Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-6957-2022
https://doi.org/10.5194/gmd-15-6957-2022
Model description paper
 | 
16 Sep 2022
Model description paper |  | 16 Sep 2022

Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest

Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on gmd-2022-87', Anonymous Referee #1, 27 Jun 2022
    • AC1: 'Reply on RC1', Bahar Bahrami, 13 Aug 2022
  • RC2: 'Comment on gmd-2022-87', Anonymous Referee #2, 12 Jul 2022
    • AC2: 'Reply on RC2', Bahar Bahrami, 14 Aug 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Bahar Bahrami on behalf of the Authors (14 Aug 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (16 Aug 2022) by David Lawrence
AR by Bahar Bahrami on behalf of the Authors (17 Aug 2022)
Download
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.