processes of sea ice revisited, J.
Geophys. Res.-Oceans, 114, C05006, https://doi.org/10.1029/2008jc004885, 2009.
Olsen, L. M., Laney, S. R., Duarte, P., Kauko, H. M.,
Fernández-Méndez, M., Mundy, C. J., Rösel, A., Meyer, A., Itkin,
P., Cohen, L., Peeken, I., Tatarek, A., Róźańska, M., Wiktor,
J., Taskjelle, T., Pavlov, A. K., Hudson, S. R., Granskog, M. A., Hop, H.,
and Assmy, P.: The seeding of ice-algal blooms in Arctic pack ice: the
multiyear ice seed repository hypothesis, J. Geophys. Res.-Biogeo.,
122, 1529–1548, https://doi.org/10.1002/2016jg003668, 2017.
Olsen, L. M., Duarte, P., Peralta-Ferriz, C., Kauko, H. M., Johansson, M.,
Peeken, I., Różańska-Pluta, M., Tatarek, A., Wiktor, J.,
Fernández-Méndez, M., Wagner, P. M., Pavlov, A. K., Hop, H., and
Assmy, P.: A red tide in the pack ice of the Arctic Ocean, Sci. Rep.-UK, 9, 9536,
https://doi.org/10.1038/s41598-019-45935-0, 2019.
Peterson, A. K., Fer, I., Randelhoff, A., Meyer, A., Håvik, L.,
Smedsrud, L. H., Onarheim, L., Muilwijk, M., Sundfjord, A., and McPhee, M. G.:
N-ICE2015 Ocean turbulent fluxes from under-ice turbulence cluster (TIC), Norwegian Polar Institute
[data set], https://doi.org/10.21334/npolar.2016.ab29f1e2, 2016.
Reeburgh, W. S.: Fluxes Associated with Brine Motion in Growing Sea Ice,
Polar Biol., 3, 29–33, https://doi.org/10.1007/Bf00265564, 1984.
Rinke, A., Maturilli, M., Graham, R. M., Matthes, H., Handorf, D., Cohen,
L., Hudson, S. R., and Moore, J. C.: Extreme cyclone events in the Arctic:
Wintertime variability and trends, Environ. Res. Lett., 12, 094006,
https://doi.org/10.1088/1748-9326/Aa7def, 2017.
Smith, R. E. H., Cavaletto, J. F., Eadie, B. J., and Gardner, W. S.: Growth
and Lipid-Composition of High Arctic Ice Algae during the Spring Bloom at
Resolute, Northwest-Territories, Canada, Mar. Ecol. Prog. Ser., 97, 19–29,
https://doi.org/10.3354/meps097019, 1993.
Takeda, S.: Influence of iron availability on nutrient consumption ratio of
diatoms in oceanic waters, Nature, 393, 774–777, https://doi.org/10.1038/31674, 1998.
Tedesco, L. and Vichi, M.: BFM-SI: a new implementation of the Biogeochemical
Flux Model in sea ice. in: CMCC Research Papers, available at:
http://hdl.handle.net/2122/5956 (last access: 27 January 2022), 2010.
Tedesco, L., Vichi, M., and Scoccimarro, E.: Sea-ice algal phenology in a
warmer Arctic, Sci. Adv., 5, eaav4830, https://doi.org/10.1126/sciadv.aav4830,
2019.
Thomas, M., Vancoppenolle, M., France, J. L., Sturges, W. T., Bakker, D. C.
E., Kaiser, J., and von Glasow, R.: Tracer Measurements in Growing Sea Ice
Support Convective Gravity Drainage Parameterizations, J. Geophys. Res.-Oceans,
125, e2019JC015791, https://doi.org/10.1029/2019JC015791, 2020.
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L.,
Kurtz, N., Laxon, S. W., and Bacon, S.: Impact of Variable Atmospheric and
Oceanic Form Drag on Simulations of Arctic Sea Ice, J. Phys.
Oceanogr., 44, 1329–1353, https://doi.org/10.1175/Jpo-D-13-0215.1, 2014.
Turner, A. K., Hunke, E. C., and Bitz, C. M.: Two modes of sea-ice gravity
drainage: A parameterization for large-scale modeling, J. Geophys.
Res.-Oceans, 118, 2279–2294, https://doi.org/10.1002/jgrc.20171, 2013.
Urrego-Blanco, J. R., Urban, N. M., Hunke, E. C., Turner, A. K., and
Jeffery, N.: Uncertainty quantification and global sensitivity analysis of
the Los Alamos sea ice model, J. Geophys. Res.-Oceans, 121, 2709–2732, https://doi.org/10.1002/2015JC011558, 2016.
Vancoppenolle, M., Bitz, C. M., and Fichefet, T.: Summer landfast sea ice
desalination at Point Barrow, Alaska: Modeling and observations, J. Geophys.
Res.-Oceans, 112, C04022, https://doi.org/10.1029/2006jc003493, 2007.
Vancoppenolle, M., Goosse, H., de Montety, A., Fichefet, T., Tremblay, B.,
and Tison, J. L.: Modeling brine and nutrient dynamics in Antarctic sea ice:
The case of dissolved silica, J. Geophys. Res.-Oceans, 115, C02005, https://doi.org/10.1029/2009jc005369, 2010.
Vancoppenolle, M., Bopp, L., Madec, G., Dunne, J., Ilyina, T., Halloran, P.
R., and Steiner, N.: Future Arctic Ocean primary productivity from CMIP5
simulations: Uncertain outcome, but consistent mechanisms, Global Biogeochem.
Cy., 27, 605–619, https://doi.org/10.1002/gbc.20055, 2013.
van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K.,
Meiners, K. M., Rintala, J. M., Selz, V., Thomas, D. N., and Stefels, J.:
Microalgal community structure and primary production in Arctic and
Antarctic sea ice: A synthesis, Elem. Sci. Anth., 6, 4, https://doi.org/10.1525/elementa.267, 2018.
Wakatsuchi, M. and Ono, N.: Measurements of Salinity and Volume of Brine
Excluded from Growing Sea Ice, J. Geophys. Res.-Oceans, 88, 2943–2951, https://doi.org/10.1029/JC088iC05p02943, 1983.
Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L.,
Perovich, D. K., and Sturm, M.: Interdecadal changes in snow depth on Arctic
sea ice, J. Geophys. Res.-Oceans, 119, 5395–5406,
https://doi.org/10.1002/2014JC009985, 2014.
Wells, A. J., Wettlaufer, J. S., and Orszag, S. A.: Brine fluxes from
growing sea ice, Geophys. Res. Lett., 38, L04501, https://doi.org/10.1029/2010gl046288, 2011.
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are...