
Dear Editor,

We wish to thank you and the referees for your precious time in reviewing our paper and
providing valuable comments. It was your valuable and insightful comments that led to
possible improvements in the current version. We have carefully considered the comments
and tried our best to address every one of them. Below we provide the point-by-point re-
sponses to referees’ comments. Texts in italic are the referees’ comments (C), those in
black bold style are our responses (AR), and texts marked in red are relevant changes in the
manuscript. The page and line numbers in this letter refer to the marked-up version. We
hope that you will find the changes satisfactory.

Sincerely,

Bahar Bahrami on behalf of the co-authors
bahreh.bahrami@ufz.de
Department of Computational Hydrosystems
UFZ, Leipzig, Germany

Referee # 1
Dear Referee,

Thank you for your time and attentions on this work. The comments and suggestions are
very useful to improve our manuscript. We paid detailed attention to all comments and
have addressed all of them below accordingly.

General comments
Bahrami et al. developed a forest development model requiring few parameters linked with
a phenology submodel predicting gross primary productivity (GPP) and leaf area index
(LAI). They evaluated model performance at a selection of FLUXNET sites and performed
a parameter sensitivity analysis determining the most sensitive parameters and optimal
site-specific values as well as a set of compromise parameter values for larger regions.
The model can be coupled with a hydrologic model, which could improve both water and
carbon flux simulations. The model is well developed and performs reasonably well at
broad-leaved forest sites. The language and description of certain parts of the manuscript,
however, should be improved before publication. Especially the Introduction and parts of
the Results and Discussion are unclear and should be better explained. I would suggest
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rewriting most of the Introduction section to explain the cited literature and its relevance
to the manuscript better. Generally, the model is explained well, but certain parts of the
description can be made clearer (see specific comments below).The manuscript contains a
lot of technical corrections (typos and grammatical mistakes), which should be corrected.

We appreciate the reviewer’s suggestions! We have revised the manuscript based on
all the general and specific comments raised by the reviewer and rewrote most of the
introduction. We have also carefully proofread the manuscript and have made sev-
eral technical corrections, and hope that the revised manuscript will meet with your
requirements.

Specific comments and technical corrections
C 1) l. 5: Add “the” water cycle
AR 1) We added it to the sentence [Pg. 1, l. 5].
“. . . which is of critical significance in and closely linked to the water cycle.”

C 2) l. 38: Use “sequestering” instead of “sequestrating” (also in l. 69, 79).
AR 2) We have modified the sentence as follows [Pg. 3, l. 76], [Pg. 4, l. 95], [Pg. 4, l.
108].
“. . . the extent to which ecosystems are capable of sequestering it, . . . ”
“. . . the rubisco enzyme uses the ATP energy from the light response to sequester the at-
mospheric carbon dioxide . . . ”
“The amount of sequester carbon as biomass . . . ”

C 3) l. 43: In “60% of the global net forest sink” do you mean the “global net carbon
sink”?
AR 3) Thank you for this remark. We meant the temperate broad-leaved forest con-
tribute around 60% of the global net carbon sink among all type of forests. We have
made the sentence clearer now as below [Pg. 2, l. 50].
“Generally, forests are recognized as biomes with high carbon sequestration capacity (Lal
and Lorenz, 2012) where temperate broad-leaved forest contribute to approximately 60%
of the global net carbon sink of forests (Pan et al., 2011; Reinmann and Hutyra, 2017).”

C 4) l. 44: Specify what kind of ecosystems you mean; I haven’t heard it defined as “veg-
etation GPP”, just GPP. You could say ”vegetated ecosystems”. ”Plant photosynthesis”
already implies that it comes from vegetation.
AR 4:) Thank you for the suggestion. We have accordingly revised the sentence [Pg.
3, l. 78].
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“The total carbon uptake from the atmosphere into the vegetated ecosystems by plant pho-
tosynthesis is known as gross primary production (GPP).”

C 5) l. 45: GPP and ecosystem respiration are of similar magnitude and which one is
larger depends on whether the ecosystem is a sink or source of CO2. I would rephrase this.
AR 5) Thanks for this suggestion. We modified the sentence to make it clearer [Pg. 3,
l. 79].
“GPP is the primary driver of the land carbon sink (Spielmann et al., 2019; Zhou et al.,
2021) and the largest flux within the carbon cycle (Schaefer et al., 2012; Foley and Ra-
mankutty, 2003).”

C 6) l. 46: Be more specific what you mean with “has a direct effect on moderating climate
and environment”, especially the effect on the environment.
AR 6) Thanks for the suggestion. We have added sentences to better explain the effect
on climate and environment [Pg. 3, l. 81].
“Accurate estimation of GPP directly influences carbon budget assessments as well as es-
timates of the amount of stored carbon in the plant leaf pool. Accurate carbon budget
assessment, in turn, promotes understanding of the feedbacks between the terrestrial bio-
sphere and the climate system (Zhou et al., 2021; Huang et al., 2022).”

C 7) ll. 46-50: Be more specific about what ”adverse effects of a changing climate” you
mean! The second part of the sentence applies to any climatic conditions not only under a
changing climate. To relate this part of the sentence to the first part about climate change,
discuss its effects on temperature, water availability, radiation, etc. Otherwise, the reason
for mentioning a changing climate here is unclear.
AR 7) Thank you for the comment. We have revised the paragraph following your
valuable suggestion [Pg. 2, l. 42].
“Vulnerability due to climate change can be attributed to different ecosystem stresses (Nathalie
et al., 2006; Cholet et al., 2022) including high temperatures that decrease enzymes activ-
ity and the rate of carbon uptake as well as soil water limitation causing hydraulic failure
or carbon starvation, reducing plant photosynthetic capacity, and early senescence (Imadi
et al., 2016) in temperate forest ecosystems. In addition to these stresses, some environmen-
tal changes such as radiation change associated with increased cloudiness or atmospheric
aerosols can also increase plant productivity, e.g. due to an increased fraction of diffused
radiation (Knohl and Baldocchi, 2008)”.

C 8) l. 50: Favourable climate in what respect? I’m not sure what you want to express here
and how, for example, the winter season is favourable for the vegetation.
AR 8) Thank you for this comment. We had put “favorable” mistakenly instead of
“temperate”. It has been revised as follows [Pg. 3, l. 59].
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“Temperate DBF biomes are characterized by having a temperate climate with four distinct
seasons and a temperature-driven canopy structure.”

C 9) l. 51: “The plant canopy capacity and seasonality are expressed by leaf area index
(LAI)” -¿ Rephrase this! What exactly do you mean with ”plant canopy capacity” and LAI
itself does not express seasonality. Changes in LAI do.
AR 9) Thank you for this comment. Here by plant canopy capacity we meant the
capacity to exchange the fluxes. We have rephrased the sentence accordingly [Pg. 3, l.
61].
“The plant canopy capacity for water and carbon exchange is strongly related to seasonal
variation in leaf development (Seo and Kim, 2021).”

C 10) l. 52: Reference? Maybe make it clearer that with ”total green leaf area” you mean
two-sided, as opposed to one-sided leaf area in broadleaf canopies, or total needle surface
area in conifers.
AR 10) We revised the sentence and added the reference as follows [Pg. 3, l. 62].
“Leaf area index (LAI) is a dimensionless quantity, defined as one-sided area of green leaf
per unit horizontal ground surface area (Nathalie, 2003; Fang et al., 2019).”

C 11) l. 53: Be more specific or add a reference here.
AR 11) We made the sentence more specific and added a reference [Pg. 3, l. 64].
“LAI can be estimated either by direct field measurements, inferred using remote sensing
or be simulated by vegetation carbon cycle models (Fang et al., 2019).”

C 12) ll. 54-55: Rephrase this to make it clearer! Yes, LAI affects transpiration, but GPP
does as well.
AR 12) Thanks for the comments. We have rephrased the sentence to make it clearer
[Pg. 3, l. 67].
“LAI is a key biophysical plant variable, representing vegetation state, affecting not only
the sequestration of carbon from the atmosphere via photosynthesis but also the release of
water to the atmosphere through transpiration (Fang et al., 2019).”

C 13) ll. 56-57: If you mention water balance components affected by LAI, I would include
canopy evaporation as well.
AR 13) Thanks for this comment. Canopy evaporation and interception are added to
the sentence [Pg. 5, l. 129].
“(e.g., plant transpiration and canopy evaporation)”

C 14) l. 68: Unnecessary to have both ”later” and ”in the next step”. Could just say ”in
the dark reactions of the Calvin cycle, ...”.
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AR 14) Thanks. It has been revised accordingly [Pg. 4, l. 95].
“In the dark reactions of the Calvin cycle, the rubisco enzyme uses the ATP energy from
. . . ”

C 15) l. 71: “specifically at scales larger than the leaf level” -¿ Above, you only mention
that GPP is determined at the leaf level in the EK approach. You don’t say how it is up-
scaled to the canopy level or larger scales.
AR 15) Thanks for the comment. We agree with the reviewer. The sentence with the
last part was confusing and it has been removed during revision [Pg. 4, l. 96].
“This approach requires the specification of a relatively large number of parameters for
governing processes.”

C 16) ll. 76-77: Rephrase to make it clearer! It isn’t clear that you mean that APAR is a
product of PAR and fPAR, which is the biome-specific LUE parameter.
AR 16) We have revised the sentence to make it clearer. The APAR is a product of
PAR and fPAR. We revised the sentence as follows [Pg. 4, l. 103].
“In this approach, ecosystem GPP is a function of absorbed photosynthetically active radi-
ation (APAR) and a biome specific LUE parameter (Gamon, 2015; Springer et al., 2017).
APAR is a product of incident photosynthetically active radiation (PAR) and the fraction of
PAR (fPAR) absorbed by plant leaves.”

C 17) l. 78: “The LUE” -¿ Say either ”the LUE parameter” or ”fPAR”. You aren’t talking
about LUE itself here.
AR 17) Thanks for pointing this out. Indeed, this should be mentioned [Pg. 4, l. 106].
“The LUE parameter corresponds to the vegetation conversion efficiency of solar radiation
into biomass and is defined as the amount of carbon produced per unit of absorbed PAR
(Monteith, 1977; Yuan et al., 2014).”

C 18) ll. 81-82: “CFLUX (Turner et al., 2006), EC-LUE (Yuan et al., 2007), MODIS-GPP
(Running et al., 2004), VPM (Xiao et al., 2004), and CASA” -¿ Define what these abbrevi-
ations stand for!
AR 18) We have now added the complete name of the models [Pg. 4, l. 113].
“carbon cycle model (CFLUX). . . , eddy covariance- light use efficiency (EC-LUE) . . . ,
moderate resolution imaging spectroradiometer-gross primary production (MODIS-GPP)
. . . , vegetation photosynthesis model (VPM) . . . , and Carnegie-Ames-Stanford Approach
(CASA). . . ”

C 19) l. 86: Why specifically central Europe? If you mention it, explain why as well!
AR 19) Thanks for the question. Central Europe was mistakenly put here. We have
rephrased the sentence as follows [Pg. 4, l. 117].
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“These two key biophysical variables are generally sensitive to cloud contamination lead-
ing to gaps in their temporal and spatial coverage throughout the year”

C 20) ll. 86-89: Unclear what you mean. Be more specific!
AR 20) Thanks for the comment. We have revised the sentence as follows [Pg. 4, l.
120].
“These gaps are sources of uncertainty in satellite-based fPAR and LAI products which, in
turn, may induce errors in quantifying GPP (Rahman et al., 2022).”

C 21) ll. 89-101: The purpose of this paragraph isn’t really clear, as several different mod-
els are mentioned, but their limitations aren’t clearly explained!

AR 21) Thanks for the comment. We have revised the paragraph to make it clearer.
Here, in general, we wanted to mention previous efforts of models simulating LAI us-
ing GPP. The limitations for TETIS-VEG are that it is only applicable for evergreen
forests, and also that the source code is not freely available. Regarding, the SGPD-TS
model, although it simulates LAI but its limitation is that it uses a linear relationship
between steady-state GPP and LAI. In this way, GPP is used as a proxy of LAI which
utilizes a conversion ratio when maximum GPP has been reached. However, it has
been earlier shown that maximum GPP saturates at LAI values above 4 m2m�2 (Lee
et al., 2019); and this may potentially introduce uncertainty during simulation of LAI
when the LAI of stands exceed values of 4 m2m�2. Many of these models have been
developed and validated at specific sites and their broader applicability across a di-
verse range of climatic conditions has yet been not demonstrated [Pg. 5, l. 131].
”The LUE principle and leaf growth have been successfully implemented in the TETIS-
VEG ecohydrology model (Francés et al., 2007; Pasquato et al., 2015). The TETIS-VEG
model is, however, adapted for evergreen forest biome. In other words, the TETIS-VEG
model lacks representation of a dynamic leaf phenology relevant in the deciduous broad-
leaved forests. Another approach to simulate GPP and LAI is adopted in the simplified
growing production day time-stepping scheme (SGPD-TS) model (Xin et al., 2019). The
SGPD-TS model, however, does not represent leaf growth and allocation to leaf pool, but
establishes a linear relationship between steady-state GPP and LAI. In this way, GPP is
used as a proxy of LAI, utilizing a conversion ratio when maximum GPP has been reached.
However, it has been shown that simulated GPP saturates at high LAI values (e.g., above
4.5 m2m�2 (Lee et al., 2019) and (Pan et al., 2021)). High LAI values are often common
in deciduous broad-leaved forests, thus, relying on maximum GPP to derive LAI might in-
troduce a bias at elevated LAI. Another more general challenging aspect for these models
is the identification of model parameters that are site or location specific. Previous appli-
cations often have been limited to one calibration site (Francés et al., 2007); but they need
to be thoroughly cross-validated for their applicability across a diverse range of climatic
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conditions”

C 22) l. 105: Explain what specifically you mean with “readily available observational
datasets across eddy flux tower stations”
AR 22) Thanks for this comment. We meant the most common available data set
among eddy flux tower stations that are easy to obtain, i.e., can be downloaded. We
made the sentence clearer by specifying the name of variables [Pg. 5, l. 150].
“The parsimonious approach and level of model complexity are designed to make use of
readily available observational dataset for abiotic forcing across eddy flux tower stations
such as air temperature, vapour pressure deficit, soil moisture, photosynthetic photon flux
density.”

C 23) ll. 180: “changes of vapour pressure deficit” should be “changes in vapour pressure
deficit”.
AR 23) Thanks for the comment. We changed the sentence accordingly [Pg. 8, l. 229].
“The canopy photosynthesis rate is strongly related to changes in vapour pressure deficit
. . . ”

C 24) l. 200: It is unclear what you mean with “using the cumulative root fraction up to
each layer”. What is the cumulative root fraction used for, if the root fraction for each
layer is multiplied by the soil moisture content of that layer?
AR 24) Thanks for raising this question. For the calculation of a root-zone weighted
soil moisture, we used information on depth (layer) specific soil moisture and frac-
tion of roots in each soil layer. The latter is estimated using formulations provided
by Jackson et al., 1996 – in which the cumulative root fraction at a specified depth
can be expressed by an asymptotic (power law) equation along with a biome specified
parameter (in our case for DBF is 0.966; see Eq. 11). We then deduce the root frac-
tion for a specific soil layer from this cumulative root fraction estimates (see Eq. 12).
Another point is that the root fractions are normalized to 100%. We have created a
schematic representation here to better explain this averaging part [Pg. 9, l. 249].
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“Then, to estimate the root fraction in each individual layer (Eq. 12), we use the calculated
cumulative root fraction up to each layer subtracted from the corresponding fraction of the
previous layer (see Eq. 11).”

C 25) l. 228: “photosynthetical”, not “photosynthetically”.
AR 25) Thanks, modified to photosynthetical [Pg. 10, l. 279].
“is the sum of photosynthetical carbon uptake by plants (GPP)”

C 26) l. 251: Do you mean “growing season length”?
AR 26) Here we refer to Lg parameter which is a threshold in degree day for the du-
ration of leaf growing length from budburst day up to the day of maximum canopy
leaf cover. This parameter, with the same description, is adapted from Yue and Unger,
2015. We revised the sentence to make it clearer [Pg. 10, l. 302].
“The Lg parameter is a calibrated constraint in degree day, representing the period of leaf
growth from budburst to maximum leaf cover (Yue and Unger, 2015)”

C 27) l. 286: Why have “used” twice in the sentence?
AR 27) Thanks for pointing this typing mistake. We have deleted the second one [Pg.
12, l. 338].
“There are two widely used allocation schemes in vegetation models based on: ... ”

C 28) l. 288: It should be “BIOME-BGC” (also in l. 369).
AR 28) Thanks. We modified the text [Pg. 12, l. 340], [Pg. 15, l. 434].
“... or BIOME-BGC (Hidy et al., 2016).” “. . . (BIOME-BGC; Hidy et al.,2016)”

C 29) Equation 28: It should be 0 for Tc  T(t).
AR 29) Thank you for noticing. It was indeed a typo in the text. We modified the third
part of Eq. 28 as following [Pg. 13, l. 371].
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”0, Tc  T(t)”

C 30) l. 339: Either use “we” or remove the “and” and add a “.”.
AR 30) Thanks for the comment. We removed “and” [Pg. 13, l. 391].
“This study focuses on deciduous broad-leaved forests biome type. We selected tower sites
distributed over Europe and North America to ensure a representative spatial coverage”

C 31) l. 342: Be more specific what you mean with “long missing data at some sites”.
AR 31) Indeed this sentence was not very clear. We meant that in some of the FLUXNET
sites there were continually long periods of missing data such as years of missing data
for PPFD where we excluded those years. For example, in the US-Ha1 site, even
though the dataset in FLUXNET web page are available from 1991 to 2012, there is
a long period of missing data for PPFD from 1991 to 2003. Therefore, our simulation
starts in 2003. We added the following sentences to make it clearer [Pg. 14, l. 394].
“We further screened out the data at each site to the years with minimal gap in input data.
For example, there were some long period of gaps (i.e., years) within the continuously
recorded FLUXNET dataset for photosynthetic photon flux density (PPFD), which we ex-
cluded those years in the simulations (e.g., a continuous period of missing PPFD in the
US-Ha1 dataset from 1991-2003)”

C 32) l. 350-351: Make it clearer whether the soil moisture and soil texture variables are
optional or required for the model.
AR 32) Thanks for this suggestion. The text is now revised. In fact, the soil mois-
ture (SM) and soil texture variables are optional for running the model. We had SM
related information only for the DE-HoH site and therefore the application of soil
moisture module was possible for only this site. In contrast, the model was run with-
out the SM module for the other studied sites. While revising the text, we removed the
word “required”. Based on the change in this sentence we also removed “However”
at the beginning of the next sentence [Pg. 14, l. 408].
“Soil moisture (SM) and soil textural properties need to be provided to the model, if the
model should also consider soil moisture stress. We investigated . . . ”

C 33) l. 359: “obtained” not “collected” via personal communication.
AR 33) Thanks for the suggestion. We changed “collected” to “obtained” [Pg. 14, l.
418].
“The LAI field measurements were obtained via personal communication to site contact
persons: . . . ”

C 34) l. 360: Maybe say ”s subset of 4 sites was selected based on data availability”
instead of “based on the responses a subset of 4 sites are used”.
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AR 34) Thanks for suggestion. We modified the text [Pg. 14, l. 419].
“; and a subset of 4 sites (DE-HoH, DE-Hai, US-MMS, and US-Ha1) was selected based
on data availability”

C 35) l. 364: What do you mean with ”closest methods”? Are these methods both used at
the same site or is one of the methods used at each site?
AR 35) We meant at one of the sites the fisheye method is used and at the others the
LAI-2000 method. According to Ariza-Carricondo et al. (2019), these two methods
agree very well with each other providing nearly similar of LAI across different sites.
We have revised the texts accordingly [Pg. 14, l. 421].
“The observation-based LAI data were obtained using common procedures with either the
LAI-2000 instrument (Gower and Norman, 1991) at the DE-Hai, US-MMS, and US-Ha1
or the fisheye (DHP) technique ((Bonhomme, R. and Chartier, P., 1972; Ariza-Carricondo
et al., 2019)) at the DE-HoH site, respectively. These two methods agree very well accord-
ing to Ariza-Carricondo et al. (2019) and are thus considered to yield comparable values
also across different sites.”

C 36) ll. 368-371: Explain the different water stress functions better instead of just men-
tioning their names.
AR 36) Thanks for the suggestion. We also noticed that we had put the CASA model
in a wrong category. We also added FORMIND in the text where soil moisture stress
is considered in the model. We revised the text and add to the sentence accordingly to
explain this part better [Pg. 15, l. 429].
“The impact of water availability on the canopy photosynthesis (i.e., soil water deficit and
atmospheric water deficit), in vegetation models is structured in two ways: individually or
in combination with each other. Recently, plant hydraulic theory has also been introduced
to reflrct the vegetation water stress in Community Land Model (CLM5), which is beyond
the scope of this study (Kennedy et al., 2019). In some models, water stress is quantified as
an overall stress from both atmosphere and soil ((GLO-PEM; Prince and Goward, 1995),
(BIOME-BGC; Hidy et al., 2022)). For instance, in the GLO-PEM model the water stress
condition is reflected by an estimated and potential evapotranspiration, a relative drying
rate scalar for potential water extraction, and a volumetric soil moisture content (more de-
tails together with equations can be found in (Zhang et al., 2015)). Some other models
account for the water stress only due to the atmospheric drought ((CASA; Potter et al.,
1993), (MOD17 algorithm; Running et al., 2000)). For example, in the MOD17 algorithm,
only the atmospheric variable VPD and its two parameters, vmin and vmax, are used to cal-
culate water stress factor to predict GPP (Running et al., 2000). In some other models such
as FORMIND (Fischer et al., 2016) and EC-LUE (Yuan et al., 2007) only the soil moisture
deficit is reflected. For instance, in the FORMIND model, the impact of atmospheric water
deficit (VPD impact) is not presented; but the soil moisture deficit is represented by volu-
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metric soil water content and soil parameters (soil field capacity, permanent wilting point,
and minimum soil water content)..”

C 37) l. 375: It should be “in 2018”.
AR 37) Modified [Pg. 15, l. 447].
“... on simulated GPP over the DE-HoH site during the drought in 2018.”

C 38) l. 390: In “the literature”.
AR 38) Modified [Pg. 16, l. 462].
“In this study during the GSA, the parameters vary over boundaries reported in the litera-
ture’s.”

C 39) l. 420: Do you not spin up the model for a longer time period? How can soil C and
other C pools be spun up after one year or do you fully spin up the model with the default
parameter values only?
AR 39) Thanks for the question. Here we focus on temperate forests and only on the
above ground carbon pool confined to the canopy and leaf pool. The leaf pool at the
end of each annual active growing season reaches to zero and the next year start al-
most from a bare canopy and zero carbon in the leaf pool. Therefore, we do not spin
up the model for long period where it is indeed more relevant for compartment such
as soil carbon, which we are not simulating the carbon in soil or other pools.

C 40) l. 466: “in (Eq. 3)” -¿ either remove the brackets or put the ”in” into the brackets
as well.
AR 40) Modified [Pg. 18, l. 542].
“LUE in (Eq. 3).”

C 41) l. 468: Add “the” in front of “Farquhar photosynthesis scheme”.
AR 41) Added [Pg. 18, l. 545].

C 42) l. 469: Add “the” in front of “photosynthesis process”.
AR 42) Added [Pg. 18, l. 546].

C 43) l. 474: Switch order to “also showed”.
AR 43) Added [Pg. 18, l. 550].
The multiplicative coefficient of canopy reflectance, C, and the light extinction coefficient,
k, parameters in the fPAR formulation (Eq. 4) based on Lambert-Beer’s law also showed
substantial sensitivities.

C 44) ll. 474-475: Rephrase! I don’t think you need both ”typically” and ”by default”.
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Make it clearer what you’re doing differently, if you mention that the parameters are ”typ-
ically” fixed.
AR 44) “Typically” is removed. We added to text to make it clearer. This investiga-
tion helps to explore the model sensitivities to the often hidden parameters with the
possibility to properly constrain the model [Pg. 18, l. 551].
“Notably, these parameters are fixed to constant values by default in the fPAR formulation
in similar studies (e.g., Xiao et al. (2004) and Xin et al. (2019)); whereas, here, we let these
parameters (C and k) vary at ±20% level of their fixed values.”

C 45) l. 479: Instead of saying “the impact”, specify what kind of impact (e.g., strong,
weak) and say “VPD” or “the VPD variable”.
AR 45) Revised [Pg. 18, l. 556].
“the strong impact of VPD ...”

C 46) l. 480: It should be “the” next environmental factor constraining “GPP”.
AR 46) Modified [Pg. 18, l. 557].
“The next environmental factor constraining GPP . . . ”

C 47) l. 481: It should be “at the DE-HoH site”.
AR 47) Modified [Pg. 18, l. 558].

C 48) l. 484: Remove “the” in front of ✓r (also in l. 486).
AR 48) Modified [Pg. 19, l. 562].

C 49) l. 485: Add “a” in front of “soil matric potential”.
AR 49) Added [Pg. 19, l. 562].

C 50) ll. 487-489: Be more specific what you would use as parameters?
AR 50) Thank you for this remark. With the text mentioned there, we wish to empha-
sise that empirical coefficients in pedo-transfer functions, linking soil textural proper-
ties (like sand or clay contents) with hydraulic characteristics (like permanent wilting
points, field capacity), can be considered as parameters. To this end, we have provided
references of previous studies also emphasising this aspect. We have revised the text
as follows [Pg. 19, l. 565].
“Pedo-transfer functions (PTFs) link soil textural properties (e.g., sand, clay contents) to
soil parameters (e.g., ✓r) and various functional forms have been developed in past decades
(Van Looy et al., 2017). Empirical coefficients of PTFs can also be regarded as model pa-
rameters (Samaniego et al., 2010; Kumar et al., 2013; Schweppe et al., 2021).”

C 51) ll. 490: Remove “the” in front of “simulated GPP”.
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AR 51) Modified [Pg. 19, l. 571].
“.. is also a major contributor to simulated GPP ...”

C 52) l. 491: Add “the” in front of “LAI calculation”.
AR 52) Modified [Pg. 19, l. 572].
“.. the LAI calculation ...”

C 53) l. 497: Say “at some sites”, not “in”.
AR 53) Modified [Pg. 19, l. 578].
“... at some sites ...”

C 54) ll. 497-498: Either use just ”b” or ”The b parameter”.
AR 54) Modified [Pg. 19, l. 579].
“... The b parameter ...”

C 55) l. 499: Add “the” in front of “temperature factor”.
AR 55) Added [Pg. 19, l. 580].
“... the temperature factor ...”

C 56) l. 501: With “informative” do you mean “sensitive”?
AR 56) Indeed. We meant that parameter is sensitive and thus is informative [Pg. 19,
l. 583].

C 57) l. 502: It should be “favourable conditions”.
AR 57) Modified [Pg. 19, l. 585].

C 58) ll. 504-505: “little impact of environmental stresses due to temperature on GPP dur-
ing the growing season” -¿ What about outside the growing season? Are the temperature
stress parameters just less significant than your phenology submodel parameters? Also,
could this not be site-dependent? At some sites, heat might impact GPP during the grow-
ing season.
AR 58) Indeed what limits the co2 assimilation and gross primary productivity out-
side of the growing season is the temperature stress. we have revised the text as follows
[Pg. 19, l. 583]:
“In other words, temperature stress limits the co2 assimilation and gross primary productiv-
ity outside of the growing season. Phenology parameters play their roles during the growing
season. This period indicates favourable condition for plant growth when the temperature
stress is mostly not active. Therefore, temperature stress parameters do not significantly
influence the modelled GPP. In agreement with our results, Yuan et al. (2007) also reported
little impact of environmental stresses due to temperature on GPP during the growing sea-
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son. It is worth mentioning that the temperature stress is still applied during the growing
season, but as the upper-most limits of temperature (Tlow=-2 �C and Thigh=38 �C) do not
occur frequently, unless during cold, heat stresses (such as heat years in 2018 and 2019 at
the DE-HoH site), the sensitivity of GPP to temperature parameters are less pronounced
during the growing season.”

C 59) ll. 506-507: Rephrase to make your point clearer! Unclear what you mean with ”a
group of daily LAI”. Close the bracket after Figure 5.
AR 59) As it can be seen from the PCM simulations and in agreement with previous
studies, GPP output saturates and becomes insensitive to LAI values above 4 m2m�2.
For instance, the simulated LAI at DE-HoH site during the summer period, with max-
imum LAI usually above 4, an ensemble of LAI’s from 4 to 5 m2m�2 correspond to a
much narrower resulting GPP at each time step. We modified the sentence to make it
clearer [Pg. 19, l. 592].
“This effect can also be seen in the LAI simulation (e.g., at DE-HoH site) where an ensem-
ble of simulated LAI at each time step during the maturity phase, (i.e., in Figure 7), did not
cause much difference in the corresponding GPP output (i.e., in Figure 5).”

C 60) l. 522: Why “might”? Do they?
AR 60) Thanks for the question. In the PCM, the LAI and GPP are simultaneously
simulated in the model. Since the SLA is one of the parameters directly related to
LAI, while LAI is, in turn, related to resulting GPP, we interpret that when SLA im-
pacts GPP, it can only be through the LAI. However, we use “might” for a further
caution. We changed the ”might” word to ”likely” [Pg. 20, l. 610].
“Since the LAI output in the model depends on GPP, the studies mentioned above report-
ing the SLA impact on GPP likely apply for LAI output as well (Li et al., 2016; Arsenault
et al., 2018).”

C 61) l. 527: Add “the” in front of “Fluxnet2015”.
AR 61) Added [Pg. 20, l. 615].

C 62) l. 532: Explain what you mean with “allowing the canopy to reach to its maximum”.
Instead of ”Next important contribution of parameters to the LAI output are those”, maybe
say something like ”Other parameters the LAI output is sensitive to are ...” or ”The LAI
output is also sensitive to the parameters ...”
AR 62) The Lb parameter is the maximum LAI that the ecosystem can sustain. Within
PCM the carbon allocation to the leaf pool is maintained until the canopy LAI reaches
that maximum value. More detail can be find in (Pasquato et al., 2015). We also mod-
ified the sentence [Pg. 20, l. 619]
“The Lb parameter (Eq. 24), also exhibits a marked sensitivity for the LAI output (Figure
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3b) because it directly affects how long carbon allocation to the leaf pool continues until
the canopy LAI reach to its maximum value at canopy closure (see (Eq. 26). Other param-
eters the LAI output is sensitive to are those governing the leaf phenology in the phenology
submodel, Lg (Eq. 18), Fs (Eq. 22), b (Eq. 20), r (Eq. 20) (i.e., in Figure 3b).”

C 63) l. 536: “Lg parameter” -¿ Add “the” or remove “parameter”.
AR 63) Added [Pg. 20, l. 625].

C 64) l. 538: “cold accumulation in degree day” -¿ Below you call it ”cold degree days”.
Choose one name and define what it is! Just say ”leaf fall” instead of “the leaf fall event”.
AR 64) Thank you for the comment. We acknowledge that the sentence was not easy
to understand. In fact, the cold accumulation in degree day and cold degree days here
do not refer to the name of the parameter but are statements to help describing. To
avoid confusion we have removed them from the revised manuscript. Fs (or leaf fall
threshold) is a coldness threshold in degree day, below which leaf shed starts (more
detail can be found in Yue and Unger (2015)). The phenology submodel in the PCM
is adapted from Yue and Unger (2015) who describe it very well. So instead of ex-
plaining in more detail, we point the readers to Yue and Unger (2015)). We revised
the sentences to avoid confusion [Pg. 20, l. 627].
“This parameter represents a coldness threshold for leaf fall in degree day. If the cumulative
cold degree days from summer solstice (FDD) becomes equal or less than this threshold,
then leaves start falling (more detail can be found in (Yue and Unger, 2015)). For instance, a
higher threshold would lead to an early leaf shedding, especially in the cold climates where
cumulative cold degree days can be reached faster. Therefore, the between site variation of
this parameter is not surprising, given the differences in temperature and accumulated cold
degree days among study sites. ”

C 65) l. 539: “lower cold degree days accumulation” -¿ ”Accumulated cold degree days”?
Why does a lower value trigger earlier leaf fall?
AR 65) We thank reviewer for this comment. Given the cold degree days accumula-
tion and the negative sign for these values, the word ”lower” is changed to ”higher”.
Therefore, A higher value indicates that the accumulated cold degree days (FDD) can
reach to or become less than this threshold earlier and leaves start falling. We modi-
fied the text [Pg. 21, l. 629.
“For instance, a higher threshold would lead to an early leaf shedding, especially in the
cold climates where cumulative cold degree days can be reached earlier.”

C 66) ll. 546-547: Make clearer what you mean! Why would LAI always decrease, when
you change these parameters? Don’t you vary the value by +/- 20%?? Also, you say that
GPP is less sensitive to these parameters than LAI, but then you explain the sensitivity of
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LAI by a reduced GPP?
AR 66) We agree that the justification looks confusing! We indeed vary the values
by ±20%; the LAI can either decrease or increase to reflect these variations. we have
added another sentence to the previous one to better clarify this aspect [Pg. 21, l. 638].
“It might partly be due to the reduced/raised assimilated carbon (GPP) by canopy respira-
tion which, in turn, might decrease/increases the available carbon to be allocated to leaf
biomass and affect the resultant LAI. In addition to that, to best of our knowledge, it is the
first time that these parameters are thoroughly analysed within a sensitivity analysis frame-
work, and we yet might not be able to find a reason or explanation for this pattern in this
study. This calls for future studies to further investigate this aspect.”

C 67) ll. 547-548: How is the sentence “Furthermore, the evaluation of Sobol’ indices
convergence (see Figure 4) showed relative stability of sensitivity indices at around 8 000
model evaluations.” connected to the previous sentences?
AR 67) Indeed, it was not the best place for this sentence. It is an independent piece of
information about SA. We have therefore replaced this sentence to the end of section
3.1 [Pg. 18, l. 532].

C 68) l. 551: Instead of “informative parameters” maybe say “The X most sensitive pa-
rameters?”
AR 68) We would like to mention that the SA has been conducted for each site indi-
vidually and the X number of most sensitive parameters at each site vary between 8
to 14. We therefore opted to say informative parameters without attaching specific
number to to that retains the generality of the mentioned text. Nevertheless, we have
added more clarification in the revised text [Pg. 21, l. 646].
“. . . only the most sensitive parameters (depending on the SA result at each site, number of
the most sensitive parameters vary between 8 to 14 parameters). . . ”

C 69) l. 571: Instead of “validity” maybe use “performance”.
AR 69) Modified [Pg. 22, l. 667].
“Taken together, our model exhibits a reasonable performance...”

C 70) l. 580: “where the model overestimated GPP” -¿ You mention poor performance due
to a lack of soil moisture data and a lack of moisture. Why would GPP be overestimated
then?
AR 70) Thanks for the question. We believe this is due to omitting information on
soil water stress. Where soil moisture data is not available (everywhere except the
DE-HoH site), soil moisture stress is not accounted for, leading to a overestimation of
GPP during times of water limitation. At the DE-Hai site in the late summer 2018,
where the model does not account for soil moisture stress, due to unavailability of
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relevant soil moisture information, the GPP is overestimated. The figure below shows
the overestimation of GPP at DE-Hai during summer 2018 in a red ellipse.

However, since the soil moisture information was available at the DE-HoH site and the
stress factor was applied in the GPP estimation, we were able to compare simulations
with and without water stress. When accounting for water stress, the median of GPP
output ensembles showed a good agreement with the observed GPP. We also showed
that GPP at the DE-HoH site is overestimated without accounting for soil moisture
stress factor in the supplemental figure S1.

C 71) l. 599: Why was the decision made not to include non-structural carbohydrates in
the model, if it is specifically made for deciduous broadleaf trees?
AR 71) In fact, at the beginning of model set-up, we were not aware of it. Only after
analysing the result and looking for reasons for the disagreement, we learnt about
non-structural carbohydrates and believe they are the cause of the slightly lagging
phase in simulating LAI at the beginning of growing season as compared to the field
measurements. Also, note that PCM currently comes without a complete carbon al-
location scheme to all pools, which would be a pre-requisite to account for carbon
storage. Therefore, in this first version of the PCM the non-structural carbohydrates
are not represented in the model. We have acknowledge this part in the manuscript
and this leaves the room for further model development.

C 72) l. 602: “Eventually” is unnecessary.
AR 72:) Modified [Pg. 23, l. 705].

C 73) l. 615: “also even” -¿ Use ”also” or ”even”, not both.
AR 73) Modified [Pg. 23, l. 718].

C 74) Figure 1 caption: It should be “PAR: photosynthetically active radiation”. Why do
you define certain abbreviations that are in the rectangles but not all of them?
AR 74) Thanks. We have modified the ”PAR: photosynthetically active radiation” as
suggested. All the rectangles are the processes defined in the model except the LUE
parameter and Photoperiod variable. Since LUE is one of the most important pa-
rameters in the model, we show this parameter in the figure. Also photoperiod is an
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inherent variable and part of autumn phenology which its representation in the figure
helps to distinguish between spring and autumn phonology. However, we understand
that showing them in rectangles was confusing. We now show these two important
variables in ellipse.
“Variables in ellipse show LUE and photoperiod.”

C 75) Table 1: You talked about excluding certain years with missing data. Are these the
time periods you actually used?
AR 75) Thanks for this reminder! Actually, the time periods in the table show the
original time series downloaded from the Fluxnet2015 site. The actual simulation
time periods, with exclusion of the first year – first year is needed for the calculation
of budburst day of subsequent year –, are the time series shown in the figure S4, S5,
and S6 for different sites. We added another column with a name as “Simulation pe-
riod”.
“US-MMS: 1999-2014, US-Oho: 2004-2013, IT-Ro1: 2001-2006, US-Ha1: 2003-2012,
FR-Fon: 2005-2014, DE-Hai: 2000-2018, DE-HoH: 2014-2018, CA-Oas: 1996-2010,
DK-Sor: 2006-2013. Please see the response to the AR 9 response to the Referee#2 for
more detail.”

C 76) Figure 5 caption: I think you mean ”shaded areas”. Why do you only have the shad-
ing for short periods at certain sites?
AR 76) Modified to ”shaded area”. And thanks for the question. As explained in Sec-
tion 2.2.4, to account for the predictive uncertainty, we selected an ensemble of model
runs (outputs) at each site that lie within the top 5% of all the performance metrics.
Based on that, at some sites there may be more and at others less ensemble members.
Regarding certain and short period, as it can be obviously seen at the DE-HoH site, it
shows more uncertainty during drought periods on 2018 and 2019 and emphasis the
role of soil moisture stress factor and associated parameters (namely root distribu-
tion coefficient and permanent wilting point parameters). Even small variation in the
above mentioned parameters makes a larger difference in resultant GPP.

C 77) What ensemble are you talking about? Is it an ensemble of the model output using
different parameter values?
AR 77) Yes, indeed! Out of a total of 10000 parameter sets sampled from their a priori
defined ranges (Table 3) at each site we choose the informative paprmeter sets. Here,
the grey shaded area corresponds to the resultant ensemble output members.
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Referee # 2
Dear Referee,

Thank you very much for your time and attentions on this work. The comments and sugges-
tions are very useful to improve our manuscript. We paid detailed attention to all comments
and have addressed all of them below accordingly. We also would like to thank you for the
introducing new papers, they are indeed very interesting and helpful.

General comments
Bahrami and colleagues presented a manuscript describing the Parsimonious Canopy Model
(PCM v1.0), that estimates gross primary productivity and leaf area index. The manuscript
is well written (with some technical notes below) and, in my opinion, useful since the au-
thors provides the code for the PCM in R. I have two main concerns: Please consider
including in the title: “Developing a Parsimonious Canopy Model (PCM v1.0) to Predict
Forest Gross Primary Productivity and Leaf Area Index on deciduous broad-leaved forest”
or something that limits to the actual coverage of the study. Right now, the model only has
been tested in this type of ecosystems (with good performance), and the actual title kind of
oversells the coverage.
We appreciate the reviewer’s overall positive assessment to our work. We understand
the reviewer remark regarding title and therefore have revised the title that now more
clearly state the “deciduous broad-leaved forest” for which we have developed and
tested our model. The revised title is:
”Developing a Parsimonious Canopy Model (PCM v1.0) to predict forest gross primary
productivity and leaf area index on deciduous broad-leaved forest”

The phenology module. It is not clear if the phenology module estimates the start and end
of the growing seasons using the warm-up period and then these values are used in the
subsequent years. If so, this is a limitation of the model, since the SOS and EOS can be
different over the years, influencing the carbon uptake period. At the end the annual sum
might be correct/similar, however for incorrect reasons. This should be clearly stated in
the limitation of the model, if it is the case.
Thanks for these remarks! In fact, the phenology module is run for each year. It
uses the number of chill days (it counts days with daily mean temperature less than
5 degree centigrade) from winter solstice of the previous year as a variable which
influences the budburst occurrence of each next year. We used the warm up period
term referring to the last 10 to 11 days of each previous year that are eventually re-
quired for estimating variables in the phenology module for its uninterrupted run in
the subsequent year. Indeed, what we observed using phenology module was differ-
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ent SOS’s and EOS’s during the study period at each site. And the start and end of
carbon uptake is exactly in accordance with the SOS and EOS in each individual year.

Specific comments and technical corrections
C 1) Please check the use of the expression “e.g.”, in the text it is used as “e.g.,” with the
comma, while in the abstract is not.
AR 1) Thanks. We changed “e.g.” to “e.g.,” over the text.

C 2) Please check over the text the use of “R2” in uppercase, it should be in lowercase
since it is a 1:1 comparison.
AR 2) We modified “R2” to “r2” in the text.

C 3) Over the text, please use italics when referring to a parameter (i.e., coefficients/parameters
from Table 3).
AR 3) Thanks for the comment. We used italics when referring to parameters in the
text accordingly.

C 4) Epsilon is in Eq. 3, not Eq. 4, please correct.
AR 4) Thanks for noticing. We modified the equation number to Eq. 3 [Pg. 7, l. 195].

C 5) L217-218. Please check the references in this sentence.
AR 5) Thanks. We Modified the sentence [Pg. 9, l. 268].
“According to Granier et al. (1999) and Fischer et al. (2016) the scw ...”

C 6) L260. If fSP = fST (Eq 21), why not make it simple since Eq 18?
AR 6) Thanks for your kind suggestion. By keeping this equation, we wanted to be
consistent with the autumn phenology (Eq. 25), which is the next part where photope-
riod factor fdl also plays a role.

C 7) L288. It should be BIOME-BGC (check this all over the text), please check if this
version also includes the MUSSO
AR 7) Thanks for the comment. We added the latest version as Biome-BGCMuSo
v6.2. [Pg. 12, l. 340].

C 8) L346-347. How is the PAR-PPFD conversion done?
AR 8) Thanks for the question. We use the Fluxnet2015 PPFD variable in micromol m�2 s�1

and convert it to PAR in MJ m�2 day�1 as following:
4.5 micromol m�2 s�1 = 0.000001 MJ m�2 day�1, then multiplied to 86400 to get the
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corresponding daily values.
PAR =PPFD-IN * 0.000001 / 4.5 * 86400

C 9) L348-349. Does this mean that the phenology submodel parameters are fixed accord-
ing to the warm-up year to the subsequent years? Are there implications for using this?
Could the authors report the values of the start and end of the growing season for each
year of simulation?
AR 9) We actually meant that since the phenology module for each individual year
needs the number of chilling days from the previous year, the very first year of the
observation period cannot be included in the simulations. Instead it is used to deter-
mine the budburst day of the first modelling year. For instance if the study period is
from 2006 to 2013 then the simulation starts from 2007 to 2013. We acknowledge this
sentence was not clear enough. We added to the sentence to make this clearer. In the
following we also report the range of simulated Phenological transition dates includ-
ing the start and end of the growing season (Julian date) for each year of simulation
at the DE-HoH site.

Year Start of growing Season Maturity state Start of leaf fall End of growing Season
2015 109-123 162-186 257-270 296-298
2016 111-122 163-183 270 297-298
2017 101-129 168-183 251-270 290-298
2018 103-112 146-168 270-272 296-298
2019 105-114 154-179 271-273 297-298

“In other words, since the phenology module for each individual year needs the number of
chilling days from the previous year, the very first year of observations is not included in
the simulations. It is only used for to calculate budburst day of the first simulation year.”

C 10) L476. Please check the references in this sentence.
AR 10) Modified [Pg. 18, l. 553].
”... in similar studies (e.g., Xiao et al. (2004) and Xin et al. (2019)); ...”

C 11) L486. Please check this reference (Hirmas et al., 2018, Nature) for increasing the
discussion on how soil parameters should not be fixed. I liked this! Hirmas, D.R., Giménez,
D., Nemes, A. et al. Climate-induced changes in continental-scale soil macroporosity may
intensify water cycle. Nature 561, 100–103 (2018). https://doi.org/10.1038/s41586-018-
0463-x
AR 11) Thanks for providing this reference. We added it to the discussion part of the
revised manuscript [Pg. 19, l. 568].
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“Hirmas et al. (2018) also showed that soil retention properties can change in time. For
example, climate change may induce rapid changes in the soil macroporosity and the as-
sociated soil hydraulic properties. Those may alter the feedback between climate and land
surface.”

C 12) L503-504. “Therefore, corresponding parameters do not significantly influence the
modelled GPP”. This sentence is ambiguous, since I cannot interpret to which parameters
the authors are referring to (i.e., temperature stress or phenology).
AR 12) Thanks for the comment. What we tried to explain is that in general upon
arrival of favourable condition for plant growth, the period between SOS and EOS,
temperature stress and the corresponding parameter roles on the GPP is less pro-
nounced. To make this clearer, we have revised the texts [Pg. 19, l. 586].
“Therefore, temperature stress parameters do not significantly influence the modelled GPP.”

C 13) L508. Please check how the references are used.
AR 13) Thanks. We modified the sentence [Pg. 20, l. 595].
“This is in agreement with the previous studies of Jung et al. (2007) and Lee et al. (2019),
which showed that GPP output saturates and becomes insensitive at LAI values above
4 m2 m�2.”

C 14) L571-583. This might be a good reference (Vargas et al) for the discussion of drought
and Mediterranean ecosystems. Vargas, R., Sonnentag, O., Abramowitz, G. et al. Drought
Influences the Accuracy of Simulated Ecosystem Fluxes: A Model-Data Meta-analysis for
Mediterranean Oak Woodlands. Ecosystems 16, 749–764 (2013). https://doi.org/10.1007/s10021-
013-9648-1
AR 14) Thanks for this reference. We have added it to the discussion part [Pg. 22, l.
574].
“Vargas et al. (2013), also discussed inter-annual dynamics of soil moisture effect on GPP
flux in Mediterranean ecosystems using five process-oriented ecosystem models including
water balance. They observed a systematically underestimation of GPP in the models that
were accounting for soil water balance. Those underestimations may have been related to
the complex nature of Mediterranean ecosystems, e.g., due to deep roots and an important
role of the lower canopy. In contrast, here we overestimate the GPP and believe that this is
due to lack of local information on soil moisture stress. More information of soil moisture
stress is therefore expected to improve the model. Overall, they emphasize the importance
of drought conditions and the complex nature of Mediterranean ecosystems in representing
forest dynamics, including GPP flux.”

C 15) In Tables 4-5, I recommend to the authors to report the linear regression coefficients
(slope and intercept), not only RMSE and r2, so the reader can know the biases.

22



AR 15) The linear regression coefficients are now added to the tables.
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hoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L., Zacharias, S.,
Zhang, Y., and Vereecken, H.: Pedotransfer Functions in Earth System Science:
Challenges and Perspectives, Reviews of Geophysics, 55, 1199–1256, https://doi.org/
https://doi.org/10.1002/2017RG000581, 2017.

27



Vargas, R., Sonnentag, O., Abramowitz, G., Carrara, A., Chen, J., Ciais, P., Correia, A.,
Keenan, T., Kobayashi, H., Ourcival, J., Papale, D., Pearson, D., Pereira, J., Piao, S.,
Rambal, S., and Baldocchi, D.: Drought Influences the Accuracy of Simulated Ecosys-
tem Fluxes: A Model-Data Meta-analysis for Mediterranean Oak Woodlands, Ecosys-
tems, 16, 749–764, https://doi.org/10.1007/s10021-013-9648-1, 2013.

Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B., and
Ojima, D.: Modeling gross primary production of temperate deciduous broadleaf forest
using satellite images and climate data, Remote Sensing of Environment, 91, 256–270,
https://doi.org/https://doi.org/10.1016/j.rse.2004.03.010, 2004.

Xin, Q., Dai, Y., and Liu, X.: A simple time-stepping scheme to simulate leaf area in-
dex, phenology, and gross primary production across deciduous broadleaf forests in the
eastern United States, Biogeosciences, 16, 467–484, https://doi.org/10.5194/bg-16-467-
2019, 2019.

Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L., Baldocchi, D., Bernhofer, C., Gholz,
H., Goldstein, A., Goulden, M., Hollinger, D., Hu, Y., Law, B., Stoy, P., Vesala, T.,
and Wofsy, S.: Deriving a light use efficiency model from eddy covariance flux data
for predicting daily gross primary production across biomes, Agricultural and Forest
Meteorology, 143, 189–207, https://doi.org/10.1016/j.agrformet.2006.12.001, 2007.

Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold, L., Law, B., Arain, A.,
Beringer, J., Bernhofer, C., Black, A., Blanken, P. D., Cescatti, A., Chen, Y., Francois,
L., Gianelle, D., Janssens, I. A., Jung, M., Kato, T., Kiely, G., Liu, D., Marcolla, B.,
Montagnani, L., Raschi, A., Roupsard, O., Varlagin, A., and Wohlfahrt, G.: Global com-
parison of light use efficiency models for simulating terrestrial vegetation gross primary
production based on the LaThuile database, Agricultural and Forest Meteorology, 192-
193, 108–120, https://doi.org/https://doi.org/10.1016/j.agrformet.2014.03.007, 2014.

Yue, X. and Unger, N.: The Yale Interactive terrestrial Biosphere model version 1.0:
description, evaluation and implementation into NASA GISS ModelE2, Geoscientific
Model Development, 8, 2399–2417, https://doi.org/10.5194/gmd-8-2399-2015, 2015.

Zhang, L., Zhou, D., Fan, J.-W., and Hu, Z.: Comparison of four light use efficiency models
for estimating terrestrial gross primary production, Ecological Modelling, 300, 30–39,
https://doi.org/10.1016/j.ecolmodel.2015.01.001, 2015.

Zhou, H., Yue, X., Lei, Y., Tian, C., Ma, Y., and Cao, Y.: Large Contributions of Dif-
fuse Radiation to Global Gross Primary Productivity During 1981–2015, Global Bio-
geochemical Cycles, 35, https://doi.org/10.1029/2021GB006957, 2021.

28



Developing a Parsimonious Canopy Model (PCM v1.0) to Predict
Forest Gross Primary Productivity and Leaf Area Index

:::
on

:::::::::::::::
deciduous

::::::::::::::::::::
broad-leaved

:::::::::
forest

Bahar Bahrami *1, Anke Hildebrandt1,2, Stephan Thober1, Corinna Rebmann1, Rico Fischer3, Luis
Samaniego1, Oldrich Rakovec1,4, and Rohini Kumar1

1 Department of Computational Hydro-system, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
2 Friedrich Schiller University Jena, Institute of Geoscience, Terrestrial Ecohydrology, Burgweg 11, 07745 Jena, Germany
3 Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
4 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha-Suchdol 16500, Czech Republic

Correspondence: Bahar Bahrami (bahareh.bahrami@ufz.de)

Abstract. Temperate forest ecosystems play a crucial role in governing global carbon and water cycles. However, unprece-

dented global warming poses fundamental alterations to forest ecological functions (e.g.,
:
carbon uptake) and forest biophysical

variables (e.g.
:
, leaf area index). Quantification of forest carbon uptake, gross primary productivity (GPP), as the largest carbon

flux has a direct consequence on carbon budget estimations. Part of this assimilated carbon stored in leaf biomass is related

to the leaf area index (LAI), which is of critical significance in and closely linked to
::
the

:
water cycle. There already exist a5

number of models to simulate dynamics of LAI and GPP, however, the level of complexity, demanding data, and poorly known

parameters often prohibit the model applicability over data-sparse and large domains. In addition, the complex mechanism as-

sociated with coupling the terrestrial carbon and water cycles poses a major challenge for integrated assessments of interlinked

processes (e.g.,
:
accounting for temporal dynamic

::::::::
dynamics of LAI for improving water balance estimations and soil moisture

availability for enhancing carbon balance estimations). In this study, we propose a parsimonious forest canopy model (PCM)10

to predict daily dynamics of LAI and GPP with few required input which is also suitable for integration into state-of-the-art

hydrologic models. The light use efficiency (LUE) concept is central to PCM (v1.0), coupled with a phenology submodel.

PCM estimates total assimilated carbon based on conversion efficiency of absorbed photosynthetically active radiation into

biomass. Equipped with the coupled phenology submodel, the total assimilated carbon partly converts to leaf biomass from

which prognostic and temperature-driven LAI is simulated. The model combines modules for estimation of soil hydraulic pa-15

rameters based on the so-called pedotransfer functions and vertically weighted soil moisture considering the underground root

distribution, when soil moisture data is available. We test the model on deciduous broad-leaved forest sites in Europe and North

America selected from the FLUXNET network. We analyze the model parameter sensitivity on the resulting GPP and LAI and

identified on average 10 common sensitive parameters at each study site (e.g., LUE, SLA, etc). Model performance is evaluated

in a verification
::::::::
validation period using in situ measurements of GPP and LAI (when available) at eddy covariance flux towers.20

The model adequately captures the daily dynamics of observed GPP and LAI at each study site (Kling-Gupta-Efficiency; KGE

*Corresponding author (bahareh.bahrami@ufz.de)
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varies between 0.79 and 0.92). Finally, we investigate the cross-location transferability of model parameters and derive a com-

promise parameter set to be used across different sites. The model also showed robustness with the compromise single set of

parameters, applicable to different sites, with an acceptable loss in model skill (on average ± 8%). Overall, in addition to the

satisfactory performance of the PCM as a stand-alone canopy model, the parsimonious and modular structure of the developed25

PCM allows for a smooth incorporation of carbon modules to existing hydrologic models. Thereby, it facilitates the seamless

representation of coupled water and carbon cycle components, i.e. prognostic simulated vegetation leaf area index (LAI) would

improve the representation of the water cycle components (e.g.
::
i.e., evapotranspiration), while GPP predictions would benefit

from simulated soil water storage from a hydrologic model.

1 Introduction30

As the climate is changing
::::::
changes, the future functionality and resilience of terrestrial ecosystems are expected to change in

numerous ways. Fundamentally, terrestrial ecosystems
::::
(such

::
as

:::::::::
temperate

::::::
forests)

:
drive the life-sustaining exchanges of matter

and energy between land and atmosphere (e.g., carbon dioxide / water vapor exchange). However, increased concentrations of

greenhouse gases and projected global warming (IPCC, 2021), contribute to unprecedented extreme climate events and changes

in ecosystem functioning and productivity (Malhi et al., 2020). Depending on the frequency and intensity of extreme events35

together with other aspects of anthropogenic change, ecosystem patterns and processes such as
:::
This

::::::
affects

:::::
forest

::::::::::
ecosystems

::
by

:::::::
altering

::::::
growth,

::::::
timing

::
of

:::
life

:::::
cycle

::::::
events

::::::::::::
(Nigatu, 2019),

:
carbon dioxide uptake,

:
and water vapour release can be altered,

potentially irreversibly (Grimm et al., 2013). Given the importance of carbon dioxide as a principal greenhouse gas that drives

global climate change and the extent to which ecosystemsare capable of sequestrating it, there has been growing attention

toward the quantification of carbon fluxes/stocks and understanding the role of the terrestrial ecosystems in regulating the40

exchange of carbon between land and atmosphere (Beer et al., 2010).
::::
rates

::::::::::::::::::::::::::::::::::::::::::::::::::
(Luyssaert et al., 2007; Senf et al., 2018; Forzieri et al., 2021)

:::::
among

:::::
other

::::::::::::
climate-related

:::::::::::
disturbances.

:::::::::::
Vulnerability

::::
due

::
to

::::::
climate

::::::
change

::::
can

::
be

::::::::
attributed

::
to

:::::::
different

:::::::::
ecosystem

:::::::
stresses

::::::::::::::::::::::::::::::::::
(Nathalie et al., 2006; Cholet et al., 2022)

:::::::
including

:::::
high

:::::::::::
temperatures

:::
that

::::::::
decrease

:::::::
enzymes

:::::::
activity

::::
and

:::
the

:::
rate

:::
of

::::::
carbon

:::::
uptake

::
as

::::
well

::
as

::::
soil

::::
water

::::::::
limitation

:::::::
causing

::::::::
hydraulic

:::::
failure

:::
or

:::::
carbon

:::::::::
starvation,

:::::::
reducing

:::::
plant

::::::::::::
photosynthetic

:::::::
capacity,

::::
and

::::
early

:::::::::
senescence

:::::::::::::::::
(Imadi et al., 2016)

:
in

:::::::::
temperate

:::::
forest

::::::::::
ecosystems.

::
In

:::::::
addition

::
to

::::
these

:::::::
stresses,

:::::
some

::::::::::::
environmental

:::::::
changes45

::::
such

::
as

::::::::
radiation

::::::
change

:::::::::
associated

::::
with

:::::::::
increased

:::::::::
cloudiness

::
or

::::::::::
atmospheric

::::::::
aerosols

:::
can

::::
also

:::::::
increase

:::::
plant

:::::::::::
productivity,

:::
e.g.

::::
due

::
to

:::
the

::::::::
increased

:::::::
fraction

:::
of

:::::::
diffused

::::::::
radiation

::::::::::::::::::::::::
(Knohl and Baldocchi, 2008).

:
Temperate forest ecosystems, includ-

ing deciduous broad-leaved forest (DBF), are known as an integral part of global carbon cycle and contribute to climate

change mitigation
::::
play

::
an

::::::::::::
indispensable

::::
role

::
in

:::::::::
mitigating

:::::::
climate

::::::
change

:::::::::::::::::::
(Estoque et al., 2022) by removing carbon from

the atmosphere (Reinmann and Hutyra, 2017). Forests
:::::::::::::::::::::::::::::::::::::
(Pan et al., 2011; Reinmann and Hutyra, 2017)

:
.
:::::::::
Generally,

::::::
forests are50

recognized as biomes with high carbon sequestration capacity (Lal and Lorenz, 2012) equivalent to around
:::::
where

:::::::::
temperate

::::::::::
broad-leaved

::::::
forest

::::::::
contribute

:::
to

::::::::::::
approximately

:
60% of the global net forest sink (Reinmann and Hutyra, 2017). The total

carbon uptake from the atmosphere into the ecosystems by plant photosynthesis is known as vegetation gross primary production

(GPP). GPP is the largest flux within the carbon cycle (Schaefer et al., 2012; Foley and Ramankutty, 2003) and has a direct

2



effect on moderating climate and environment by sequestering anthropogenically emitted CO2. In turn, these ecosystems are55

also vulnerable to the adverse effects of changing climate (Luyssaert et al., 2007; Senf et al., 2018; Forzieri et al., 2021) where

the spatial pattern of vulnerability is controlled by environmental conditions (Forzieri et al., 2021), Specifically, environmental

constraints, such as temperature, water availability, and radiation control vegetation productivity and regulate the rate of GPP

(Yuan et al., 2014). The
:::::
carbon

:::::
sink

::
of

::::::
forests

::::::::::::::::::::::::::::::::::::::
(Pan et al., 2011; Reinmann and Hutyra, 2017)

:
.
:::::::::
Temperate

:
DBF biomes are

characterized by favourable climate in
:::::
having

::
a
::::::::
temperate

:::::::
climate

::::
with

:
four distinct seasons with

:::
and

:
a temperature-driven60

canopy structure. The plant canopy capacity and seasonality are expressed by leaf
::
for

:::::
water

::::
and

::::::
carbon

::::::::
exchange

::
is

:::::::
strongly

:::::
related

:::
to

:::::::
seasonal

::::::::
variation

::
in

::::
leaf

:::::::::::
development

:::::::::::::::::
(Seo and Kim, 2021)

:
.
::::
Leaf

:
area index (LAI) (Wang et al., 2019). The LAI

is defined as one half the total green leaf area
:
is

:
a
::::::::::::

dimensionless
::::::::

quantity,
:::::::
defined

::
as

::::::::
one-sided

:::::
area

::
of

:::::
green

::::
leaf per unit

horizontal ground surface area
::::::::::::::::::::::::::::
(Nathalie, 2003; Fang et al., 2019). LAI can be estimated by field measurements and

::::
either

:::
by

:::::
direct

::::
field

::::::::::::
measurements,

:::::::
inferred

::::
using

::::::
remote

:::::::
sensing

::
or be simulated by the fractional accumulated carbon stored in the leaf65

pool within
::::::::
vegetation

::::::
carbon

:::::
cycle

::::::
models

::::::::::::::::
(Fang et al., 2019).

::::::
Water

:::::::::
availability

:::::
plays

:
a
::::
key

:::
role

:::
in

::::::
carbon

::::::
uptake

:::
and

::::
leaf

:::::::::::
development,

:::::::
affecting

:
the carbon cycle. This

:
In

::::::::
addition,

::::
LAI

:
is
::
a key biophysical plant variableaffects not only sequestering

:
,

::::::::::
representing

:::::::::
vegetation

::::
state,

::::::::
affecting

:::
not

::::
only

::
the

:::::::::::
sequestration

::
of
:
carbon from the atmosphere via photosynthesis but also the

release of water to the atmosphere through transpiration (Yang et al., 2017). However, accounting for a dynamic representation

of vegetation characteristics (e.g., leaf area index) relevant
::::::::::::::
(Fang et al., 2019)

:
.
:::::::::
Therefore,

::
in

:::::::::
hydrologic

:::::::
models

::::::::::
considering70

:::::
carbon

:::::
cycle

:::::::::::
components

::::
(such

:::
as

:::::::
dynamic

::::
LAI

::::::
related

::
to
::::

the
:::
leaf

::::::
carbon

:::::
pool)

:::
are

::::::
crucial

:
for accurate estimation of water

balance components (e. g., plant transpiration) in most of conceptual hydrologic models is not properly considered, especially

for the assessment of climate change impacts on water balance components (Wegehenkel, 2009; Asaadi et al., 2018).
:::
the

:::::
water

::::::
budget.

:::::
Given

:::
the

:::::::::
importance

:::
of

::::::
carbon

::::::
dioxide

:::
as

:
a
::::::::
principal

::::::::::
greenhouse

:::
gas

::::
that

:::::
drives

::::::
global

::::::
climate

::::::
change

::::
and

:::
the

::::::
extent

::
to75

:::::
which

:::::::::
ecosystems

:::
are

:::::::
capable

::
of

::::::::::
sequestering

::
it,

:::::
there

:::
has

::::
been

:::::::
growing

:::::::
attention

::::::
toward

:::
the

:::::::::::
quantification

::
of

::::::
carbon

:::::
fluxes

::::
and

::::
pools

::::
and

::::::::::::
understanding

:::
the

::::
role

::
of

::::::::
terrestrial

::::::::::
ecosystems,

:::::::::
including

::::
DBF

::::::::::
ecosystems,

::
in
:::::::::

regulating
:::
the

::::::::
exchange

:::
of

::::::
carbon

:::::::
between

::::
land

::::
and

::::::::::
atmosphere

:::::::::::::::
(Beer et al., 2010).

::::
The

::::
total

:::::::
carbon

::::::
uptake

::::
from

::::
the

::::::::::
atmosphere

:::
into

:::::::::
vegetated

::::::::::
ecosystems

::
by

:::::
plant

::::::::::::
photosynthesis

:::
is

::::::
known

::
as

:::::
gross

:::::::
primary

::::::::::
production

::::::
(GPP).

:::::
GPP

::
is

:::
the

:::::::
primary

:::::
driver

:::
of

:::
the

::::
land

:::::::
carbon

::::
sink

::::::::::::::::::::::::::::::::::
(Spielmann et al., 2019; Zhou et al., 2021)

:::
and

:::
the

::::::
largest

:::
flux

::::::
within

:::
the

:::::
carbon

:::::
cycle

::::::::::::::::::::::::::::::::::::::::::
(Schaefer et al., 2012; Foley and Ramankutty, 2003)80

:
.
:::::::
Accurate

::::::::::
estimation

::
of

::::
GPP

:::::::
directly

:::::::::
influences

::::::
carbon

:::::::
budget

::::::::::
assessments

::
as

:::::
well

::
as

::::::::
estimates

:::
of

:::
the

:::::::
amount

::
of

::::::
stored

:::::
carbon

:::
in

:::
the

::::
plant

::::
leaf

::::
pool.

::::::::
Accurate

::::::
carbon

::::::
budget

::::::::::
assessment,

::
in
:::::
turn,

::::::::
promotes

::::::::::::
understanding

::
of

:::
the

::::::::
feedbacks

::::::::
between

::
the

:::::::::
terrestrial

::::::::
biosphere

:::
and

:::
the

:::::::
climate

::::::
system

:::::::::::::::::::::::::::::::
(Zhou et al., 2021; Huang et al., 2022).

:

Many models have been successfully developed to estimate GPP, spanning a range of complexity and representation of

physical and biological processes (Che et al., 2014; Arora, 2002; Ostle et al., 2009). The GPP models are generally divided85

into three categories of
::::::::
including empirical, enzyme kinetic (EK), and light use efficiency (LUE) models (Schaefer et al., 2012).

The
:
In

:
first category, the empirical models, are data-oriented approaches where statistical relationships between inferred GPP

from flux observations (eddy covariance - EC
::::::::::::
covariance-EC) and observed environmental conditions are established; and those

:
.
:::::
Those

:
inferred relationships are then expanded to

:::
into large scales ranging from regional to global levels (Beer et al., 2010;

3



Schaefer et al., 2012). The second category, the enzyme kinetic (EK) approach, represents leaf scale GPP as a result of a90

complex set of biophysical and biochemical reactions. This includes first, the light reaction (in which light energy splits water

molecules, travelling from the soil to leaf chloroplasts, into O2, electrons, and H+ to produce electron carrier molecule (the

reduced form of nicotine adenine dinucleotide phosphoric acid; NADPH) and energy storage (adenosine triphosphate; ATP).

Later, in the next step for dark reaction (Calvin cycle)
::
In

:::
the

::::
dark

::::::::
reactions

::
of

:::
the

::::::
Calvin

:::::
cycle, the rubisco enzyme uses the

ATP energy from the light response to sequestrate the atmospheric CO2 :::::::
sequester

:::
the

::::::::::
atmospheric

::::::
carbon

:::::::
dioxide into organic95

carbon (Farquhar et al., 1980; Collatz et al., 1992). This approach requires the specification of a relatively large number of

parameters for governing processes, whose acquisition (through direct measurements) is not straightforward - specifically at

scales larger than the leaf level. Finally, the last category for the GPP estimation is a widely used approach based on the light

use efficiency (LUE) concept, relevant for its applications over larger scales at
:
(regional and global

:
)
:
(Potter et al., 1993; Yuan

et al., 2007). By implementing simplified relationships that hold at the ecosystem level and avoiding a detailed parameterization100

of leaf-level processes, the LUE concept is particularly relevant for quantifying
::
the

:
carbon budget at landscape and larger scales

(Street et al., 2007; Wei et al., 2017).
::
and

::::::::
coupling

::::
with

:::
the

:::::::::
hydrologic

::::::
models

::::::::::::::::::::::::::::::
(Street et al., 2007; Wei et al., 2017).

In this approach, ecosystem GPP is related to
:
a
:::::::
function

::
of

:
absorbed photosynthetically active radiation (APAR) as a

:::
and

::
a

:::::
biome

:::::::
specific

::::
LUE

:::::::::
parameter

::::::::::::::::::::::::::::::
(Gamon, 2015; Springer et al., 2017).

::::::
APAR

::
is

:
a
:
product of incident photosynthetically active

radiation (PAR) by a
:::
and

:::
the

:
fraction of PAR (fPAR) absorbed by plant leavesthrough a biome specific LUE parameter. The105

LUE is a
::::::::
parameter

::::::::::
corresponds

::
to

:::
the vegetation conversion efficiency factor of absorbed

::
of

::::
solar radiation into biomass and

is defined as the amount of carbon produced per unit of absorbed PAR (Yuan et al., 2014)
::::::::::::::::::::::::::::
(Monteith, 1977; Yuan et al., 2014)

. The amount of sequestrated
::::::::::
sequestered carbon as biomass will then be allocated to different plant carbon pools (i.e. leaf,

stems, and roots) controlled by the relative demand exerted by these pools at different periods (Arora, 2002).

Several LUE models have been successfully applied for estimating the ecosystem GPP such as, CFLUX (Turner et al., 2006)110

, EC-LUE (Yuan et al., 2007), MODIS-GPP (Running et al., 2004), VPM (Xiao et al., 2004), and CASA (Potter et al., 1993)

at different spatial and temporal scales (Wei et al., 2017; Law et al., 2000; Coops et al., 2005)
:
at
::::::::

different
::::::
spatial

:::
and

::::::::
temporal

:::::
scales

::::::::::::::::::::::::::::::::::::::::::::
(Law et al., 2000; Coops et al., 2005; Wei et al., 2017)

::::
such

:::
as

:::
the

::::::
carbon

:::::
cycle

::::::
model

::::::::::::::::::::::::
(CFLUX; Turner et al., 2006)

:
,

::::
eddy

:::::::::::::
covariance-light

:::
use

::::::::
efficiency

::::::::::::::::::::::::
(EC-LUE; Yuan et al., 2007),

::::::::
moderate

::::::::
resolution

:::::::
imaging

::::::::::::::::::::
spectroradiometer-gross

:::::::
primary

:::::::::
production

:::::::::::::::::::::::::::::
(MODIS-GPP; Running et al., 2004)

:
,
:::::::::
vegetation

::::::::::::
photosynthesis

:::::
model

:::::::::::::::::::::
(VPM; Xiao et al., 2004),

:::
and

:::
the

:::::::::::::::::::::
Carnegie-Ames-Stanford115

::::::::
Approach

::::::::::::::::::::::
(CASA; Potter et al., 1993). However, despite the large potential of these LUE models, they are highly dependent

on satellite-based data
::::::::::
observations

:
such as remotely sensed LAI and fPAR (Wang et al., 2017). These two key biophysi-

cal variables are generally sensitive to cloud contamination (Chen et al., 2019; Zhu et al., 2013) leading to
::::::
leading

::
to

:::::
gaps

::
in

::::
their temporal and spatial gaps, particularly over areas like central Europe. It has also been documented that the

:::::::
coverage

:::::::::
throughout

:::
the

::::
year

:::::::::::::::::
(Rahman et al., 2022)

:
.
:::::
These

::::
gaps

:::
are

:::::::
sources

::
of

:::::::::
uncertainty

::
in
:
satellite-based fPAR and LAI products are120

subjected to uncertainty, and that
::::::
which,

::
in

::::
turn,

:
may induce errors in quantifying GPP (Wang et al., 2017). Overall, several

:::::::::::::::::
(Rahman et al., 2022)

:
.

::::::
Several factors, including either high demand of required data and computation in detailed models

:::
the

:::::::
detailed

:::::::::::::
biogeochemical

:::::
model

:::::
(e.g.,

:::
EK

:::::::
models)

:
or dependency of

:::::::
existing simplified LUE models on satellite data might hinder the application

::
in
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::::::::
simulating

:::::
GPP

:::
and

:::
/or

::::
LAI

::::::
hinders

:::
the

::::::::
coupling of existing models . Concerning estimation of LAI and its impact on water125

balance , the utilization of carbon uptake and leaf biomass growth has been used
::::
with

:::::::::
hydrologic

:::::::
models.

::::::::
Currently,

:::::
within

:::::
most

::
of

:::
the

:::::::::
conceptual

:::::::::
hydrologic

:::::::
models

:::::::
dynamic

:::::::::
vegetation

::::::::::::
characteristics

::::
and

:::
LAI

::::
are

:::
not

:::::::
properly

::::::::::
considered.

:::
As

:::::::::
mentioned

::::::
earlier,

::::
such

::
a

::::::::::::
representation

::
is

:::::::
relevant

:::
for

:::::::
accurate

:::::::::
estimation

:::
of

:::::
water

:::::::
balance

::::::::::
components

:::::
(i.e.,

::::
plant

:::::::::::
transpiration

::::
and

::::::
canopy

:::::::::::
evaporation),

:::
and

::::::::
especially

:::
for

:::
the

:::::::::
assessment

::
of

::::::
climate

::::::
change

:::::::
impacts

::
on

:::
the

:::::
water

:::::
cycle

::::::::::::::::::::::::::::::::
(Wegehenkel, 2009; Asaadi et al., 2018)

:
.130

:::
The

:::::
LUE

:::::::
principle

::::
and

:::
leaf

::::::
growth

:::::
have

::::
been

::::::::::
successfully

:::::::::::
implemented

:
in the TETIS-VEG ecohydrology model (Francés

et al., 2007; Pasquato et al., 2015). The TETIS-VEG model ishowever adapted for the evergreen forest , thus it is not applicable

over deciduous ,
::::::::

however,
:::::::
adapted

:::
for

:::::::::
evergreen

:::::
forest

::::::
biome.

::
In

:::::
other

::::::
words,

:::
the

:::::::::::
TETIS-VEG

::::::
model

:::::
lacks

::::::::::::
representation

::
of

:
a
::::::::
dynamic

:::
leaf

:::::::::
phenology

:::::::
relevant

::
in

:::
the

:::::::::
deciduous broad-leaved forest with a distinct seasonal leaf development dynamic

:::::
forests. Another approach to simulate GPP and LAI is adopted in

:::
the simplified growing production day time-stepping scheme135

(SGPD-TS) model (Xin et al., 2019). The SGPD-TS model, however, does not use the leaf biomass growth concept, rather

it
:::::::
represent

::::
leaf

::::::
growth

::::
and

::::::::
allocation

::
to

::::
leaf

:::::
pool,

:::
but establishes a linear relationship between steady-state GPP and LAI.

In this way, GPP is used as a proxy of LAI, utilising
:::::::
utilizing a conversion ratio when maximum GPP has been reached.

However, it has been shown that modelled
::::::::
simulated

:
GPP saturates at high LAI values (Lee et al., 2019)

::::
(e.g.,

:::::
above

:::
4.5

:::::::
m

2
m

�2

::::::::::::::
(Lee et al., 2019)

:::
and

::::::::::::::
(Pan et al., 2021)

::
).

::::
High

::::
LAI

::::::
values

:::
are

::::
often

::::::::
common

::
in

:::::::::
deciduous

:::::::::::
broad-leaved

::::::
forests,

::::
thus,

:::::::
relying140

::
on

:::::::::
maximum

::::
GPP

::
to
::::::

derive
::::
LAI

:::::
might

:::::::::
introduce

:
a
::::
bias

::
at
::::::::

elevated
::::
LAI. This may potentially introduce uncertainty when

calculating the conversion ratio to simulate LAI . Another more general challenging aspect for these models is the specification

of effective model parameters such that they can seamlessly operate at different scales and locations
:::::::::::
identification

::
of

::::::
model

:::::::::
parameters

:::
that

:::
are

::::
site

::
or

:::::::
location

:::::::
specific. Previous applications often have

::::
have

:::::
often been limited to a

:::
one

:
calibration site

(Francés et al., 2007); but they need to be thoroughly cross-validated for their applicability across a diverse range of climatic145

conditions. The overarching aim

:::
The

::::::::::
overarching

:::::
aims of this study are to propose a parsimonious model (i) to simulate daily dynamics of GPP and LAI

over
::
of deciduous broad-leaved forest at a medium level of complexity (ii) also suitable for integration in existing hydrologic

and ecologic models. We simulate processes related to the carbon cycle in the canopy at a forest stand of undetermined size,

utilizing
:::::
using the LUE approach with implementation of a phenology submodel. The parsimonious approach and level of150

model complexity are adapted based on
:::::::
designed

::
to

:::::
make

:::
use

::
of

::
a readily available observational datasets

::::::
dataset

:::
for

::::::
abiotic

::::::
forcing

:
across eddy flux tower stations

::::
such

::
as

:::
air

:::::::::::
temperature,

::::::
vapour

:::::::
pressure

:::::::
deficit,

:::
soil

:::::::::
moisture,

:::
and

:::::::::::::
photosynthetic

::::::
photon

:::
flux

:::::::
density. We apply a global sensitivity analysis to investigate model parameters’ sensitivity to the model’s output

variables (i.e., GPP and LAI). Finally, we assess the generality and robustness of the underlying model parameterizations and

demonstrate the model applicability over different sites conducting a cross-location transferability experiment.155
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2 Methodology

2.1 Model overview

The PCM model developed and presented in this study aims at providing a parsimonious representation of daily development

of biomass of leaf (Bl) coupled to simulated gross primary productivity (GPP) over deciduous broad-leaved forest (DBF)

ecosystems. Analogous to most of the LUE models treating the entire vegetation canopy as a big extended leaf (Guan et al.,160

2021), the PCM operates over forest stand scale and adapts parameters mainly from a biome properties look-up table (BPLUT)

(Running et al., 2000). Parameters such as specific leaf area index (SLA
::::
SLA) in PCM represent an effective community-

weighted parameters. Figure 1 shows a schematic representation of the PCM structure including carbon fluxes/stocks and

interconnected processes related to plant canopy for DBF biomes. We focus on simulating Bl, which is related to LAI via the

specific leaf area index parameter. The simulated LAI is, in turn, used in the calculation of the GPP.165

PCM uses a daily time step during which it simulates the processes of carbon uptake, leaf respiration, carbon allocation, and

carbon decay from the leaf pool (canopy) using a mass balance equation (Istanbulluoglu et al., 2012; Yue and Unger, 2015;

Pasquato et al., 2015; Melton and Arora, 2016; Ruiz-Perez et al., 2017). The main governing equation to simulate the daily

development of GPP(t) and Bl(t) is:

dBl(t)

dt
=
�
GPP(t)�Re(t)

�
�(t)�D(t) (1)170

where Bl(t) is leaf biomass, GPP(t) is gross primary productivity, Re(t) is leaf respiration, �(t) is carbon allocation

coefficient and D(t) is leaf decay components at day t. All terms on the right hand side are calculated in the modules of the

PCM. The LAI (related to Bl(t) in Eq. 1) is defined as:

LAI(t) = Bl(t) ·SLA · fcov (2)

where SLA is specific leaf area index, and fcovis the vegetation fractional coverage. In the following sections, the modeling175

approaches implemented for each submodel component are described in detail. A summary of the model inputs and underlying

parameters is provided in Tables 2 and 3, respectively.

2.1.1 Gross Primary Productivity

The theoretical soundness and practical convenience of the LUE
::::
LUE

:
concept in estimating terrestrial GPP has been the main

core of several model developments (Monteith, 1972; Wei et al., 2017; Running et al., 2000; Arora, 2002; Schaefer et al.,180

2012; Zhang et al., 2015) at the regional and global scales (Potter et al., 1993; Yuan et al., 2007; Xiao et al., 2004; Running

et al., 2000). In this study, we likewise utilize the LUE approach, which theoretically relies on the concept of interception of

photosynthetically active radiation by plant leaves and converting it
:::
the

:::::::::
intercepted

::::::::
radiation

:
into biomass through energy to

biomass efficiency factor (i.e. LUE
:::::
LUE factor). As expressed in Eq. 1, the PCM simulation starts with assimilation of the

carbon flux (GPP) by leaf component. The GPP flux (Eq. 3) is estimated as a product of incident photosynthetically active185

radiation (PAR), by fPAR, which is a fraction of PAR being absorbed by plant leaf, and an LUE
::::
LUE

:
factor, multiplied by a
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modifier factor when environmental constraints present (✏).

GPP(t) = LUE · ✏(t) ·PAR(t) · fPAR(t) (3)

Where LUE is biome-specific unstressed (or maximum) vegetation light use efficiency parameter. fPAR is calculated as

following (Ruimy et al., 1999; Xiao et al., 2004; Wu, 2012; Yuan et al., 2007)
:::::::::::::::::::::::::::::::::::::::::::::
(Ruimy et al., 1999; Xiao et al., 2004; Yuan et al., 2007)190

:

fPAR(t) = c · (1� e
�(k·LAI(t))

) (4)

where c refers to maximum absorption at full light interception in deciduous broad-leaved forest biomes (Monsi and Saeki,

1953; Ruimy et al., 1994) and k is the light extinction coefficient parameter.

✏ (Eq. 4
:
3) is an overall and integrated modifier that corresponds to environmental stress factors. The overall modifier factor195

diminishes light use efficiency of vegetation from its potential value during unfavorable environmental conditions (Potter et al.,

1993). These unfavorable conditions include for example high and/or low temperature fT, water availability fSM, and elevated

vapor pressure deficit fVPD stress factors (Zhang et al., 2015; Pasquato et al., 2015).

In general, calculation of ✏ across different LUE
::::
LUE

:
models can be expressed either in minimum (Eq. 5) or multiplicative

(Eq. 6) approaches to integrate different environmental stress factors. On the one hand, models such as Eddy Covariance-Light200

Use Efficiency (EC-LUE; (Yuan et al., 2007)) uses Liebig law of minimum stress that emphasise the most limiting resource to

constrain GPP (Eq.5). On the other hand models such as Carnegie-Ames-Stanford Approach (CASA; (Potter et al., 1993)) and

Vegetation Photosynthesis Model (VPM; (Xiao et al., 2004)) follow a multiplicative approach of stresses (Eq.6). In the present

study, we opt for the first approach to integrate different stress factors and to calculate the ✏.

The first approach (minimum) is expressed as follows (Running et al., 2000; Sitch et al., 2003; Prince and Goward, 1995).205

✏(t) = min(fT(t), fVPD(t), fSM(t)) (5)

The second approach can be written in a multiplicative way as:

✏(t) = fT(t) · fVPD(t) · fSM(t) (6)

The individual stress factors are dimensionless scalars ranging between zero (full stress) and one (no stress), and are intro-

duced in more detail in the following section.210

2.1.2 Environmental constrains and GPP

I) Temperature stress factor (fT): The first reduction factor, fT, on GPP due to air temperature is calculated by including two

factors corresponding to low temperature ⇢l (cold) and high temperature ⇢h (heat) stress effects (Eqs. 7,8,9) (Sitch et al., 2003;

Fischer et al., 2016; Rödig et al., 2017).

fT(t) = ⇢l(t) · ⇢h(t) (7)215
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The stress induced by the cold stress factor (⇢l(t)) can be calculated as:

⇢l = (1+ e
k0·(k1�T (t))

)
�1

, (8)

where,

k0 =
2ln(0.01/0.99)
(Tlow�Tcold)

, k1 = 0.5(Tlow +Tcold)

220

The heat stress factor is calculated as:

⇢h(t) = 1� 0.01 · ek2·(T (t)�Thot), (9)

k2 =
ln(0.99/0.01)
(Thigh�Thot)

where T (t) is daily mean air temperature, Tlow and Thigh are DBF biome-specific parameters representing high and low225

temperature limits for CO2 assimilation, respectively. Thot and Tcold are the monthly mean air temperature of the warmest

and coldest months, respectively, that a DBF biome can cope with, respectively (Boons-Prins, 2010; Bohn et al., 2014; Fischer

et al., 2016; Rödig et al., 2017).

II) Vapour Pressure Deficit stress factor (fVPD): The canopy photosynthesis rate is strongly related to changes of
::
in

vapour pressure deficit (VPD) (Konings et al., 2017; Xin et al., 2019), as photosynthesis declines due to stomata closure (Yuan230

et al., 2019) when atmospheric VPD increases. It can be modelled as follows in Eq. 10 (Jolly et al., 2005):

fVPD(t) = max

✓
min

⇣
1� V PD(t)� vmin

vmax � vmin
,1

⌘
,0

◆
(10)

where V PD(t) is daily vapour pressure deficit, vmin and vmax denote lower and upper thresholds for photosynthetic activi-

ties, respectively. The fVPD value of one indicates no stress on GPP, whereas there is full stress when the fVPD becomes zero;

values between zero and one result in partial and linear reduction on the GPP.235

III) Soil Moisture stress factor (fSM): In general, the impact of soil water deficit on photosynthesis in vegetation models is

represented as a generic soil moisture stress function using either modeled or field observation soil moisture content (Cox et al.,

1999; Granier et al., 2000; Fischer et al., 2016). Here, we use field observations from different vertical soil profiles including

volumetric soil moisture content and soil textural properties (wherever available) to calculate the soil moisture stress factor,

fSM.240

Essentially, the soil moisture influence on plant productivity depends not only on soil moisture over the entire profile but also

on the available soil water to the plant roots. Therefore, to estimate the availability of water to plants, the characteristics of the

root system, including rooting depths and its distribution at different soil depths, are essential factors to be considered (Ostle

et al., 2009). Thus, we include plant rooting distribution in our analysis, following Jackson et al. (1996), to take into account

the root fraction at different soil depths, and weight the soil moisture content layer-wise according to the present fraction of245

roots in that layer. In doing so, we calculated cumulative root fraction (Rci) from the surface to a certain depth (d) in the soil

profile for each layer (i) using the biome specific parameter, � as follows (Eq. 11) (Jackson et al., 1996):

Rci = 1��
di (11)
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Then, using the cumulative root fraction up to each layer, the
:
to

::::::::
estimate

:::
the root fractions in each layer

::::::
fraction

::
in
:::::

each

::::::::
individual

:::::
layer

:
(Rii are estimated and then

:::
(Eq.

::::
12),

:::
we

:::
use

:::
the

::::::::
calculated

::::::::::
cumulative

:::
root

:::::::
fraction

::
up

::
to
:::::
each

::::
layer

:::::::::
subtracted250

::::
from

:::
the

::::::::::::
corresponding

:::::::
fraction

::
of

:::
the

::::::::
previous

::::
layer

::::
(see

::::
Eq.

:::
11).

:::::
Next,

::::
Rii ::

is multiplied with the corresponding observed

soil moisture content of that layer to calculate the soil moisture contribution from each layer individually .
:::
(Eq.

::::
13).

:
Later, by

summing up the soil moisture contributions from all individual layers (✓i), a daily effective soil moisture content, ✓(t), over

the soil column is obtained (Eq. 12-14).

Rii =Rci �Rci�1 (12)255

✓i = ✓i ·Rii (13)

✓(t) = ⌃(✓i) (14)

Similarly to other stress terms, the soil moisture stress factor varies between 0 and 1; and is quantified as follows (Eq. 15).260

fSM(t) = max

✓
min

⇣
✓(t)� ✓r

✓MSW � ✓r
,1

⌘
,0

◆
(15)

where ✓(t) is daily effective soil moisture, ✓r and ✓MSW are water storage corresponding to the permanent wilting point

and the critical point below which transpiration is limited, respectively. ✓MSW, representing minimum soil water content for

unstressed photosynthesis (Hartge, 1980; Granier et al., 1999; Fischer et al., 2014), is calculated as follows:

✓MSW = ✓r + scw · (✓s � ✓r) (16)265

where ✓s is soil water content at field capacity, scw
:::
scw

:
is a constant threshold commonly set at 0.4, and a calibration

parameter in PCM. scw
:::
scw

:
is a physiological threshold defined as critical relative soil water content at which tree transpiration

begins to decrease Granier et al. (1999). According to Granier et al. (1999); Fischer et al. (2016) the scw
:::::::::::::::::
Granier et al. (1999)

:::
and

:::::::::::::::::
Fischer et al. (2016)

:::
the

:::
scw

:
value does not vary significantly between soil and plant species and can be considered as a

constant value. The ✓r and ✓s correspond to soil matric potentials of -1.5 and -0.033 MPa, respectively.270

When the daily effective soil moisture content is above a minimum soil water content (✓MSW; Eq. 16), there is no stress

to limit photosynthesis, while below the ✓MSW point, there is a linear increase in stress as water content decreases until ✓r is

reached. At this point, the soil water stress factor becomes zero with full limitation on photosynthesis and GPP (Harper et al.,

2021).

2.1.3 Canopy respiration275

To allow estimation of daily changes in carbon in the leaf pool (Eq. 1), the release of carbon to the atmosphere from leaf

respiration (Re) has to be calculated. This flux is part of gained carbon (i.e., GPP) consumed for self-maintenance requirements
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in the leaf pool. In fact, canopy net primary productivity (NPPcanopy), which is net available carbon ready to be allocated

among different plant pools, is the sum of photosynthetically
::::::::::::::
photosynthetical carbon uptake by plants (GPP) reduced by

carbon loss via leaf respiration (Re) (Pasquato et al., 2015; Running et al., 2000; Melton and Arora, 2016).280

We use the well-established modified Arrhenius equation (Eq. 17) (Lloyd and Taylor, 1994; Sitch et al., 2003; Perez, 2016)

to calculate the leaf respiration. The Re flux is a function of air temperature, carbon mass of leaf pool, and a tissue-specific

carbon to nitrogen ratio, given as:

Re(t) =
rr ·Bl(t)
CNr

· ep1·
⇣

1
p2

� 1
T (t)+p3

⌘

(17)

where rr represents the leaf respiration rate, Bl the carbon mass of leaf pool (leaf biomass), p1, p2, p3 are parameters in the285

Arrhenius equation, CNr is carbon to nitrogen ratio in leaves, and T is daily mean air temperature.

2.1.4 Vegetation phenology module

We incorporated a phenology submodel into our model using the approach defined in Yue and Unger (2015). This submodel

calculates temperature-dependent phenological factors for spring and autumn, fST and fAT respectively. These factors range

from 0 to 1 throughout the year, to determine the timing of spring budburst (once the spring temperature dependent factor sets up290

to increase above zero), maturity (when the spring temperature-dependent factor approaches to 1), autumn senescence (once the

product of autumn temperature-dependent and photo-period factors start off to decrease below 1), and dormancy phenophases

(once the product of autumn temperature-dependent and photo-period factors approach zero). The second phenological factor

in the autumn and dormancy phenology is photo-period (fdl) factor and depends on day length. The photo-period factor together

with the temperature-dependent factor regulate the leaf senescence. The phenology submodel determines the above-mentioned295

four phenological transition dates on which a simple allocation of assimilated carbon to the leaf pool is based. Below, we

provide details of each phenological factor and events.

I) Spring phenology (fSP): The growing season starts with the budburst day, which is the beginning of canopy development

and the time when green tips of leaf show up. It is estimated using a temperature-dependent phenological factor fST as follows

(Eq. 18):300

fST =

8
<

:
min

�
1,

GDD�Gb
Lg

�
GDD�Gb

0 otherwise

(18)

where GDD is growing degree day ,
:::
and Gb is budburst threshold value,

:
.
:::
The

:
Lg is a parameter for growing length

::::::::
parameter

::
is

:
a
::::::::
calibrated

::::::::
constraint

:
in degree day

:
,
::::::::::
representing

:::
the

:::::
period

::
of

::::
leaf

::::::
growth

::::
from

:::::::
budburst

::
to

:::::::::
maximum

:::
leaf

:::::
cover

:::::::::::::::::::
(Yue and Unger, 2015)

. The accumulation of growing degree day (GDD) (Eq. 19) from winter solstice day is calculated as below:

GDD=

nX

i=1

max(T10 �Tb,0) (19)305
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Where T10 is 10-day average air temperature, Tb is base temperature for the budburst (5�C).

Gb in the estimation of fST (Eq. 18) is a threshold value for budburst to occur and is calculated as follows:

Gb = a+ b · e(r·NCD) (20)

where a, b, and r are parameters for the budburst threshold. NCD is counted as number of chill days between the previous winter

solstice day and the beginning of the successive year. Given the GDD and Gb estimates, temperature-dependent phenological310

factor (fST) is then applied to calculate the spring phenology (fSP) (Eq. 21).

fSP = fST (21)

II) Autumn phenology (fAP): For the autumn phenology the product of two phenological factors, temperature fAT and

photo-period fdl factors, is considered to estimate timing of senescence and dormancy. The autumn temperature-dependent

factor, fAT, (Eq. 22), is obtained as follows:315

fAT =

8
<

:
max(0,1+

(FDD�Fs)

Lf
) FDD Fs

1 otherwise

(22)

where Fs is a threshold in degree day for leaf fall, and Lf is a threshold in degree day for the duration and length of the leaf

falling period (more detail can be found in Yue and Unger (2015)). FDD (Eq. 23) is an accumulative falling degree day from

summer solstice day which is known as a cumulative cold summation method (Yue and Unger, 2015) and it can be calculated

as:320

FDD=

mX

i=1

min(T10day �Ts,0) (23)

where T10day is 10-day average air temperature,Ts is base temperature for leaf fall at 20�C.

In addition to temperature factor fAT, autumn senescence timing is regulated via photo-period factor fdl, which is calculated

based on day length (dl) period, together with lower (dlmin) and upper (dlmax) limits of day length affecting leaf fall as in

Eq. 24.325

fdl =

8
<

:
max(0,

dl�dlmin
dlmax�dlmin

) dl  dlmax

1 otherwise

(24)

Where dl is the day length in minutes. dlmin and dlmax are the lower and upper limits of day length for the period of leaf fall,

respectively. The autumn phenology (fAP) is finally calculated as a product of fAT and fdl (Eq. 25):

fAP = fAT · fdl (25)

The predicted phenological transition dates from spring fSP and autumn fAP phenology factors determine the budburst-330

maturity and senescence-dormancy events, respectively. Based on this information, a fractional allocation to and decay from

the leaf pool is considered (as detailed below).
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2.1.5 Carbon allocation to and decay from the leaf pool

The next step of the carbon pathway in Eq. 1 is allocation to and decay of assimilated carbon from the leaf pool. The leaf

biomass state variable (Bl) in Eq. 1 is updated at a daily time-step, based on changes in gain and loss of carbon in the leaf pool.335

The allocation and decay processes are both key physiological processes in the vegetation models to govern the partitioning of

growth among different plant carbon pools and are critical determinants of plant productivity (Haverd et al., 2016; Xia et al.,

2017). There are two widely used allocation schemes used in vegetation models based on: (1) fixed allocation coefficients, and

(2) allocation driven by allometric constraints. The first scheme uses a fixed allocation ratio to individual plant’s carbon pools

(e.g.,
:
used in CASA (Friedlingstein et al., 1999) or BIOM-BGC(Hidy et al., 2016)

::::::::::::::::::::::::::
BIOME-BGC(Hidy et al., 2022)). In this340

scheme, the allocation ratio is constant within different plant development stages. In the second scheme, a fraction of carbon

is allocated in such a way that it satisfies allometric relationships that exist between various plant compartments (Malhi et al.,

2011; Gim et al., 2017). In the case of allocation to leaf, the allometric relationship is based on the relative mass of canopy –

so-called maximum Lb – that a plant can support with a certain stem mass and height. We adopted an allocation scheme that

mainly depends on an updated daily carbon status of the leaf pool. We use the maximum values of balanced LAI supported by345

the system (Eq. 26) based on a previous study conducted by Fleischer et al. (2013). Instead of considering it as a fixed value,

we vary Lb within a range of ±1m
2
/m

2, and consider it as one of the model parameters.

�(t) = 1� LAI(t)

Lb
(26)

Where �(t) is the carbon allocation ratio to the leaf pool and Lb is the maximum LAI that can be supported by plants.

Provided with the identified major phenological transition dates from the phenology submodel – i.e., budburst, maturity or350

steady growth, senescence, and dormancy – the calendar year is accordingly divided into four main stages. During the early

growing season, once the climate condition becomes favourable to plant growth and
:::
the budburst occurs, carbon allocation to

leaf, � (Eq. 26), is relatively a large fraction. This means that the largest part of carbon will be partitioned towards leaf and is

being used for growth during the early growing season (Gim et al., 2017). Given the value for balanced LAI supported by the

system (Fleischer et al., 2013), the carbon allocation slowly decreases with an increase in LAI until the leaf mass reaches that355

balanced LAI. As soon as the canopy approaches a full leaf state (i.e. maturity phenophase), the carbon allocation ratio to the

leaf is held at its minimum – a small portion is used for maintenance respiration during this steady growth stage. We set the

leaf allocation ratio during the maturity phase to a value of 5% from the assimilated carbon, following the recent version of the

Noah-MP model’s leaf allocation scheme (Gim et al., 2017).

After the steady growth and maturity phase, the leaf senescence phase approaches and the leaf-loss processes start to play360

the main role in moderating the mass-balance of canopy and the corresponding LAI seasonality. The loss of carbon via the leaf

fall in PCM is simulated based on the calculated senescence and dormancy transition dates via the phenology submodel, such

that when the simulation time-step approaches to the senescence date, the model linearly decreases the leaf biomass until the

leaf biomass reaches to nearly zero at the beginning of the dormancy phase.

Concerning the leaf loss processes, PCM also accounts for the leaf losses due to cold stress (OC) (Eq. 27), drought stress365

(OD) (Eq. 29), and normal loss of the leaf (ON ) (Eq. 30) following schemes of the CLASSIC model (Melton and Arora, 2016).
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The leaf loss due to the cold stress is given by:

OC(t) =OCmax · (Cs(t))
3 (27)

where, OCmax is the maximum leaf loss rate parameter and Cs is a cold stress factor value. The cold stress factor (Eq. 28),

ranging between 1 (full stress) and 0 (no stress), is calculated as:370

Cs(t) =

8
>><

>>:

1 T(t)  (Tc � 5)

1� T(t)�(Tc�5)

5
(Tc � 5) < T(t) < Tc

0 Tc  T(t)

(28)

where T(t) is air temperature and Tc is a biome specific temperature threshold below which leaf damage is expected.

Similar to the OC , the leaf loss rates due to drought stress OD (Eq. 29) is calculated using the fSM stress factor (through the

soil moisture stress submodel) and a OCmax maximum leaf loss rate parameter associated with the drought stress.

OD(t) =ODmax · (1� fSM(t))
3 (29)375

The third leaf loss term represents the loss rates due to a Normal decay ON driven by biome specific leaf lifespan (⌧ = 1 for

DBF in Eq. 30) given by:

ON(t) = 1/(365 · ⌧) (30)

Finally, the total decay of leaves D(t) consists of contributions from all individual losses (Melton and Arora, 2016); and can

be given as follows (Eq. 31):380

D(t) = Bl(t) ·
�
1� e

�(OC(t)+OD(t)+ON(t))
�

(31)

where OC, OD, and ON are the leaf loss rates due to cold stress, drought stress, and normal decay, respectively.

In summary, the proposed PCM model comprises the submodels mentioned above in a hierarchical chain, starting with the

carbon uptake via the initial leaf biomass state variable and continues with daily partitioning of that assimilated carbon together

with daily decay from leaf compartment to calculate the leaf biomass production increment. This biomass increment is later385

added up to the state variable from the previous time step to update the leaf biomass for the current time step. Finally, to update

the LAI that is required for the GPP estimation over the next time step, the current leaf biomass is converted to LAI according

to Eq. 2.

2.2 Model set-up and experimental design

2.2.1 Study sites and datasets390

This study focuses on deciduous broad-leaved forests biome type and
::::
forest

::::::
biome

:::::
types.

:
We selected tower sites distributed

over Europe and North America to ensure a representative spatial coverage. Sites were excluded if data of fewer than five years
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:::::::::
consecutive

:::::
years

::
of

:::::::::::
observations

:
were available. We further screened out the data at each site to the years with minimal gap

in input data, in particular,
:
.
:::
For

::::::::
example,

::::
there

:::::
were

:::::
some

::::
long

:::::
period

:::
of

::::
gaps

::::
(i.e.,

::::::
years)

:::::
within

:::
the

:::::::::::
continuously

::::::::
recorded

:::::::::
FLUXNET

::::::
dataset

:::
for

:
photosynthetic photon flux density variable and its associated frequent and long missing data at some395

sites
::::::
(PPFD),

::::::
which

:::
we

::::::::
excluded

:::::
those

::::
years

:::
in

:::
the

::::::::::
simulations

:::::
(e.g.,

:
a
::::::::::
continuous

:::::
period

:::
of

:::::::
missing

:::::
PPFD

::
in

:::
the

::::::::
US-Ha1

::::::
dataset

::::
from

::::::::::
1991-2003).Applying the above criteria, nine sites with varying temporal coverage were retained for the analyses

(Fig. 2). The general site information is presented in Table 1. Daily flux and meteorological forcing data are from ecosystem

stations available from the free fair-use FLUXNET2015 Tier 1 global collection database (https://fluxnet.org/data/download-

data/, last access: June 2021) (Pastorello et al., 2020). The input data required to drive the PCM comprises: air temperature (T),400

photosynthetic active radiation (PAR) (i.e. converted from PPFD in µmol m
�2

s
�1) and vapor pressure deficit (VPD) (Table 2).

The tower-based GPP estimations, GPP_NT_VUT_REF from the FLUXNET2015 dataset are used for model calibration. We

used the first year of the time series as a warm-up period, during which the chilling days and thermal requirement in
:::
the

phenology submodel are counted. Optional variables to establish the model include
::
In

::::
other

::::::
words,

:::::
since

::
the

:::::::::
phenology

:::::::
module

::
for

:::::
each

::::::::
individual

::::
year

::::::
needs

:::
the

::::::
number

:::
of

:::::::
chilling

::::
days

::::
from

:::
the

::::::::
previous

::::
year,

::::
the

::::
very

:::
first

:::::
year

::
of

:::::::::::
observations

::
is

:::
not405

:::::::
included

::
in

:::
the

::::::::::
simulations.

::::
The

::::
very

:::
first

::::
year

::
of

:::::::::::
observations

::
is

::::
only

::::
used

:::
for

::
to

:::::::
calculate

::::::::
budburst

:::
day

::
of

:::
the

::::
first

:::::::::
simulation

::::
year.

:::
The

:::::
warm

:::
up

::::::
period,

::::
here,

:::::
refers

::
to

:::
the

:::
last

:::
10

::
to

::
11

:::::
days

::
of

::::
each

:::::::
previous

::::
year

:::
that

:::
are

:::::::::
eventually

:::::::
required

:::
for

:::::::::
estimating

:::::::
variables

::
in

:::
the

:::::::::
phenology

:::::::
module

:::
for

::
its

::::::::::::
uninterrupted

:::
run

::
in

:::
the

::::::::::
subsequent

::::
year.

::::::
When

:::::::::
simulating

:::
the

:::
soil

::::::::
moisture

:::::
stress

::
in

::::::::::
establishing

:::
the

:::::
model

::
is

:::::::
desired, soil moisture (SM) and soil textural properties , are required to simulate the soil moisture

stress development. However, we
::
are

::::
also

::::::::
included.

::::
We investigate the soil moisture stress impact only at the Hohes Holz410

(DE-HoH) site in Germany with soil moisture data available up to 80 cm depth. In regard to calculating the soil moisture

stress in PCM, a pedotransfer function following Zacharias and Wessolek (2007) is implemented to estimate site-specific ✓s

and ✓r values. This (pedotransfer) submodel receives soil textural properties (sand, clay contents, and bulk density) obtained

from field observations of spatially distributed soil profiles as input. It provides the required field capacity (✓s) and permanent

wilting point (✓r) to calculate ✓MSW and the corresponding soil moisture stress term fSM in the calculation of ✏ (Eq. 5). To415

maintain the consistency with the vertically weighted soil moisture, ✓s and ✓r are estimated as weighted average values of

individual layer-specific ✓s and ✓r taking the respective root fractions as a weighting factor. Other required parameters in the

model related to different processes, are listed in Table 3. The LAI field measurements were collected
:::::::
obtained

:
via personal

communication to site contact persons; and based on the responses a subset of 4 sites (DE-HoH, DE-Hai, US-MMS, and

US-Ha1 (https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=hf069, last access: 05 January 2022))420

are used
:::
was

:::::::
selected

:::::
based

:::
on

::::
data

::::::::::
availability

:
to evaluate the modeled LAI. The observation-based LAI measurements

are
::::
data

::::
were

:
obtained using common procedures of

::::
with

:::::
either

:::
the

:
LAI-2000 instrument (Gower and Norman, 1991) and

fisheye technique (Bonhomme, R. and Chartier, P., 1972)
:::::::::::::::::::::::
(Gower and Norman, 1991)

:
at

:::
the

::::::::
DE-Hai,

:::::::::
US-MMS,

:::
and

::::::::
US-Ha1

::
or

:::
the

::::::
fisheye

::::::
(DHP)

:::::::::
technique

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
((Bonhomme, R. and Chartier, P., 1972; Ariza-Carricondo et al., 2019)

:
)
::
at

:::
the

::::::::
DE-HoH

::::
site,

::::::::::
respectively. These two methods are considered as the closest methods yielding similar values among other techniques and,425

therefore, provide consistent measurements
:::::
agree

::::
very

::::
well

::::::::
according

::
to

:::::::::::::::::::::::::
Ariza-Carricondo et al. (2019)

:::
and

:::
are

::::
thus

:::::::::
considered

::
to

::::
yield

::::::::::
comparable

:::::
values

::::
also

::::::
across

:::::::
different

::::
sites

:
(Ariza-Carricondo et al., 2019).
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2.2.2 Model structure and set up

The impact of water availability on the canopy photosynthesis (i.e., soil water deficit and atmospheric water deficit), in veg-

etation models is structured in two ways;
:
:
:
individually or in combination with each other.

:::::::
Recently,

:::::
plant

::::::::
hydraulic

::::::
theory430

:::
has

:::
also

:::::
been

:::::::::
introduced

::
to

:::::
reflrct

:::
the

:::::::::
vegetation

:::::
water

:::::
stress

::
in

::::::::::
Community

:::::
Land

:::::
Model

::::::::
(CLM5),

:::::
which

::
is
:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

:::::
study

::::::::::::::::::
(Kennedy et al., 2019)

:
.
:
In some models, water stress is quantified as an overall stress from both atmosphere and

soil-moisture (GLO-PEM; Prince and Goward, 1995), (Biom-BGC; Hidy et al., 2016), while some
:::
soil

::::::::::::::::::::::::::::::::
((GLO-PEM; Prince and Goward, 1995)

:
,
:::::::::::::::::::::::::::
(BIOME-BGC; Hidy et al., 2022)

:
).
:::
For

::::::::
instance,

::
in

::
the

::::::::::
GLO-PEM

:::::
model

:::
the

:::::
water

::::
stress

::::::::
condition

::
is

:::::::
reflected

:::
by

::
an

::::::::
estimated

:::
and

::::::::
potential

::::::::::::::::
evapotranspiration,

:
a
:::::::
relative

::::::
drying

:::
rate

::::::
scalar

:::
for

::::::::
potential

:::::
water

:::::::::
extraction,

:::
and

::
a
:::::::::
volumetric

::::
soil

::::::::
moisture435

::::::
content

:::::
(more

::::::
details

:::::::
together

::::
with

::::::::
equations

::::
can

::
be

:::::
found

::
in
:::::::::::::::::

(Zhang et al., 2015)
:
).
:::::
Some

:
other models account for the water

stress due to either
::::
only

:::
due

::
to the atmospheric drought (CASA; Potter et al., 1993),

:::::::::::::::::::::::
((CASA; Potter et al., 1993)

:
,
:::::::::::::::::::::::::::::::::
(MOD17 algorithm; Running et al., 2000)

:
).
::::
For

:::::::
example,

:::
in

:::
the MOD17 algorithm(Running et al., 2000)) or soil moisture drought (EC-LUE; Yuan et al., 2007),

:::::
only

::
the

:::::::::::
atmospheric

:::::::
variable

::::
VPD

::::
and

::
its

:::
two

::::::::::
parameters,

:::::
vmin:::

and
::::::
vmax,

::
are

:::::
used

::
to

:::::::
calculate

:::::
water

:::::
stress

:::::
factor

::
to
:::::::
predict

::::
GPP

::::::::::::::::::
(Running et al., 2000).

::
In

:::::
some

:::::
other

::::::
models

:::::
such

::
as

::::::::::
FORMIND

::::::::::::::::::
(Fischer et al., 2016)

::
and

::::::::
EC-LUE

::::::::::::::::
(Yuan et al., 2007)

::::
only440

::
the

::::
soil

::::::::
moisture

:::::
deficit

::
is
:::::::::

reflected.
:::
For

::::::::
instance,

::
in

:::
the

::::::::::
FORMIND

::::::
model,

::::
the

::::::
impact

::
of

:::::::::::
atmospheric

:::::
water

:::::
deficit

::::::
(VPD

::::::
impact)

::
is
::::
not

:::::::::
presented;

:::
but

:::
the

::::
soil

:::::::
moisture

::::::
deficit

::
is
::::::::::

represented
:::

by
:::::::::
volumetric

::::
soil

:::::
water

:::::::
content

::::
and

:::
soil

::::::::::
parameters

::::
(soil

::::
field

:::::::
capacity,

::::::::::
permanent

::::::
wilting

:::::
point,

::::
and

::::::::
minimum

::::
soil

:::::
water

:::::::
content). In order to determine, how stress should be

represented in the final version of PCM, we conduct
::::::::
conducted

:
two sets of preliminary model experiments to examine: (1)

whether inclusion of fSM, additionally to the other stress factors affects the results, and (2) the effect of alternative integration445

approaches (i.e. Liebig law and multiplicative approaches, see Section 2.1.1) on simulated GPP over the DE-HoH site during

the drought
:
in

:
2018. Since the best model skill of the PCM was achieved, when incorporating all stress factors (fT, fVPD, and

fSM) in the calculation of the overall environmental stress; and using the minimum integration approach (Eq. 6), this structure

was selected for the final setup (see Figures in Supplement, Figure S1 and Figure S2). With regard to specific considerations in

LAI simulations, the model starts with the simulation using a fixed initial LAI state variable to begin the carbon assimilation450

once weather conditions become more favourable for plant growth. Following the CABLE model parameterizations (Li et al.,

2018), we set the initial LAI value to 0.35. We also consider a local maximum LAI (so-called Lb in this study), obtained from

reported values in literature (Fleischer et al., 2013), that individual mature forest can sustain at canopy closure. However, the

local maximum LAI is, later in the calibration step, allowed to vary within ±1m
2
m

�2 of the reported value. The Lb constrains

the simulated LAI up to the reported value at each site across years.455

2.2.3 Global sensitivity analysis

Despite the simplicity of parsimonious models, assessing model robustness remains a fundamental step when building and

developing a model. One of the powerful and invaluable tools for robustness assessment is global sensitivity analysis (GSA) to

test the underlying model parameterizations and inform about sensitive model parameters for the subsequent parameter infer-

ence. In general, the GSA can be performed to understand the influence of parameters perturbations on modeled simulations460
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and to determine the informative parameters that contribute the most to an output behavior (Iooss and Lemaître, 2014; Cuntz

et al., 2016; Rakovec et al., 2014). In this study during the GSA, the parameters vary over boundaries reported in literature’
:::
the

::::::::
literature’s. In case there were no bounds

:::::
reports

::
of

:::::
upper

::::
and

:::::
lower

::::::
bounds

:::::
were available for some parameters (e.g., pheno-

logical parameters from Yue and Unger (2015)), we varied them at ± 20% level of their default values. We utilize the Sobol’

variance-based sensitivity method (Saltelli et al., 1999) with Sobol2002 formula (Saltelli, 2002), in which decomposition of465

the output variance is performed in terms of Sobol’ indices. The Sobol’ First order index (Si) and total-order Sobol’ index

(ST) express the share of output variance associated with a given parameter i and the share of output variance where all pa-

rameters are varied except the parameter i, respectively. These indices range between 0 to 1; with zero value indicating that

the model output is entirely insensitive to the respective parameter changes. The closer the value
:
is
:
to 1, the more important

and sensitive the respective parameteris. Generally, the model parameters deem sensitive, if the sensitivity index is above a470

certain threshold value. Here in this study, we report the total-order Sobol’ index and set the selection threshold at 1% (Tang

et al., 2007), meaning that if the variation of a given parameter contributes to a change greater than 1%, then that parameter is

recognized as an informative parameter. In contrast, non-informative parameters are reported as parameters with Sobol’ indices

below 1%. Given the focus of the present study on two main output variables (i.e. GPP and LAI), we use the time mean for

both outputs over the entire period for the sensitivity analysis at each study site. However, the results are expected to differ not475

only according to the site and selected target output but also between the individual years if a specific year is of interest to be

investigated (Göhler et al., 2013; Hou et al., 2012). To conduct the sensitivity analysis, we opt to choose all coefficients in the

empirical equations as adjustable parameters (Table 3). It helps to explore the model sensitivities of often hidden parameters

to properly constrain the model (Cuntz et al., 2016). Overall, we apply the global sensitivity analysis in all study sites for the

common 29 parameters and analyse the sensitivity of the soil moisture stress parameters together with other parameters only480

for the DE-HoH site at which representative soil moisture data at different depths, down to 80 cm into the soil, was available.

Given the importance of the number of model evaluations required to conduct the Sobol’ sensitivity analysis (Nossent and

Bauwens, 2012) and the stability of sensitivity indices, we also check the convergence of the Sobol’ indices through a visual

assessment of diagnostic plots.

2.2.4 Parameter estimation485

Based on the results of sensitivity analysis, informative and non-informative parameters are identified. Later, we fixed the

non-informative parameters to their corresponding reported values in literature (see Table 3 for details) and the remaining

informative parameters are inferred using a Monte Carlo approach (Kuczera and Parent, 1998). The parameters were calibrated

against the GPP_NT_VUT_REF time series from the corresponding flux tower measurements (global Fluxnet Tier1 network

accessed on 13 February 2021) (Pastorello et al., 2020). It is important to note that besides the maximum LAI value we did490

not use LAI field observations in the calibration process as LAI is not readily available from the FLUXNET dataset. Instead

some LAI observations (obtained from site contacts) were used in the model verification
::::::::
validation

:
step. The first year of

the dataset is considered a spin-up period. The rest of the time-series are divided into two sub-periods. The first half is used

for the calibration phase, and the remaining years to independently evaluate the model performance (i.e., over the out-of-
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calibration set). A total of 10 000 parameter sets was sampled from their a priori defined ranges (Table 3) in each study site to495

estimate the parameters and simulate the GPP flux and LAI. Model performance was quantified using a group of performance

metrics, including Kling-Gupta efficiency (KGE) (Gupta et al., 2009), Root Mean Square Error (RMSE), and coefficient of

determination (Rr2). We selected an ensemble of informative model runs that simultaneously lie within the top 5% of all the

performance metrics.

2.2.5 Site-specific verification
::::::::
validation

:
and model generalization500

The second half of the GPP time series at each study site was used for the model verification
::::::::
validation

:
step. In addition to the

at-site verification
::::::::
validation, it is also equally important to consider the generality of the model structure including underlying

model parameterizations. To this end, we considered an independent (spatial) verification
::::::::
validation approach – so called cross-

validation – for assessing the robustness of model parameterizations beyond the conditions during which they were calibrated.

The relevance of the cross-validation to the modeling framework, is that transferable models can be used beyond the spatial505

and temporal limits of their underlying data, especially in the face of pervasive scarcity of observational data to constrain

model parameterizations (Yates et al., 2018). Therefore, as the next step in our modeling framework, and after performing the

site-specific calibration and verification
:::::::
validation, a cross-validation of the model is conducted to come up with a compromise

solution (here parameter set) applicable across the study sites, following the approach of Zink et al. (2016). In doing so, the

behavioral parameter sets found from on-site calibration for each study site are grouped together as one unique set of all510

possible behavioral parameters. Then the model is run using all possible parameter sets and the respective performance metric

(i.e., KGE) for each parameter set at each investigated site is estimated. After that, the mean values of KGEs corresponding to

each parameter set over all study sites are calculated. Finally, a set of parameters associated with the highest mean KGE score

is recognised as a compromise solution. Here the goal of this analysis is to investigate the generality of the underlying model

structure, and to allow inference of a common (compromise) set of model parameters for the PCM for a broader applicability515

(i.e., beyond the calibration sites).

3 Results and Discussion

In the following, we first show and discuss findings from the global sensitivity analysis and site-specific parameter calibration.

This is followed by a discussion of the site-specific model performance. Finally, we present the results of a cross-validation to

test the generality of underlying model parameterizations. This also allows us to propose a standard set of PCM parameters for520

locations where calibration is not possible.

3.1 Sensitivity analysis

Here, we explore the sensitivity of the output variables (i.e. GPP and LAI) to the model parameter variations using Sobol’

method at each study site. Although a direct comparison of PCM parameters sensitivities from this study with similar models

in other studies is difficult due to difference in model structures and representation of photosynthesis processes, one can gain525
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insights by comparative assessments among conducted studies. For instance, the light utilization in LUE-oriented GPP models

is based on photon absorption and photosynthetic efficiency of incident light (Frost-Christensen and Sand-Jensen, 1992).

Hence, one can compare the significance of the LUE parameter of our model with that of the quantum yield of photosynthesis

which is a measure of photosynthetic efficiency in the Farquhar equation (Farquhar et al., 1980) in several land surface models.

As it can be seen from Figure 3a (mean GPP) and b (mean LAI), different sensitive parameters are associated with the different530

output variables. However, for the same output variable, all sites more or less share a similar informative set of parameters,

although the magnitudes differ.
:::::::::::
Furthermore,

:::
the

:::::::::
evaluation

:::
of

::::::
Sobol’

::::::
indices

:::::::::::
convergence

::::
(see

::::::
Figure

::
4)

:::::::
showed

:::::::
relative

::::::
stability

:::
of

::::::::
sensitivity

:::::::
indices

::
at

::::::
around

::::::::::
8 000 model

::::::::::
evaluations.

:
In the following, we show and discuss the sensitivity of the

model outputs to different PCM parameters.

3.1.1 Parameter sensitivity for GPP estimation535

We first investigate the sensitivity of GPP output to the model parameters. Figure 3a shows the total-order Sobol’ index of all

parameters contributing to the GPP output. The boxes in Figure 3a indicate variation of the sensitivity of a given parameter

across different sites. Only a small number of them have ultimate control on the simulated GPP out of the 34 model parameters

(Figure 3a). This is in agreement with previous studies using LPJ-DGVM (Zaehle et al., 2005), BETHY (White et al., 2000),

and BIOME-BGC (Knorr, 2000) models showing only a few of investigated parameters significantly influence the modelled540

carbon fluxes outputs (including GPP).

The most sensitive parameter for the GPP estimates turned out to be the light use efficiency, LUE in (
:::::
LUE

::
in

:
Eq. 3).

This agrees with numerous other studies confirming that the light use efficiency is a significant parameter affecting GPP.

For instance, Zaehle et al. (2005) conducted a probability-based sensitivity analysis using the LPJ-DGVM ecosystem model,

utilizing
:::
the Farquhar photosynthesis scheme, and found that carbon fluxes (including GPP) are highly sensitive to parameters545

related to
:::
the

:
photosynthesis process, particularly the intrinsic quantum efficiency parameter (so called ↵q in their model),

which is related to the LUE
::::
LUE

:
in PCM. Similarly, Ma et al. (2020) using a GSA in the Flux-based Ecosystem Model

and based on the Farquhar photosynthesis scheme, found canopy quantum efficiency of photon conversion among the most

sensitive parameters with a strong influence on forest GPP. The multiplicative coefficient of canopy reflectance, C
::
C, and the

light extinction coefficient, k
:
k, parameters in the fPAR formulation (Eq. 4) based on Lambert-Beer’s law show also

:::
also

:::::::
showed550

substantial sensitivities. Notably, these parameters are typically fixed to constant values by default in the fPAR formulation ,

controlling PAR availability and utilization, in similar studies Xiao et al. (e.g. 2004); Xin et al. (e.g. 2019).

::::
(e.g.,

:::::::::::::::
Xiao et al. (2004)

:::
and

::::::::::::::
Xin et al. (2019)

:
);

::::::::
whereas,

::::
here,

:::
we

::
let

:::::
these

:::::::::
parameters

:::
(C

:::
and

::
k)

::::
vary

::
at
::::::
±20%

::::
level

:::
of

::::
their

::::
fixed

::::::
values.

:
The next group of sensitive parameters are those involved in the imposed environmental stresses on GPP: I) The

vmin parameter (Eq. 10) exhibits some sensitivity and controls the impact of vapour pressure deficit stress on simulated GPP555

(fVPD). Balzarolo et al. (2019) also reported the
:::::
strong impact of VPD variable in general on radiation use efficiency and on re-

sultant GPP. II) Next
::
the

::::
next environmental factor constraining the GPP is soil moisture stress. Here, we identify � (Eq. 11) and

✓r (Eq. 15) as sensitive parameters. We can only consider and discuss the soil moisture stress-related parameters in
::
at the DE-

HoH site due to the lack of soil moisture data at other sites. The investigated sensitivity of fSM-related parameters are shown in
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the supplementary Figure S3. Similar findings of a pronounced impact of parameters controlling soil moisture availability (e.g.,560

✓r and �) on simulated GPP has been reported by Li et al. (2016) for the CABLE and JULES models. From a soil science per-

spective, the ✓r is often a fixed value of soil water content corresponding to
:
a soil matric potential of 1500 kPa (Zhang and Han,

2019) and is typically not considered as a parameter. However, our result shows that the ✓r might not be considered as fixed.

While the functional form of ✓r can be deduced based on pedo-transfer functions (Zacharias and Wessolek, 2007), empirical

coefficients of such functions representing the linkages between ✓r and
:::::::::::
Pedo-transfer

::::::::
functions

::::::
(PTFs)

::::
link soil textural prop-565

erties (e.g., sand, clay contents) can
::
to

:::
soil

::::::::::
parameters

::::
(e.g.,

::::
✓r)

:::
and

:::::::
various

:::::::::
functional

:::::
forms

::::
have

:::::
been

:::::::::
developed

::
in

::::
past

::::::
decades

:::::::::::::::::::
(Van Looy et al., 2017)

:
.
::::::::
Empirical

::::::::::
coefficients

::
of

:::::
PTFs

::::
can

:::
also

:
be regarded as model parameters (Samaniego et al.,

2010; Kumar et al., 2013; Schweppe et al., 2021).
:::::::::::::::::
Hirmas et al. (2018)

:::
also

:::::::
showed

:::
that

::::
soil

:::::::
retention

:::::::::
properties

:::
can

:::::::
change

::
in

::::
time.

::::
For

::::::::
example,

::::::
climate

::::::
change

:::::
may

::::::
induce

::::
rapid

:::::::
changes

:::
in

:::
the

:::
soil

::::::::::::
macroporosity

::::
and

:::
the

:::::::::
associated

::::
soil

::::::::
hydraulic

::::::::
properties.

::::::
Those

::::
may

::::
alter

:::
the

::::::::
feedback

:::::::
between

::::::
climate

:::
and

::::
land

:::::::
surface.

:
570

The SLA
::::
SLA

:
parameter (Eq. 2), as one of the structural parameters, is also a major contributor to the simulated GPP. Its

sensitivity can be explained by the direct effect of SLA on
::
the

:
LAI calculation (Eq. 2) through which the carbon assimilation

(GPP) is eventually taking place (Eq. 4, 3). Arsenault et al. (2018) and Li et al. (2016) also reported the SLA
::::
SLA

:
parameter

among very sensitive model parameters, when simulating carbon fluxes (including GPP) in the Noah-MP and CABLE land

surface models, respectively.575

Finally, the last group of sensitive parameters in modeled GPP are those involved in the phenology submodel. The parameter

Fs (Eq. 21), determining the timing of leaf fall, appeared as a major informative parameter for all sites. Although, some param-

eters were only sensitive in
::
at some sites including those for the leaf budburst threshold- namely, b and r

:
b
:::
and

::
r (Eq. 19). The

b
:
b
:::::::::
parameter appeared sensitive only at DE-HoH and the parameter r

:
r is sensitive at CA-Oas and US-Oho. Generally, the im-

plemented phenology submodel controls the plant active period and at the same time accounts for the impact of
:::
the temperature580

factor on leaf development and resultant GPP. This might be a reason why temperature-related parameters in the temperature

stress factors (Eqs. 8 and 9) are not found to be informative in the sensitivity analysis. This is because temperature mainly

controls the start and end
:
In

:::::
other

::::::
words,

::::::::::
temperature

:::::
stress

:::::
limits

:::
the

:::
co2::::::::::

assimilation
::::
and

::::
gross

:::::::
primary

::::::::::
productivity

:::::::
outside

of the growing seasonin the phenology submodel.
:::::::::
Phenology

::::::::::
parameters

::::
play

::::
their

::::
roles

::::::
during

:::
the

:::::::
growing

::::::
season. This pe-

riod indicates favourable condition for plant growth when the temperature stress is mostly not active. Therefore, corresponding585

::::::::::
temperature

:::::
stress

:
parameters do not significantly influence the modelled GPP. In agreement with our results, Yuan et al.

(2007) also reported little impact of environmental stresses due to temperature on GPP during the growing season.
::
It

::
is

:::::
worth

:::::::::
mentioning

::::
that

:::
the

::::::::::
temperature

:::::
stress

::
is

:::
still

:::::::
applied

::::::
during

:::
the

:::::::
growing

::::::
season,

:::
but

:::
as

:::
the

:::::::::
upper-most

:::::
limits

:::
of

::::::::::
temperature

:::::::
(Tlow=-2

::::
and

::::::::
Thigh=38

:::
�C)

:::
do

:::
not

:::::
occur

:::::::::
frequently,

::::::
unless

:::::
during

:::::
cold,

::::
heat

::::::
stresses

:::::
(such

:::
as

:::
heat

:::::
years

::
in

:::::
2018

:::
and

:::::
2019

::
at

::
the

::::::::
DE-HoH

:::::
site),

:::
the

::::::::
sensitivity

::
of

:::::
GPP

::
to

::::::::::
temperature

:::::::::
parameters

:::
are

:::
less

::::::::::
pronounced

::::::
during

:::
the

:::::::
growing

::::::
season.

:
590

Another interesting point emerging from Figure 3a is the insensitivity of GPP output to the LAI balanced (maximum),

Lb. This effect can also be seen in
:::
the

:
LAI simulation (e.g., at DE-HoH site) where a group of daily LAI at

:
an

:::::::::
ensemble

::
of

::::::::
simulated

::::
LAI

:::
at

::::
each

::::
time

::::
step

:::::::
during the maturity phase,

:::::
(i.e., in Figure 7lead to not much of the

:
),

:::
did

:::
not

::::::
cause

::::
much

:
difference in the corresponding GPP outputs

:::::
output (i.e., in Figure 5

:
). This is in agreement with the previous stud-
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ies of Lee et al. (2019); Jung et al. (2007)
:::::::::::::::
Jung et al. (2007)

:::
and

:::::::::::::
Lee et al. (2019), which showed that GPP output saturates and595

becomes insensitive at LAI values above 4 m
2
m

�2.

3.1.2 Parameter sensitivity for LAI estimation

We further explore the parameter sensitivity for LAI output similar to the GPP described above. In general, a similar set of

sensitive parameters were identified for GPP and LAI outputs across sites (Figure 3b). However, some differences were also

detected: parameters such as Lb, fcov , Lg , p2, and p3 show substantial sensitivity, while the sensitivity to vmin was almost600

negligible. Regarding the similarity of parameters between GPP and LAI, it is worth noting that the calculations of GPP and

LAI depend on each other since assimilated carbon (i.e.,GPP) is partly converted to leaf biomass from which the LAI is

calculated, and used in turn for the GPP calculation in the next time step. Therefore, LAI output should roughly be sensitive

to the same set of parameters as the GPP output. The result in Figure 3b shows that LUE, C, and k
:::::
LUE,

::
C,

::::
and

::
k, directly

involved in the GPP formulation, have considerable influence on the LAI output. These parameters, in particular the LUE,605

strongly control the assimilated carbon and consequently affect the modelled LAI.

Figure 3b also shows a major contribution of SLA
::::
SLA

:
(Eq. 2), fcov (Eq. 2), and Lb (Eq. 24) to the LAI output. Similarly to

the LUE
:::::
LUE for GPP, the SLA

::::
SLA is central for the calculation of LAI (Eq. 2) and thus shows by far the largest sensitivity.

Since the LAI output in the model depends on GPP, the studies reporting the SLA
::::::::
mentioned

:::::
above

::::::::
reporting

:::
the

:::::
SLA impact

on GPP might
::::
likely

:
apply for LAI output as well (Li et al., 2016; Arsenault et al., 2018). The fcov parameter represents610

the fractional vegetation coverage per unit area and is a critical parameter in calculating forest GPP (Ma et al., 2015). Ma

et al. (2015) assumed 100% forest coverage in their calculation of GPP, from which LAI was calculated. They showed how

this inappropriate assumption (i.e., 100% forest coverage) can exaggerate the forest area when calculating forest GPP (and

consequently the LAI) rather than considering a realistic coverage. Here in the PCM, the fcov parameter is allowed to vary

between 60% to 95% as an adjustable parameter (based on
::
the

:
Fluxnet2015 Dataset description of percent coverage greater615

than 60% at DBF sites; http://sites.fluxdata.org/). We observe that fractional vegetation coverage substantially influences the

simulation of LAI. In agreement with Ma et al. (2015), our result supports the importance of the fractional coverage (fcov)

as an important structural parameter in carbon cycle modelling studies. The Lb parameter (Eq. 24), also exhibits a marked

sensitivity for the LAI output (Figure 3b) because this parameter is a direct factor allowing the canopy to
::
it

::::::
directly

::::::
affects

::::
how

::::
long

::::::
carbon

::::::::
allocation

::
to

:::
the

::::
leaf

::::
pool

::::::::
continues

::::
until

:::
the

::::::
canopy

::::
LAI

:
reach to its maximum . Next important contribution of620

parameters to
::::
value

::
at

::::::
canopy

:::::::
closure

:::
(see

::::
(Eq.

::::
26).

:::::
Other

::::::::::
parameters the LAI output

:
is
::::::::

sensitive
::
to

:
are those governing the

leaf phenology in the phenology submodel, Lg (Eq. 18), Fs (Eq. 22), b b
:
(Eq. 20), r

:
r (Eq. 20) (

:::
i.e.,

::
in

:
Figure 3b). To the best

of our knowledge, these parameters have not been studied elsewhere within a sensitivity analysis framework, and therefore we

could not perform any comparative assessment. Parameters b and r
:
b
::::
and

:
r
:
contribute to the simulation of leaf budburst day, Fs

contributes to the identification of leaf fall day, and Lg parameter influences the LAI output estimation through its influence on625

the length of the growing season. The Fs parameter exhibits higher sensitivity and a larger between-site variation than other

parameters (Figure 3b). This parameter represents the necessary amount of cold accumulation
:
a
:::::::
coldness

::::::::
threshold

:::
for

::::
leaf

:::
fall

in degree dayto trigger the leaf fall event
:
.
:
If
:::

the
::::::::::

cumulative
::::
cold

::::::
degree

::::
days

::::
from

:::::::
summer

:::::::
solstice

::::::
(FDD)

::::::::
becomes

::::
equal

:::
or
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:::
less

::::
than

:::
this

:::::::::
threshold,

::::
then

:::::
leaves

::::
start

::::::
falling

:::::
(more

:::::
detail

:::
can

:::
be

:::::
found

::
in

:::::::::::::::::::
(Yue and Unger, 2015)). For instance, lower cold

degree days accumulation
:
a
::::::
higher

::::::::
threshold would lead to an early leaf fall and leaf shedding

::::::::
shedding,

:::::::::
especially

::
in

:::
the

::::
cold630

:::::::
climates

:::::
where

::::::::::
cumulative

::::
cold

:::::
degree

:::::
days

:::
can

:::
be

::::::
reached

:::::
faster. Therefore, the between-site

:::::::
between

:::
site

:
variation of this

parameter might not be
::
is

:::
not surprising, given the differences in temperature and accumulated cold degree days among study

sites.

Other additional parameters that showed sensitivity for the LAI output are p2, and p3 (Eq. 17). These parameters belong to

the canopy respiration process in the modified Arrhenius equation (Eq. 17). They are typically considered as fixed parameters635

:
(e.g., in TETIS-VEG model (Perez, 2016), in LPJ-ML model (Schaphoff et al., 2017)

:
), while here we varied these parameters

within 20% of their nominal value. Notably, these parameters showed greater sensitivity for the LAI estimation than that of the

GPP. It might partly be due to the reduced
:::::
/raised

:
assimilated carbon (GPP) by canopy respiration whichin turn might decrease

:
,

::
in

::::
turn,

:::::
might

:::::::::::::::
decrease/increases

:
the available carbon to be allocated to leaf biomass and affect the resultant LAI. Furthermore,

the evaluation of Sobol’ indices convergence (see Figure 4) showed relative stability of sensitivity indices at around 8 000 model640

evaluations.
::
In

:::::::
addition

::
to

:::
that,

::
to
::::
best

::
of

:::
our

::::::::::
knowledge,

:
it
::
is
:::
the

::::
first

::::
time

:::
that

:::::
these

:::::::::
parameters

:::
are

:::::::::
thoroughly

:::::::
analysed

::::::
within

:
a
:::::::::
sensitivity

::::::
analysis

::::::::::
framework,

:::
and

:::
we

:::
yet

:::::
might

:::
not

:::
be

:::
able

::
to
::::
find

:
a
::::::
reason

::
or

::::::::::
explanation

:::
for

:::
this

::::::
pattern

::
in

::::
this

:::::
study.

::::
This

::::
calls

::
for

::::::
future

::::::
studies

::
to

::::::
further

:::::::::
investigate

:::
this

::::::
aspect.

:

3.2 Site specific model assessment

We conduct site-specific parameter estimation for all available eddy-covariance (EC) flux tower study sites (Figure 5). For this,645

only informative parameters
::
the

:::::
most

:::::::
sensitive

::::::::::
parameters

:::::::::
(depending

:::
on

:::
the

:::::::::
sensitivity

:::::::
analysis

:::::
result

::
at

:::::
each

:::
site

:::::::
number

::
of

:::
the

::::
most

::::::::
sensitive

::::::::::
parameters

::::
vary

:::::::
between

::
8
::
to
:::

14
::::::::::
parameters)

:
identified in the sensitivity analysis are calibrated and

the others are fixed (Table 3). For model parameter calibrations we used the first half of the available time series and the

remaining years for verification
::::::::
validation (Table 1). Calibration and verification

::::::::
validation

:
of the model are only performed

for the GPP flux because direct LAI measurements are not available at all of the flux sites. Figure 5 shows the seven-day mean650

of simulated GPP for a set of ensemble members for each study site during both the calibration and verification
::::::::
validation

periods. Since the different sites were operational at different times and some sites (e.g.
:
, DE-Hai) cover a relatively long time

period, we show only five years of simulation at each site: the last three years of calibration and the first two years of verification

::::::::
validation

:
periods (Figure 5). A complete simulation for each site during the entire available times series is provided in the

Supplementary Figure S4. In addition, Table 4 summarizes the model performance in simulating GPP during calibration and655

verification
::::::::
validation periods at different sites. In general, the model achieved KGE values of above 0.65, RMSE of less than

2.5 gCm
�2

day
�1, and R

:
r2 values of above 0.65 over all study sites. We compare the performance of our model to other

modeling studies, whenever there is either an identical site to our study or a similar biome type (i.e., DBF) presented. To this

end, our results are similar to Yue and Unger (2015) who found a high correlation of more than 0.8 and RMSE lower than 3

g C m
�2

d
�1 for the GPP simulations at DBF forest sites in a global setting using the Yale Interactive terrestrial Biosphere660

model. Another study conducted by Asaadi et al. (2018) showed a quite good model performance using the CLASS-CTEM

land surface model (Melton and Arora, 2014) applied at US-Ha1(1998-2013) and US-MMs (1999-2006) flux tower sites, with
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R
:
r2 value of 0.99 accompanying RMSE of 0.62, and R

:
r2 value of 0.98 accompanying RMSE of 1.07 g C m

�2
d
�1 at US-

Ha1 and US-MMs, respectively. In a recent study, Holtmann et al. (2021) assessed the daily carbon fluxes over the DE-HoH

forest during 2015-2017 using the FORMIND model (Fischer et al., 2016). They showed that the simulated and measured GPP665

correlates with an R
:
r2 of 0.82 and RMSE of 9 MgCha

�1
a
�1 equivalent to 2.46 g C m

�2
d
�1 using FORMIND model.

Taken together, our model exhibits a reasonable validity
::::::::::
performance

:
and performs equally well in estimating temporal

dynamics of GPP (Table 4) compared to other more complex land surface and biogeochemical models. The PCM shows skill

in capturing GPP at most of the investigated sites; although it overestimates GPP at the IT-Ro1 during summer. IT-Ro1 is located

in a Mediterranean climate exposed to dry summers (Vicca et al., 2016). The forest ecosystems in Mediterranean type climate670

are affected by water limitation which can affect the GPP flux significantly (Cueva et al., 2021). The lack of soil moisture

data probably contributed to the misrepresentation of GPP at this site. This is in agreement with previous studies that found

similarly poor modeling performance across sites located in the Mediterranean climate in central Italy in dry summer periods

when simulating GPP (Maselli et al., 2012; Chiesi et al., 2011; Fibbi et al., 2019). In
:::::::::::::::
Vargas et al. (2013)

:
,
:::
also

:::::::::
discussed

:::
the

:::::::::
interannual

::::::::
dynamics

::
of

::::
soil

:::::::
moisture

:::::
effect

:::
on

::::
GPP

::::
flux

::
in

::::::::::::
Mediterranean

::::::::::
ecosystems

:::::
using

:::
five

::::::::::::::
process-oriented

:::::::::
ecosystem675

::::::
models

::::::::
including

:::::
water

:::::::
balance.

:::::
They

:::::::
observed

::
a
::::::::::::
systematically

:::::::::::::
underestimation

:::
of

::::
GPP

::
in

:::
the

::::::
models

::::
that

::::
were

::::::::::
accounting

::
for

::::
soil

:::::
water

:::::::
balance.

::::::
Those

::::::::::::::
underestimations

::::
may

:::::
have

::::
been

::::::
related

::
to
::::

the
:::::::
complex

::::::
nature

::
of

::::::::::::
Mediterranean

:::::::::::
ecosystems,

:::
e.g.,

::::
due

::
to

::::
deep

:::::
roots

:::
and

:::
an

::::::::
important

::::
role

::
of

:::
the

:::::
lower

:::::::
canopy.

::
In

::::::::
contrast,

::::
here

::
we

:::::::::::
overestimate

:::
the

::::
GPP

::::
and

::::::
believe

::::
that

:::
this

::
is

:::
due

::
to
::::
lack

:::
of

::::
local

::::::::::
information

:::
on

:::
soil

::::::::
moisture

:::::
stress.

:::::
More

::::::::::
information

::
of

::::
soil

:::::::
moisture

:::::
stress

::
is
::::::::
therefore

::::::::
expected

::
to

:::::::
improve

:::
the

::::::
model.

::::::
Overall,

::::
they

:::::::::
emphasize

:::
the

::::::::::
importance

::
of

:::::::
drought

::::::::
conditions

::::
and

:::
the

:::::::
complex

:::::
nature

:::
of

::::::::::::
Mediterranean680

:::::::::
ecosystems

::
in

:::::::::::
representing

:::::
forest

::::::::
dynamics,

::::::::
including

:::::
GPP

::::
flux.

::
In addition, water limitation impact on GPP could be related

to the irregular occurrence of extreme events (e.g., European-wide drought 2018). Such conditions were observed at DE-HoH

and DE-Hai sites, where the model overestimated GPP during late summer of 2018 coincided with Europe-wide drought 2018

(Buras et al., 2020). In the next step, we also examine the model’s overall performance in reproducing GPP in terms of multi-

year average of GPP at each site. Figure 6 shows that the model can generally explain the spatial variation of GPP with an R
:
r2685

as high as 0.90.

As an independent verification
::::::::
validation step, we evaluate the PCM simulations of LAI against field-measurements data at

some study sites where observational data were made available via personal contacts with site investigators. Figure 7 compares

simulated values of LAI with their field measurements at four sites (US-MMS, US-Ha1, DE-Hai, and DE-HoH). In general,

a good spatial and temporal consistency between the simulated LAI and the field-measurement LAI can be seen from the690

plots (Figure 7). The Rr2 corresponding to the US-MMS, US-Ha1, DE-Hai, and DE-HoH sites are 0.90, 0.85, 0.78, and 0.90,

respectively. Furthermore, the comparisons yield RMSE of 0.96, 1.58, 2.21, 1.4 m
2
m

�2 to the US-MMS, US-Ha1, DE-Hai,

and DE-HoH sites, respectively. Table 5 summarizes the model performance in simulating LAI during a common period of

observed and modeled data.

The simulated LAI captures reasonably well the observed LAI seasonality at almost all the sites. It demonstrates the capabil-695

ity of the model in capturing canopy status at different phenophases. However, there are some pronounced deviations between

modelled and observed LAI at some sites (US-Ha1, DE-HoH) during the dormancy phase and autumn leaf decline period.
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Given the deciduous nature of those ecosystems , it is likely that the higher winter values of field measurements compared

to simulated LAI reflects the presence of understory vegetation (Asaadi et al., 2018) or instrument’s reading of present stand

and/or dead leaf on trees after onset of leaf shedding. We also notice a slightly lagging phase in simulated LAI during the700

spring as compared to the field-measurements data, for instance at the DE-Hai site. Such discrepancy may be due to the lack

of accounting for dependence of green-up rate on non-structural carbohydrate from previous years as a buffer to initiate leaf

onset (Asaadi et al., 2018), which is currently not represented in the PCM.

3.3 Spatial model verification
::::::::
validation

:
and model generalization

Eventually, we
::
We

:
conduct cross-validation of parameter transferability for all sites against tower-derived GPP data (Sec-705

tion 2.2.5). Figure 8 summarizes the results of this analysis, providing a comparison between the range of obtained Kling-

Gupta efficiency performance metric (KGE) from on-site calibration and KGE obtained from a compromised solution. It can

be seen that the model with a compromise parameter set still shows a reasonable predictive skill (KGE > 0.5), while leaving

space for skill improvement with a site-specific parameter (� KGE ⇡ 0.10). The poorest performances are associated with

the northernmost site DK-Sor and the Mediterranean IT-Ro1 site. The associated bias in those sites is likely related to GPP710

response to the maximum LUE parameter obtained from compromise solution applied over all the sites. As it was shown in the

sensitivity analysis (see Section 3.1.1), the variation of GPP is predominantly driven by the LUE
::::
LUE

:
variation thus a constant

fixed maximum LUE across all sites might be a reason for the limited performance at the sites located in maximum latitude

and water-limited regions. It has been shown that maximum LUE
:::::
LUE varies in different geographical locations (Jung et al.,

2007), and this is in line with our on-site calibration result indicating largest maximum LUE
:::::
LUE at DK-Sor (northernmost715

site with a cold and moist climate) and lowest at IT-Ro1 (a relatively drier Mediterranean site) sites. Thus applying a com-

promise value for LUE
:::::
LUE at these two site would result in a bias in GPP estimation. Previous studies (Wang et al., 2010;

Madani et al., 2014) showed a large variation in maximum LUE
::::
LUE

:
not only between different biomes but also even within

an individual biome and plant functional type. Concerning the large spatial variability of maximum LUE
::::
LUE, several factors

such as spatial heterogeneity of vegetation, canopy densities, ages, soil nutrition, leaf nutrient content have been mentioned in720

previous studies (Wang et al., 2010; Madani et al., 2014). Some methods such as spatially explicit estimation of optimum LUE

(Madani et al., 2014) or introducing pixel-level maximum LUE
::::
LUE

:
(Wang et al., 2010) have been employed in satellite-

based LUE
:::::
LUE

:
models to overcome this shortcoming. They argued that the assumption of a constant maximum LUE

:::::
LUE

(i.e. based on standard MODIS-base GPP algorithm and a Biome Property Look-Up Table; Heinsch et al., 2003), needs to be

reexamined so that spatial heterogeneity between individual plant functional types is represented. Therefore, the uncertainty725

introduced by the fixed maximum LUE
:::::
LUE may be reduced and ecosystem productivity modeling would be improved.

3.4 Limitation and opportunities

While the model performs well, in general, on simulating the GPP, some inconsistencies in the observed and modelled GPP

across sites help to identify the model limitation and introduce future opportunities to improve the model performance. One

of the mismatches is that the model lacks to adequately capture the observed decline in GPP during 2019 (Figure 5) at the730
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DE-HoH. This may be related to a possible legacy impact of the drought year 2018 into the successive year 2019 (Buras

et al., 2020; Schuldt et al., 2020; Schnabel et al., 2021; Reichstein et al., 2013). Here we infer that the reduction in the tower

GPP in 2019 might be due to a change in the LUE
:::::
LUE parameter. Based on calibration from previous non-drought years,

the obtained LUE
:::::
LUE value might lead the model to overestimate GPP in early 2019. Indeed, calibrating the model to the

drought years of 2018 and 2019 yielded a lower LUE
::::
LUE

:
parameter (reduction of LUE

::::
LUE

:
value by 12%), which might735

support the possible legacy impact of last year drought on LUE
::::
LUE

:
parameter. Another possible explanation, alternatively or

collectively to the plant legacy effect, would be variation/depletion of deep soil moisture storage (Jung et al., 2009). Since the

model does not represent established internal feedback for carrying over effect after extreme events (Reichstein et al., 2013)

and only consider the soil moisture up to 80 cm depth, thus the current model version would not reflect on such a process and

GPP is likely to be overestimated.740

Another limitation in our simulation is a lack to account for a possible effect of diffuse light on GPP response in the current

model structure. We observed the potential role of diffuse light on GPP during some mismatch periods between eddy flux

tower and modelled GPP across some of the sites (e.g., DE-HoH year 2107, FR-Fon year 2012, and US-Ha1 year 2010) (see

Figure S1). The model underestimates GPP during these periods based on a lower PAR input, however, the observations show

greater GPP despite lower input PAR. This is in line with findings of Knohl and Baldocchi (2008), where they investigated the745

effect of diffuse light on the forest ecosystem and discussed how diffuse radiation can lead to an increase in carbon uptake.

Enhancement of GPP due to diffuse light is related to more evenly distribution and more efficient light penetration within
:::
the

canopy (Yuan et al., 2014). Integration of such effect in the current model by introducing a time-varying LUE
::::
LUE

:
(condition-

varying) (Wei et al., 2017) instead of the fixed LUE would improve the simulation
:::::
result. In particular, under unprecedented

global warming and climate change, future changes in cloud cover and aerosol concentration
::::::::::::
concentrations are expected to750

modify the solar radiation and the subsequent ecosystem productivity (Durand et al., 2021; Meyer et al., 2014). Regarding

LAI simulation, one limitation is that, at some points, the model cannot increase in LAI in the initial onset of LAI as fast

as that of observation in the early growing period. In previous studies, it has been shown that the inclusion of non-structural

carbon storage at the beginning of green-up might help to overcome this issue (Asaadi et al., 2018) and refine the model

simulation results further. Aside from the current model limitations subjected to further improvement, the model exhibits a755

reasonable validity and performs equally well in estimating the temporal dynamics of GPP and LAI development compared to

more complex land surface and biogeochemical models. The PCM being parsimonious makes it suitable for further reaching

applications in coupled models. Dynamic development of LAI is relevant to GPP estimation and beneficial for hydrologic

models providing them with prognostically driven LAI time series based on vegetation responses to temperature, particularly

in the context of water budget responses to climate variability.760

We aim, as a next step, to implement the presented model into the existing open-source mesoscale Hydrologic Model

(mHM; Samaniego et al., 2010; Kumar et al., 2013, available at https://www.ufz.de/mhm) with a proven predictive power in

simulating root-zone soil moisture dynamics (Boeing et al., 2021). The spatially simulated soil moisture derived from mHM

would provide an alternative to (limited) soil moisture observations required for GPP simulation. In particular, in the face of

ongoing and future climate changes and increasing occurrence of droughts (Harper et al., 2021), reliable simulations of soil765
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moisture are invaluable information to capture plant drought responses for the carbon cycle and climate feedbacks (Harper

et al., 2021). Finally, in doing so, we expect an improved capability of the hydrological model to represent the coupled water

and carbon (i.e., GPP/LAI in this study) components.

4 Conclusion

In view of ongoing natural and anthropogenic changes, assessing the extent to which terrestrial plants can sequester atmo-770

spheric carbon and affect
:::
the water balance through LAI implication are

:
is

:
essential for effective climate-adaptation and re-

silience plans. In this study, we developed
:::::
Here,

:::
we

::::::
present

:
a parsimonious canopy model (PCM) with a medium level of

complexity to simulate canopy GPP and LAI. In the PCM model the carbon uptake drives leaf biomass accumulation based on

a mass balance approach. The model employs the light use efficiency principle in which the core concept is the conversion of

absorbed photosynthetically active radiation (PAR) into biomass. An integrated phenology submodel, from which allocation of775

carbon to and decay from the leaf pool is guided, is incorporated to predict the timing of leaf development and characterising

different phenological stages. The PCM model performed reasonably well in reproducing the daily development of GPP and

LAI in deciduous broad-leaved forest biome
::::::
biomes

:
across Europe and North America. The model runs with a few required

inputs;
:
: air temperature, vapour pressure deficit, PAR, and soil moisture (optional, recommended in dry regions and drought

events). Although the proposed model runs with a number of parameters for representing the relevant processes (29 parameters780

without the soil moisture-related parameters), a global sensitivity analysis showed that only 10 parameters (on average across

sites) were sensitive and had to be inferred via calibration. The result reaffirms that light use efficiency and specific leaf area

index parameters are by far the most informative parameters in GPP and LAI simulations, respectively. The on-site calibrated

maximum LUE
:::::
LUE

:
parameter showed relatively large variation within the sites with greater maximum LUE at

::::
LUE

:::
in

:::::::
Denmark

::
(Dk-Sor

:::
site)

:
and lower value at

:
in
:::::
Italy

:
(IT-Ro1

:::
site). It implies that applying a fixed biome-specific maximum LUE785

:::::
LUE does not hold applicable over different locations. Moreover, modelled GPP during growing season was shown to be

almost insensitive to LAI changes. This indicates that GPP is saturated at a particular value of LAI and any further increase

in LAI does not necessarily increase the resultant GPP. We also tested the robustness and generality of the underlying model

structure, identifying a compromise set of model parameters applicable to all sites (region-wide). The results show that the

model application is possible without site-specific calibration and yet yielding reasonable model quality. The model’s skill in790

capturing the LAI dynamics – that was not used in the parameter inference process – further confirms the robustness of the

presented model structure. Given the scarce soil moisture information, we expect that simulated soil moisture derived from a

hydrological model would improve the representation of GPP simulations, particularly at semiarid regions or in
:::::
during

:
drought

events. We envision that the medium complexity of the presented model allows a seamless integration into large scale hydrolog-

ical models to better represent ecohydrological aspects of ecosystems. We plan to implement the PCM model into the existing795

hydrologic models (e.g., open-source mesoscale Hydrologic Model; mHM), thereby enabling an improved representation of

coupled water and carbon fluxes, in the face of a changing environment. To allow for a seamless estimation of carbon and water

fluxes, we plan to include implementation of a robust regional parameter inference approach (e.g., establishing regionalized
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LUE
::::
LUE

:
parameter through a multiscale parameterization approach (Samaniego et al., 2010)) and performing extensive

cross-validation experiments to ensure credible model simulations across a wide range of spatial domains.800
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Figure 1. Schematic representation of the PCM model. The parallelograms indicate the model inputs; TAir: air temperature, VPD: vapor

pressure deficit, SM: soil moisture, and PAR: photosynthetic
:::::::::::::
photosynthetically

:
active radiation. Rectangles are the processes in the model(

:
.

:::::::
Variables

::
in

:::::
ellipse

::::
show

:
LUE is model parameter

::
and

::::::::::
photoperiod. Photoperiod is day-length calculated based on latitudinal distribution).

Numbers refer to the corresponding equations in the text.
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Figure 2. Location of the FLUXNET2015 sites investigated in this study.
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Figure 3. Distribution of total-order Sobol’ indices for GPP (a) and LAI (b) outputs across all sites. Each colored
::::
grey box on the Y-

axis represents parameters involved in a specific process as following: brown: GPP-related parameters (Eq. 3, 4); dark green: LAI-related

parameters (Eq. 2, 26); Cyan: Environmental stresses-related parameters (Eq. 10); blue: phenology-related parameters (Eq. 18, 20, 22); grey:

canopy respiration-related parameters (Eq. 17). The vertical dotted red line corresponds to the threshold of 1%
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Figure 4. Illustration of evolution of total-order Sobol’ indices (total-order indices convergence) for sensitive parameters with increasing

number of samples for GPP (a) and LAI (b) outputs, at DE-HoH site taken as an example including soil moisture stress-related parameters.

Table 1. Descriptions of flux tower sites from FLUXNET2015 global database collection.
::::
Note

:::
that

::::
since

::::::::
phenology

:::::::
submodel

:::
for

::::::::
simulating

::::::
budburst

::
in

::::
each

:::
year

:::::
needs

::
the

:::::::::
temperature

::::
data

:::
from

:::::
10-11

:::
last

:::
days

::
of
:::::::
previous

::::
year,

:::::::
therefore

::
the

::::
very

:::
first

:::
year

::
of

:::::::::
investigated

::::
time

:::::
period

:
at
::::
each

:::
site

::
is

::
not

:::::::
included

::
in

:::
the

:::::::::
simulations.

Site ID Site Name Latitude Longitude Elevation(m) Mean Annual Temperature (�C) Mean Annual Precipitation (mm) Downloaded Period Simulation period Source

DK-Sor Soroe 55.48 11.64 40 8.2 660 1996-2014 2006-2013 DOI: 10.18140/FLX/1440155

CA-Oas Saskatchewan - Western Boreal 53.62 -106.19 530 0.34 428.53 1996-2010 1996-2010 DOI: 10.18140/FLX/1440043

DE-HoH Hohes Holz 52.08 11.21 193 9.1 563 2014-2019 2014-2019 Own dataset

DE-Hai Hainich 51.07 10.45 430 8.3 720 2000-2018 2000-2018 DOI: 10.18140/FLX/1440148

FR-Fon Fontainebleau-Barbeau 48.47 2.78 103 10.2 720 2005-2014 2005-2014 DOI: 10.18140/FLX/1440161

IT-Ro1 Roccarespampani 1 42.40 11.93 235 15.15 876.2 2000-2008 2001-2006 DOI: 10.18140/FLX/1440174

US-Ha1 Harvard Forest EMS Tower 42.53 -72.17 340 6.62 1071 1991-2012 2003-2012 DOI: 10.18140/FLX/1440071

US-Oho Oak Openings 41.55 -83.84 230 10.1 849 2004-2013 2004-2013 DOI: 10.18140/FLX/1440088

US-MMS Morgan Monroe State Forest 39.32 -86.41 275 10.58 1032 1999-2014 1999-2014 DOI: 10.18140/FLX/1440083

Table 2. List of input and state variables (at daily time step) in PCM.

Input variables Unit Description

T �C mean air temperature

PPFD µmol m�2 s�1 photosynthetically active radiation

VPD hPa vapour pressure deficit

SM % soil moisture

Soil textural properties % sand, clay, and bulk density

Lat degree Latitude of site

State variables Unit Description

Bl gC m�2 biomass of leaf

D gC m�2 leaf biomass decay

LAI m2 m�2 leaf area index

fPAR % fraction of photosynthetically active radiation
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Figure 5. Time series of observed and simulated GPP at each study site during the three last years of calibration and the two first years

of verification
:::::::
validation

:
periods. The vertical dash line marked the calibration-verification

::::::::::::::::
calibration-validation periods. The black dots

indicate the tower estimated GPP. The light grey shed
:::::
sheded

:::
area

:
corresponds to the

::::::
resultant

:
ensemble sets of modeled GPP outputs

:::::
output

:::::::
members at each time step. The dark grey line refers to the median of model ensembles

:::::::
ensemble

:::::::
members.
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Figure 6. Estimated GPP based on flux tower measurements vs. modelled GPP ± standard deviation (error bars) across the 9 studied sites.

The solid line indicates the 1:1 line, and the dashed line indicates the regression line. Each dot represents one of the sites and refers to

site-averaged GPP over the entire available time series.

Figure 7. Time series of observed and simulated LAI at study flux tower sites during the common years of field measurements and simula-

tions. The black dots indicate the field measurement LAI. The light grey shed corresponds to the ensemble sets
::::::
members

:
of modeled

::
the

:
LAI

outputs
::::
output

:
at each time step. The dark grey line refers to the median of model ensembles

::::::
ensemble

:::::::
members.
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Figure 8. Comparison between KGE obtained from ensemble simulated GPP performing at-site calibration and the KGE obtained from

compromised solution.

44



Table 3. Model parameters in PCM

Calibration model parameters, based on sensitivity analysis Unit Description Lower Boundary Upper Boundary References

K - extinction coefficient 0.45 0.60 Ruimy et al. (1999); Yuan et al. (2007)

C - Beer–Lambert law parameter 0.85 1 Monsi and Saeki (1953)

LUE gC MJ�1 light use efficiency 1.04 2.25 Cheng et al. (2014); Yuan et al. (2010)

Lb m2 m�2 maiximum balanced LAI 4 6.5 Fleischer et al. (2013)

SLA m2g�1 specific leaf area 0.01 0.03 Kattge et al. (2011); Gim et al. (2017); Dyderski et al. (2020)

fcov % vegatation fractional coverage per unit area 0.60 0.95 Fluxnet site description

PWP % permanent wilting point 7 13 Intermediate output of PCM model

� - root distribution coefficient 0.966 1 Jackson et al. (1996)

vmin hPa mean VPD at which LUE = LUEpotential 6.5 10 Heinsch et al. (2003); Cheng et al. (2014)

Lg DegreeDay phenological growing length 300 450 Yue and Unger (2015)

Fs DegreeDay phenological threshold for leaf fall -500 -112 Yue and Unger (2015), calibrated

b DegreeDay phenological parameter for budburst threshold Gb 440 660 Yue and Unger (2015)

r - phenological parameter for budburst threshold Gb -0.012 -0.008 Yue and Unger (2015)

p2 - 2nd parameterin Arrhenious equation 44.96 67.44 Sitch et al. (2003)

p3 - 3rd parameterin Arrhenious equation 36.96 55.44 Sitch et al. (2003)

Fixed model parameters based on sensitivity analysis

FC % field capacity 23 23 Intermediate output of PCM model

scw - critical threshold value of soil moisture 0.4 0.4 Granier et al. (1999)

Thot
�C mean air temperature of warmest month 19 19 Rödig et al. (2017); Sitch et al. (2003)

Tlow
�C low temperature limit for CO2 assimilation -2 -2 Rödig et al. (2017); Sitch et al. (2003)

Tcold
�C mean air temperature of coldest month 10 10 Rödig et al. (2017); Sitch et al. (2003)

Thigh
�C high temperature limit for CO2 assimilation 38 38 Rödig et al. (2017); Sitch et al. (2003)

vmax hPa mean VPD at which LUE = 0 25 25 Heinsch et al. (2003); Cheng et al. (2014)

Lf DegreeDay phenological falling length 410 410 Yue and Unger (2015)

dlmin minutes phenological day length threshold for leaf fall 585 585 Yue and Unger (2015)

dlmax minutes phenological day length threshold for leaf fall 695 695 Yue and Unger (2015)

a DegreeDay phenological parameter for budburst threshold Gb -110 -110 Yue and Unger (2015)

r - phenological parameter for budburst threshold Gb -0.01 -0.01 Yue and Unger (2015)

Tb �C base temprature for budburst occurrence 5 5 Yue and Unger (2015)

Ts �C base temprature for senescence occurrence 20 20 Yue and Unger (2015)

CNr gC gN�1 leaf C:N ratio 25 25 White et al. (2000)

p1 - 1st Arrhenious parameter 308.56 308.56 Sitch et al. (2003)

Tc
�C temperature threshold for determining cold stress 5 5 Melton and Arora (2016)

rr gC gN�1 leaf respiration coefficient 0.066 0.066 Kattge et al. (2011); Sitch et al. (2003); Rödig et al. (2017)

ODmax day�1 maximum drought stress loss rate 0.15 0.15 Melton and Arora (2016)

OCmax day�1 maximum cold stress loss rate 0.005 0.005 Melton and Arora (2016)
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Table 4. Summary statistics for the comparison between model estimated GPP and tower estimated GPP at different sites. Statistics include

KGE, root mean square error (RMSE), and Rr2. GPP units are [g C m�2 d�1]. The statistics refer to ensemble medians of model estimated

GPP.
:::
The

::::
linear

::::::::
regression

::
is

:::
over

:::
the

::::
both

::::::::
calibration

:::
and

::::::::
validation

::::::
periods.

Site
Calibration validation Linear regression

Period KGE RMSE R
:
r2 Period KGE RMSE R

:
r2

:
-

DK-Sor 2007-2010 0.89 2.09 0.89 2011-2013 0.89 2.15 0.89
:
y
:
=
:::::::::
0.99x-0.51

CA-Oas 1997-2004 0.92 1.5 0.89 2005-2010 0.90 1.4 0.91
:
y
:
=
::::::::
0.9x+0.29

:

DE-HoH 2015-2017 0.88 1.8 0.88 2018-2019 0.75 2.5 0.80
:
y
:
=
:::::::::
1.04x-0.34

DE-Hai 2001-2015 0.93 1.9 0.85 2016-2018 0.91 2.01 0.84
:
y
:
=
:::::::::
0.96x+0.05

FR-Fon 2006-2010 0.95 1.7 0.91 2011-2014 0.91 1.94. 0.85
:
y
:
=
:::::::::
0.96x+0.04

US-Ha1 2004-2008 0.92 2.03 0.86 2009-2012 0.88 2.56 0.80
:
y
:
=
:::::::::
0.91x+0.11

IT-Ro1 2002-2004 0.79 2.45 0.65 2005-2006 0.86 1.87 0.78
:
y
:
=
::::::::
0.87x+0.2

:

US-Oho 2005-2010 0.87 2.22 0.85 2011-2013 0.85 2.39 0.82
:
y
:
=
:::::::::
0.84x+0.55

US-MMS 2000-2007 0.9 2.1 0.85 2008-2014 0.89 1.9 0.87
:
y
:
=
:::::::::
0.93x+0.75

Table 5. Summary statistics for the comparison between model estimated LAI and Field measurement LAI at different sites. Statistics include

R
:
r2 and RMSE. LAI units are [m�2m�2]. The statistics refer to ensemble medians of model estimated LAI.

Site
Period RMSE r2 Linear regression

US-MMS ::::::::
2000-2014

:::
0.96

: :::
0.90

: :
y
:
=
::::::::
1.08x-0.8

US-Ha1 ::::::::
2005-2012

:::
1.58

: :::
0.85

: :
y
:
=
:::::::::
0.92x-1.52

DE-Hai ::::::::
2002-2009

:::
2.21

: :::
0.78

: :
y
:
=
:::::::::
0.89x-1.32

DE-HoH ::::::::
2018-2019

::
1.4

: :::
0.90

: :
y
:
=
:::::::::
1.32x-2.62
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