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Abstract. Temperate forest ecosystems play a crucial role
in governing global carbon and water cycles. However,
unprecedented global warming presents fundamental alter-
ations to the ecological functions (e.g., carbon uptake) and
biophysical variables (e.g., leaf area index) of forests. The
quantification of forest carbon uptake, gross primary produc-
tivity (GPP), as the largest carbon flux has a direct conse-
quence on carbon budget estimations. Part of this assimilated
carbon stored in leaf biomass is related to the leaf area in-
dex (LAI), which is closely linked to and is of critical sig-
nificance in the water cycle. There already exist a number
of models to simulate dynamics of LAI and GPP; however,
the level of complexity, demanding data, and poorly known
parameters often prohibit the model applicability over data-
sparse and large domains. In addition, the complex mech-
anisms associated with coupling the terrestrial carbon and
water cycles poses a major challenge for integrated assess-
ments of interlinked processes (e.g., accounting for the tem-
poral dynamics of LAI for improving water balance estima-
tions and soil moisture availability for enhancing carbon bal-
ance estimations). In this study, we propose a parsimonious
forest canopy model (PCM) to predict the daily dynamics of
LAI and GPP with few required inputs, which would also be
suitable for integration into state-of-the-art hydrologic mod-
els. The light use efficiency (LUE) concept, coupled with
a phenology submodel, is central to PCM (v1.0). PCM es-
timates total assimilated carbon based on the efficiency of
the conversion of absorbed photosynthetically active radi-

ation into biomass. Equipped with the coupled phenology
submodel, the total assimilated carbon partly converts to leaf
biomass, from which prognostic and temperature-driven LAI
is simulated. The model combines modules for the estima-
tion of soil hydraulic parameters based on pedotransfer func-
tions and vertically weighted soil moisture, considering the
underground root distribution, when soil moisture data are
available. We test the model on deciduous broad-leaved for-
est sites in Europe and North America, as selected from the
FLUXNET network. We analyze the model’s parameter sen-
sitivity on the resulting GPP and LAI and identified, on av-
erage, 10 common sensitive parameters at each study site
(e.g., LUE and SLA). The model’s performance is evalu-
ated in a validation period, using in situ measurements of
GPP and LAI (when available) at eddy covariance flux tow-
ers. The model adequately captures the daily dynamics of
observed GPP and LAI at each study site (Kling–Gupta effi-
ciency, KGE, varies between 0.79 and 0.92). Finally, we in-
vestigate the cross-location transferability of model parame-
ters and derive a compromise parameter set to be used across
different sites. The model also showed robustness with the
compromise single set of parameters, applicable to differ-
ent sites, with an acceptable loss in model skill (on average
±8 %). Overall, in addition to the satisfactory performance of
the PCM as a stand-alone canopy model, the parsimonious
and modular structure of the developed PCM allows for a
smooth incorporation of carbon modules to existing hydro-
logic models, thereby facilitating the seamless representation
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of coupled water and carbon cycle components, i.e., prognos-
tic simulated vegetation leaf area index (LAI) would improve
the representation of the water cycle components (i.e., evapo-
transpiration), while GPP predictions would benefit from the
simulated soil water storage from a hydrologic model.

1 Introduction

As the climate changes, the future functionality and re-
silience of terrestrial ecosystems are expected to change in
numerous ways. Fundamentally, terrestrial ecosystems (such
as temperate forests) drive the life-sustaining exchanges of
matter and energy between land and atmosphere (e.g., car-
bon dioxide/water vapor exchange). However, increased con-
centrations of greenhouse gases and projected global warm-
ing (IPCC, 2021) contribute to unprecedented extreme cli-
mate events and changes in ecosystem functioning and pro-
ductivity (Malhi et al., 2020). This affects forest ecosystems
by altering growth, the timing of life cycle events (Nigatu,
2019), carbon dioxide uptake, and water vapor release rates
(Luyssaert et al., 2007; Senf et al., 2018; Forzieri et al., 2021)
among other climate-related disturbances. Vulnerability due
to climate change can be attributed to different ecosystem
stresses (Nathalie et al., 2006; Cholet et al., 2022), includ-
ing high temperatures, which decrease enzyme activity and
the rate of carbon uptake, and soil water limitation, which
causes hydraulic failure or carbon starvation, reduces plant
photosynthetic capacity, and brings about early senescence
(Imadi et al., 2016) in temperate forest ecosystems. In addi-
tion to these stresses, some environmental changes, such as
radiation change associated with increased cloudiness or at-
mospheric aerosols, can also increase plant productivity, e.g.,
due to the increased fraction of diffused radiation (Knohl and
Baldocchi, 2008). Temperate forest ecosystems, including
deciduous broad-leaved forests (DBF), play an indispensable
role in mitigating climate change (Estoque et al., 2022) by re-
moving carbon from the atmosphere (Pan et al., 2011; Rein-
mann and Hutyra, 2017). Generally, forests are recognized as
biomes with high capacity for carbon sequestration (Lal and
Lorenz, 2012), where temperate broad-leaved forests con-
tribute to approximately 60 % of the global net carbon sink of
forests (Pan et al., 2011; Reinmann and Hutyra, 2017). Tem-
perate DBF biomes are characterized by a temperate climate
with four distinct seasons and a temperature-driven canopy
structure. The plant canopy’s capacity for water and carbon
exchange is strongly related to seasonal variations in leaf de-
velopment (Seo and Kim, 2021). Leaf area index (LAI) is a
dimensionless quantity, defined as a one-sided area of green
leaf per unit of horizontal ground surface area (Nathalie,
2003; Fang et al., 2019). LAI can be estimated using di-
rect field measurements, inferred using remote sensing, or
simulated using vegetation carbon cycle models (Fang et al.,
2019). Water availability plays a key role in carbon uptake

and leaf development, affecting the carbon cycle. In addition,
LAI is a key biophysical plant variable, representing vegeta-
tion state and affecting not only the sequestration of carbon
from the atmosphere via photosynthesis but also the release
of water to the atmosphere through transpiration (Fang et al.,
2019). Therefore, in hydrologic models, considering carbon
cycle components (such as dynamic LAI related to the leaf’s
carbon pool) is crucial for accurate estimation of the water
budget.

Given the importance of carbon dioxide as a principal
greenhouse gas that drives global climate change and the ex-
tent to which ecosystems are capable of sequestering it, there
has been growing attention toward the quantification of car-
bon fluxes and pools and understanding the role of terrestrial
ecosystems, including DBF ecosystems, in regulating the ex-
change of carbon between land and atmosphere (Beer et al.,
2010). The total carbon uptake from the atmosphere into veg-
etated ecosystems through plant photosynthesis is known as
gross primary production (GPP). GPP is the primary driver
of the land carbon sink (Spielmann et al., 2019; Zhou et al.,
2021) and the largest flux within the carbon cycle (Schaefer
et al., 2012; Foley and Ramankutty, 2003). Accurate estima-
tion of GPP directly influences carbon budget assessments as
well as estimates of the amount of stored carbon in the plant
leaf pool. Accurate carbon budget assessment, in turn, pro-
motes understanding of the feedback between the terrestrial
biosphere and the climate system (Zhou et al., 2021; Huang
et al., 2022).

Many models have been successfully developed to esti-
mate GPP, spanning a range of complexities and representa-
tions of physical and biological processes (Che et al., 2014;
Arora, 2002; Ostle et al., 2009). GPP models are generally
divided into three categories, including empirical, enzyme ki-
netic (EK), and light use efficiency (LUE) models (Schaefer
et al., 2012). Regarding the first category, empirical models
are data-oriented approaches where statistical relationships
between GPP inferred from flux observations (eddy covari-
ance; EC) and observed environmental conditions are estab-
lished. Those inferred relationships are then expanded into
large scales, ranging from regional to global levels (Beer et
al., 2010; Schaefer et al., 2012). The second category, the en-
zyme kinetic (EK) approach, represents leaf-scale GPP as a
result of a complex set of biophysical and biochemical reac-
tions. This includes the light reaction in which light energy
splits water molecules traveling from the soil to leaf chloro-
plasts into O2, electrons, and H+ to produce electron carrier
molecules (the reduced form of nicotine adenine dinucleotide
phosphoric acid; NADPH) and energy storage (adenosine
triphosphate; ATP). In the dark reactions of the Calvin cycle,
the rubisco enzyme uses ATP energy from the light response
to sequester the atmospheric carbon dioxide into organic car-
bon (Farquhar et al., 1980; Collatz et al., 1992). This ap-
proach requires the specification of a relatively large number
of parameters for the governing processes. Finally, the last
category for the GPP estimation is a widely used approach
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based on the light use efficiency (LUE) concept, relevant for
its applicability to larger scales (regional and global) (Potter
et al., 1993; Yuan et al., 2007). By implementing simplified
relationships that hold at the ecosystem level and by avoid-
ing a detailed parameterization of leaf-level processes, the
LUE concept is particularly relevant for quantifying the car-
bon budget at landscape and larger scales and for coupling
with the hydrologic models (Street et al., 2007; Wei et al.,
2017).

In this approach, ecosystem GPP is a function of ab-
sorbed photosynthetically active radiation (APAR) and a
biome-specific LUE parameter (Gamon, 2015; Springer et
al., 2017). APAR is a product of incident photosynthetically
active radiation (PAR) and the fraction of PAR (fPAR) ab-
sorbed by plant leaves. The LUE parameter corresponds to
the efficiency of the vegetation’s conversion of solar radi-
ation into biomass and is defined as the amount of carbon
produced per unit of absorbed PAR (Monteith, 1977; Yuan et
al., 2014). The amount of sequestered carbon as biomass will
then be allocated to different plant carbon pools (i.e., leaves,
stems, and roots) according to the relative demand exerted by
these pools at different periods (Arora, 2002).

Several LUE models, such as the carbon cycle model
(CFlux; Turner et al., 2006), eddy covariance–light use ef-
ficiency (EC-LUE; Yuan et al., 2007), moderate resolu-
tion imaging spectroradiometer–gross primary production
(MODIS-GPP; Running et al., 2004), vegetation photosyn-
thesis model (VPM; Xiao et al., 2004), and the Carnegie–
Ames–Stanford approach (CASA; Potter et al., 1993), have
been successfully applied for estimating the ecosystem GPP
at different spatial and temporal scales (Law et al., 2000;
Coops et al., 2005; Wei et al., 2017). However, despite the
large potential of these LUE models, they are highly depen-
dent on satellite-based observations such as remotely sensed
LAI and fPAR (Wang et al., 2017). These two key biophys-
ical variables are generally sensitive to cloud contamina-
tion, leading to gaps in their temporal and spatial coverage
throughout the year (Rahman et al., 2022). These gaps are
sources of uncertainty in satellite-based fPAR and LAI prod-
ucts, which, in turn, may induce errors in quantifying GPP
(Rahman et al., 2022).

Several factors, including either the high demand for re-
quired data and computation in the detailed biogeochemi-
cal model (e.g., EK models) or the dependency of exist-
ing simplified LUE models on satellite data in simulating
GPP and/or LAI, hinder the coupling of existing models
with hydrologic models. Currently, within most of the con-
ceptual hydrologic models, dynamic vegetation characteris-
tics and LAI are not properly considered. As mentioned ear-
lier, such a representation is relevant for accurate estimation
of water balance components (i.e., plant transpiration and
canopy evaporation) and especially for the assessment of cli-
mate change impacts on the water cycle (Wegehenkel, 2009;
Asaadi et al., 2018).

The LUE principle and leaf growth have been success-
fully implemented in the TETIS-VEG ecohydrology model
(Francés et al., 2007; Pasquato et al., 2015). The TETIS-VEG
model is, however, adapted for evergreen forest biomes. In
other words, the TETIS-VEG model lacks representation of
a dynamic leaf phenology relevant to the deciduous broad-
leaved forests. Another approach to simulate GPP and LAI
is adopted in the simplified growing production day time-
stepping scheme (SGPD-TS) model (Xin et al., 2019). The
SGPD-TS model, however, does not represent leaf growth
and allocation to the leaf pool but establishes a linear re-
lationship between steady-state GPP and LAI. In this way,
GPP is used as a proxy of LAI, utilizing a conversion ratio
when maximum GPP has been reached. However, it has been
shown that simulated GPP saturates at high LAI values (e.g.,
above 4.5 m2 m−2, Lee et al., 2019; Pan et al., 2021). High
LAI values are common in deciduous broad-leaved forests;
thus, relying on maximum GPP to derive LAI might intro-
duce a bias at elevated LAI. Another generally more chal-
lenging aspect of these models is the identification of model
parameters that are site or location specific. Previous applica-
tions have often been limited to one calibration site (Francés
et al., 2007), but they need to be thoroughly cross validated
for their applicability across a diverse range of climatic con-
ditions.

The overarching aims of this study are to propose a parsi-
monious model that (i) simulates the daily dynamics of the
GPP and LAI of deciduous broad-leaved forests at a medium
level of complexity, and (ii) is also suitable for integration
into existing hydrologic and ecologic models. We simulate
processes related to the carbon cycle in the canopy at a for-
est stand of undetermined size, using the LUE approach with
the implementation of a phenology submodel. The parsimo-
nious approach and level of model complexity are designed
to make use of a readily available observational dataset – in-
cluding air temperature, vapor pressure deficit, soil moisture,
and photosynthetic photon flux density – for abiotic forcing
across eddy flux tower stations. We apply a global sensitivity
analysis to investigate the model’s parameters’ sensitivity to
the model’s output variables (i.e., GPP and LAI). Finally, we
assess the generality and robustness of the underlying model
parameterizations and demonstrate the model’s applicability
over different sites by conducting a cross-location transfer-
ability experiment.

2 Methodology

2.1 Model overview

The PCM model developed and presented in this study aims
to provide a parsimonious representation of the daily devel-
opment of leaf biomass (Bl) coupled with the simulated gross
primary productivity (GPP) of deciduous broad-leaved for-
est (DBF) ecosystems. Analogous to most of the LUE mod-
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els that treat the entire vegetation canopy as a big, extended
leaf (Guan et al., 2021), the PCM operates over forest-stand
scale and adapts parameters mainly from a biome proper-
ties look-up table (BPLUT) (Running et al., 2000). Parame-
ters such as specific leaf area index (SLA) in PCM represent
effective community-weighted parameters. Figure 1 shows
a schematic representation of the PCM structure, including
carbon fluxes/stocks and interconnected processes related to
the plant canopy for DBF biomes. We focus on simulating
Bl, which is related to LAI via the specific leaf area index
parameter. The simulated LAI is, in turn, used in the calcula-
tion of the GPP.

PCM uses a daily time step, during which it simulates the
processes of carbon uptake, leaf respiration, carbon alloca-
tion, and carbon decay from the leaf pool (canopy) using
a mass balance equation (Istanbulluoglu et al., 2012; Yue
and Unger, 2015; Pasquato et al., 2015; Melton and Arora,
2016; Ruiz-Perez et al., 2017). The main governing equation
to simulate the daily development of GPP(t) and Bl(t) is

dBl(t)
dt
=
(
GPP(t)−Re(t)

)
λ(t)−D(t), (1)

where Bl(t) is leaf biomass, GPP(t) is gross primary produc-
tivity, Re(t) is leaf respiration, λ(t) is the carbon allocation
coefficient, and D(t) is leaf decay components at day t . All
terms on the right-hand side are calculated in the modules of
the PCM. The LAI (related to Bl(t) in Eq. 1) is defined as

LAI(t)= Bl(t) ·SLA · fcov, (2)

where SLA is the specific leaf area index, and fcov is the
vegetation fractional coverage. In the following sections, the
modeling approaches implemented for each submodel com-
ponent are described in detail. A summary of the model in-
puts and underlying parameters is provided in Tables 2 and
3, respectively.

2.1.1 Gross primary productivity

The theoretical soundness and practical convenience of the
LUE concept in estimating terrestrial GPP has been the main
core of several model developments (Monteith, 1972; Wei
et al., 2017; Running et al., 2000; Arora, 2002; Schaefer
et al., 2012; Zhang et al., 2015) at the regional and global
scales (Potter et al., 1993; Yuan et al., 2007; Xiao et al.,
2004; Running et al., 2000). In this study, we likewise utilize
the LUE approach, which theoretically relies on the concept
of the interception of photosynthetically active radiation by
plant leaves and the conversion of the intercepted radiation
into biomass through the energy-to-biomass efficiency factor
(i.e., LUE factor). As expressed in Eq. (1), the PCM simula-
tion starts with the assimilation of the carbon flux (GPP) by
the leaf component. The GPP flux (Eq. 3) is estimated as a
product of incident photosynthetically active radiation (PAR)
by means of fPAR, which is a fraction of PAR being absorbed

by the plant leaf, and an LUE factor, multiplied by a modifier
factor when environmental constraints are present (ε):

GPP(t)= LUE · ε(t) ·PAR(t) · fPAR(t), (3)

where LUE is biome-specific, unstressed (or maximum) veg-
etation light use efficiency parameter. fPAR is calculated as
follows (Ruimy et al., 1999; Xiao et al., 2004; Yuan et al.,
2007):

fPAR(t)= c ·
(
1− e−(k·LAI(t))), (4)

where c refers to the maximum absorption at full light inter-
ception in deciduous broad-leaved forest biomes (Monsi and
Saeki, 1953; Ruimy et al., 1994), and k is the light extinction
coefficient parameter.
ε (Eq. 3) is an overall, integrated modifier that corresponds

to environmental stress factors. The overall modifier fac-
tor diminishes the potential value of the light use efficiency
of vegetation during unfavorable environmental conditions
(Potter et al., 1993). These unfavorable conditions include,
for example, high and/or low temperature fT, water avail-
ability fSM, and elevated vapor pressure deficit fVPD stress
factors (Zhang et al., 2015; Pasquato et al., 2015).

In general, the calculation of ε across different LUE mod-
els can be expressed either in minimum (Eq. 5) or multiplica-
tive (Eq. 6) approaches to integrate different environmental
stress factors. On the one hand, models such as the eddy
covariance-light use efficiency model (EC-LUE; Yuan et al.,
2007) uses Liebig’s law of minimum stress, which empha-
sizes the most limiting resource to constrain GPP (Eq. 5). On
the other hand, models such as the Carnegie–Ames–Stanford
approach (CASA; Potter et al., 1993) and the vegetation pho-
tosynthesis model (VPM; Xiao et al., 2004) follow a multi-
plicative approach of stresses (Eq. 6). In the present study,
we opt for the first approach in order to integrate different
stress factors and to calculate the ε.

The first approach (minimum) is expressed as follows
(Running et al., 2000; Sitch et al., 2003; Prince and Goward,
1995):

ε(t)=min(fT(t), fVPD(t), fSM(t)). (5)

The second approach can be written in a multiplicative
way:

ε(t)= fT(t) · fVPD(t) · fSM(t). (6)

The individual stress factors are dimensionless scalars
ranging between 0 (full stress) and 1 (no stress) and are in-
troduced in more detail in the following section.

2.1.2 Environmental constrains and GPP

(I) Temperature stress factor (fT). The first reduction factor
of GPP, fT, which is related to air temperature, is calculated
by including two factors corresponding to low temperature ρl
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Figure 1. Schematic representation of the PCM model. The parallelograms indicate the model inputs; TAir: air temperature; VPD: vapor
pressure deficit; SM: soil moisture; and PAR: photosynthetically active radiation. Rectangles are the processes in the model. Variables in
ellipses show LUE and photoperiod. Numbers refer to the corresponding equations in the text.

(cold) and high temperature ρh (heat) stress effects (Eqs. 7–
9) (Sitch et al., 2003; Fischer et al., 2016; Rödig et al., 2017):

fT(t)= ρl(t) · ρh(t). (7)

The stress induced by the cold stress factor (ρl(t)) can be
calculated as

ρl =
(
1+ ek0·(k1−T (t))

)−1
, (8)

where

k0 =
2ln(0.01/0.99)
(Tlow− Tcold)

, k1 = 0.5(Tlow+ Tcold).

The heat stress factor is calculated as

ρh(t)= 1− 0.01 · ek2·(T (t)−Thot),

k2 =
ln(0.99/0.01)
(Thigh− Thot)

, (9)

where T (t) is the daily mean air temperature; Tlow and Thigh
are DBF biome-specific parameters representing high and
low temperature limits for CO2 assimilation, respectively.

Thot and Tcold are the monthly mean air temperatures of the
warmest and coldest months, respectively, that a DBF biome
can cope with (Boons-Prins, 2010; Bohn et al., 2014; Fischer
et al., 2016; Rödig et al., 2017).

(II) Vapor pressure deficit stress factor (fVPD). The
canopy’s photosynthesis rate is strongly related to changes
in vapor pressure deficit (VPD) (Konings et al., 2017; Xin et
al., 2019), as photosynthesis declines due to stomata closure
(Yuan et al., 2019) when atmospheric VPD increases. It can
be modeled as follows in Eq. (10) (Jolly et al., 2005):

fVPD(t)=max
(

min
(

1−
VPD(t)− vmin

vmax− vmin
,1
)
,0
)
, (10)

where VPD(t) is the daily vapor pressure deficit; vmin and
vmax denote lower and upper thresholds for photosynthetic
activities, respectively. The fVPD value of 1 indicates no
stress on GPP, whereas there is full stress when the fVPD
becomes 0; values between 0 and 1 result in partial and lin-
ear reduction on the GPP.

(III) Soil moisture stress factor (fSM). In general, the im-
pact of the soil water deficit on photosynthesis in vegetation
models is represented as a generic soil moisture stress func-
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tion using either modeled or field observations of soil mois-
ture content (Cox et al., 1999; Granier et al., 2000; Fischer et
al., 2016). Here, we use field observations from different ver-
tical soil profiles, including volumetric soil moisture content
and soil textural properties (wherever available), to calculate
the soil moisture stress factor (fSM).

Essentially, the influence of soil moisture on plant produc-
tivity depends not only on the soil moisture over the entire
profile but also on the available soil water to the plant roots.
Therefore, to estimate the availability of water to plants, the
characteristics of the root system, including rooting depths
and its distribution at different soil depths, are essential fac-
tors to be considered (Ostle et al., 2009). Thus, we include
plant rooting distribution in our analysis, following Jackson
et al. (1996), to take into account the root fraction at different
soil depths, and weigh the soil moisture content layer-wise
according to the present fraction of roots in that layer. In do-
ing so, we calculated the cumulative root fraction (Rci) from
the surface to a certain depth (d) in the soil profile for each
layer (i) using the biome-specific parameter, β, as follows
(Eq. 11) (Jackson et al., 1996):

Rci = 1−βdi . (11)

Then, to estimate the root fraction in each individual layer
(Rii ; Eq. 12), we use the calculated cumulative root frac-
tion of each layer subtracted from the corresponding frac-
tion of the previous layer (see Eq. 11). Next, Rii is multi-
plied with the corresponding observed soil moisture content
of that layer to calculate the soil moisture contribution from
each layer individually (Eq. 13). Later, by summing up the
soil moisture contributions from all individual layers (θi), a
daily effective soil moisture content, θ(t), over the soil col-
umn is obtained (Eqs. 12–14).

Rii = Rci −Rci−1 (12)
θi = θi ·Rii (13)
θ(t)=6(θi) (14)

Similar to other stress terms, the soil moisture stress factor
varies between 0 and 1 and is quantified as follows (Eq. 15):

fSM(t)=max
(

min
(
θ(t)− θr

θMSW− θr
,1
)
,0
)
, (15)

where θ(t) is the daily effective soil moisture; θr and θMSW
are water storage corresponding to the permanent wilting
point and the critical point below which transpiration is lim-
ited, respectively. θMSW, representing minimum soil water
content for unstressed photosynthesis (Hartge, 1980; Granier
et al., 1999; Fischer et al., 2014), is calculated as follows:

θMSW = θr+ scw · (θs− θr), (16)

where θs is soil water content at field capacity; scw (soil crit-
ical water content) is a constant threshold commonly set at

0.4 and a calibration parameter in PCM – scw is a physiolog-
ical threshold defined as the critical relative soil water con-
tent at which tree transpiration begins to decrease (Granier et
al., 1999). According to Granier et al. (1999) and Fischer et
al. (2016), the scw value does not vary significantly between
soil and plant species and can be considered as a constant
value. The θr and θs correspond to soil matric potentials of
−1.5 and −0.033 MPa, respectively.

When the daily effective soil moisture content is above a
minimum soil water content (θMSW; Eq. 16), there is no stress
to limit photosynthesis, while below the θMSW point, there is
a linear increase in stress as water content decreases until θr
is reached. At this point, the soil water stress factor becomes
0 with full limitation on photosynthesis and GPP (Harper et
al., 2021).

2.1.3 Canopy respiration

To allow the estimation of daily changes in carbon in the leaf
pool (Eq. 1), the release of carbon to the atmosphere from
leaf respiration (Re) has to be calculated. This flux is part of
gained carbon (i.e., GPP) consumed for self-maintenance re-
quirements in the leaf pool. In fact, the canopy’s net primary
productivity (NPPcanopy), which is the net available carbon
ready to be allocated among different plant pools, is the sum
of photosynthetical carbon uptake by plants (GPP) reduced
by carbon loss via leaf respiration (Re) (Pasquato et al., 2015;
Running et al., 2000; Melton and Arora, 2016).

We use the well-established modified Arrhenius equation
(Eq. 17) (Lloyd and Taylor, 1994; Sitch et al., 2003; Perez,
2016) to calculate the leaf respiration. The Re flux is a func-
tion of air temperature, the carbon mass of the leaf pool, and
a tissue-specific carbon to nitrogen ratio, given as

Re(t)=
rr ·Bl(t)

CNr
· e
p1·
(

1
p2
−

1
T (t)+p3

)
, (17)

where rr represents the leaf respiration rate and Bl the carbon
mass of leaf pool (leaf biomass); p1, p2, p3 are parameters
in the Arrhenius equation, CNr is the carbon to nitrogen ratio
in leaves, and T is daily mean air temperature.

2.1.4 Vegetation phenology module

We incorporated a phenology submodel into our model us-
ing the approach defined in Yue and Unger (2015). This sub-
model calculates temperature-dependent phenological fac-
tors for spring and autumn – fST and fAT, respectively.
These factors range from 0 to 1 throughout the year to de-
termine the timing of the spring budburst (once the spring
temperature-dependent factor increases to be above 0), ma-
turity (when the spring temperature-dependent factor ap-
proaches 1), autumn senescence (once the product of the au-
tumn temperature-dependent and photo-period factors start
to decrease below 1), and dormancy (once the product of
autumn temperature-dependent and photo-period factors ap-
proach 0) phenophases. The second phenological factor in
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the autumn and dormancy phenology is the photo-period
(fdl) factor, which depends on day length. The photo-period
factor, together with the temperature-dependent factor, reg-
ulates the leaf senescence. The phenology submodel de-
termines the above-mentioned four phenological transition
dates on which a simple allocation of assimilated carbon to
the leaf pool is based. Below, we provide details of each phe-
nological factor and event.

(I) Spring phenology (fSP). The growing season starts with
the budburst day, which is the beginning of canopy develop-
ment and the time when green tips of leaf begin to show. It is
estimated using a temperature-dependent phenological fac-
tor, fST, as follows (Eq. 18):

fST =

{
min

(
1, GDD−Gb

Lg

)
GDD≥Gb

0 otherwise
, (18)

where GDD is the growing degree day andGb is the budburst
threshold value. The Lg parameter is a calibrated constraint
in degree day, representing the period of leaf growth from
budburst to maximum leaf cover (Yue and Unger, 2015). The
accumulation of growing degree day (GDD) (Eq. 19) from
winter solstice day is calculated as follows:

GDD=
n∑
i=1

max(T10− Tb,0), (19)

where T10 is 10 d average air temperature. Tb is the base tem-
perature for the budburst (5 ◦C). In the estimation of fST
(Eq. 18), Gb is a threshold value for budburst to occur and
is calculated as follows:

Gb = a+ b · e
(r·NCD), (20)

where a, b, and r are parameters for the budburst threshold.
NCD is counted as the number of chill days between the pre-
vious winter solstice day and the beginning of the succes-
sive year. Given the GDD andGb estimates, the temperature-
dependent phenological factor (fST) is then applied to calcu-
late the spring phenology (fSP) (Eq. 21):

fSP = fST. (21)

(II) Autumn phenology (fAP). For the autumn phenol-
ogy, the product of two phenological factors – temperature
fAT and photo-period fdl factors – is considered to esti-
mate the timing of senescence and dormancy. The autumn
temperature-dependent factor, fAT (Eq. 22), is obtained as
follows:

fAT =

{
max

(
0,1+ (FDD−Fs)

Lf

)
FDD≤ Fs

1 otherwise
, (22)

where Fs is a threshold in degree day for leaf fall, and Lf is a
threshold in degree day for the duration and length of the leaf
falling period (more details can be found in Yue and Unger,

2015). FDD (Eq. 23) is an accumulative falling degree day
from summer solstice day and is known as a cumulative cold
summation method (Yue and Unger, 2015); it can be calcu-
lated as

FDD=
m∑
i=1

min(T10 d− Ts,0), (23)

where T10 d is 10 d average air temperature; Ts is base tem-
perature for leaf fall at 20 ◦C.

In addition to the temperature factor fAT, autumn senes-
cence timing is regulated via the photo-period factor fdl,
which is calculated based on day length (dl) period together
with the lower (dlmin) and upper (dlmax) limits of day length
affecting leaf fall, as in Eq. (24):

fdl =

{
max

(
0, dl−dlmin

dlmax−dlmin

)
dl≤ dlmax

1 otherwise
, (24)

where dl is the day length in min; dlmin and dlmax are the
lower and upper limits of day length for the period of leaf
fall, respectively. The autumn phenology (fAP) is finally cal-
culated as a product of fAT and fdl (Eq. 25):

fAP = fAT · fdl. (25)

The predicted phenological transition dates from the
spring fSP and autumn fAP phenology factors determine the
budburst-maturity and senescence-dormancy events, respec-
tively. Based on this information, a fractional allocation to
and decay from the leaf pool is considered (as detailed be-
low).

2.1.5 Carbon allocation to and decay from the leaf pool

The next step of the carbon pathway in Eq. (1) is the alloca-
tion to and decay of assimilated carbon from the leaf pool.
The leaf biomass state variable (Bl) in Eq. (1) is updated at a
daily time step, based on changes in the gain and loss of car-
bon in the leaf pool. The allocation and decay processes are
both key physiological processes in the vegetation models,
governing the partitioning of growth among different plant
carbon pools, and are critical determinants of plant produc-
tivity (Haverd et al., 2016; Xia et al., 2017). In vegetation
models, there are two widely used allocation schemes, which
are based on: (1) fixed allocation coefficients, and (2) alloca-
tion driven by allometric constraints. The first scheme uses a
fixed allocation ratio for individual plants’ carbon pools (e.g.,
used in CASA, Friedlingstein et al., 1999, or BIOME-BGC,
Hidy et al., 2022). In this scheme, the allocation ratio is con-
stant within different plant development stages. In the second
scheme, a fraction of carbon is allocated in such a way that
it satisfies allometric relationships that exist between various
plant compartments (Malhi et al., 2011; Gim et al., 2017).
In the case of allocation to the leaf, the allometric relation-
ship is based on the relative mass of the canopy – the so-
called maximum Lb – that a plant can support with a certain
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stem mass and height. We adopted an allocation scheme that
mainly depends on an updated daily carbon status of the leaf
pool. We use the maximum values of balanced LAI supported
by the system (Eq. 26) based on a previous study conducted
by Fleischer et al. (2013). Instead of considering it as a fixed
value, we vary Lb within a range of±1 m2 m−2 and consider
it as one of the model parameters.

λ(t)= 1−
LAI(t)
Lb

, (26)

where λ(t) is the carbon allocation ratio to the leaf pool,
and Lb is the maximum LAI that can be supported by plants.

Provided with the identified major phenological transition
dates from the phenology submodel – i.e., budburst, maturity
or steady growth, senescence, and dormancy – the calendar
year is accordingly divided into four main stages. During the
early growing season, once the climate condition becomes
favorable for plant growth and the budburst occurs, carbon
allocation to the leaf, λ (Eq. 26), is a relatively large frac-
tion. This means that the largest part of the carbon will be
partitioned towards the leaf and will be used for growth dur-
ing the early growing season (Gim et al., 2017). Given the
value for balanced LAI supported by the system (Fleischer et
al., 2013), the carbon allocation slowly decreases with an in-
crease in LAI until the leaf mass reaches that balanced LAI.
As soon as the canopy approaches a full-leaf state (i.e., ma-
turity phenophase), the carbon allocation ratio to the leaf is
held at its minimum – a small portion is used for mainte-
nance respiration during this steady growth stage. We set the
leaf allocation ratio during the maturity phase to a value of
5 % from the assimilated carbon, following the recent version
of the Noah-MP model’s leaf allocation scheme (Gim et al.,
2017).

After the steady growth and maturity phase, the leaf senes-
cence phase approaches and the leaf-loss processes start to
play the main role in moderating the mass balance of the
canopy and the corresponding LAI seasonality. The loss of
carbon via the leaf fall in PCM is simulated based on the
calculated senescence and dormancy transition dates via the
phenology submodel, such that when the simulation time-
step approaches the senescence date, the model linearly de-
creases the leaf biomass until the leaf biomass nearly reaches
0 at the beginning of the dormancy phase.

Concerning the leaf loss processes, PCM also accounts for
leaf losses due to cold stress (OC) (Eq. 27), drought stress
(OD) (Eq. 29), and normal loss of the leaf (ON) (Eq. 30)
following the schemes of the CLASSIC model (Melton and
Arora, 2016).

Leaf loss due to the cold stress is given by

OC(t)=OCmax · (Cs(t))3, (27)

where OCmax is the maximum leaf loss rate parameter,
and Cs is a cold stress factor value. The cold stress factor
(Eq. 28), ranging between 1 (full stress) and 0 (no stress), is

calculated as

Cs(t)=


1 T (t)≤ (Tc− 5)

1− T (t)−(Tc−5)
5 (Tc− 5) < T (t) < Tc

0 Tc ≤ T (t)

, (28)

where T (t) is air temperature, and Tc is a biome-specific tem-
perature threshold below which leaf damage is expected.

Similar to the OC, the leaf loss rates due to drought
stress OD (Eq. 29) are calculated using the fSM stress
factor (through the soil moisture stress submodel) and a
OCmax maximum leaf loss rate parameter associated with the
drought stress:

OD(t)=ODmax · (1− fSM(t))3. (29)

The third leaf loss term represents the loss rates due to
a normal decay ON, driven by biome-specific leaf lifespan
(τ = 1 for DBF in Eq. 30), given by:

ON(t)= 1/(365 · τ). (30)

Finally, the total decay of leaves D(t) consists of contri-
butions from all individual losses (Melton and Arora, 2016)
and can be given as follows (Eq. 31):

D(t)= Bl(t) ·
(
1− e−(OC(t)+OD(t)+ON(t))

)
, (31)

where OC, OD, and ON are the leaf loss rates due to cold
stress, drought stress, and normal decay, respectively.

In summary, the proposed PCM model comprises the sub-
models mentioned above in a hierarchical chain, starting with
the carbon uptake via the initial leaf biomass state variable
and continuing with the daily partitioning of the assimi-
lated carbon together with daily decay from the leaf com-
partment to calculate the leaf biomass production increment.
This biomass increment is later added up to the state variable
from the previous time step to update the leaf biomass for the
current time step. Finally, to update the LAI that is required
for the GPP estimation over the next time step, the current
leaf biomass is converted to LAI according to Eq. (2).

2.2 Model setup and experimental design

2.2.1 Study sites and datasets

This study focuses on deciduous broad-leaved forest biome
types. We selected tower sites distributed over Europe and
North America to ensure a representative spatial coverage.
Sites were excluded if data for fewer than 5 consecutive years
of observations were available. We further screened the data
at each site to only include the years with minimal gaps in the
input data. For example, there were some long periods (i.e.,
years) of gaps within the continuously recorded FLUXNET
dataset for photosynthetic photon flux density (PPFD); we
excluded those years in the simulations (e.g., a continuous
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period of missing PPFD in the US-Ha1 dataset from 1991–
2003). Applying the above criteria, nine sites with varying
temporal coverage were retained for the analyses (Fig. 2).
The general site information is presented in Table 1. Daily
flux and meteorological forcing data are from ecosystem
stations available from the free, fair-use FLUXNET2015
Tier 1 global collection database (https://fluxnet.org/data/
download-data/, last access: June 2021) (Pastorello et al.,
2020). The input data required to drive the PCM comprise
air temperature (T ), photosynthetic active radiation (PAR)
(i.e., converted from PPFD in µmolm−2 s−1), and vapor pres-
sure deficit (VPD) (Table 2). The tower-based GPP esti-
mations – GPP_NT_VUT_REF from the FLUXNET2015
dataset – are used for model calibration. We used the first
year of the time series as a warm-up period, during which
the chilling days and thermal requirements in the phenol-
ogy submodel are counted. In other words, since the phe-
nology module for each individual year needs the number
of chilling days from the previous year, the very first year
of observations is not included in the simulations. The very
first year of observations is only used to calculate budburst
day of the first simulation year. Here, the warm-up period
refers to the last 10 to 11 d of each previous year that are
eventually required for estimating variables in the phenol-
ogy module for its uninterrupted run in the subsequent year.
When simulating the soil moisture stress in establishing the
model is desired, soil moisture (SM) and soil textural prop-
erties are also included. We investigate the impact of soil
moisture stress at the Hohes Holz (DE-HoH) site in Ger-
many only, where soil moisture data are available up to 80 cm
depth. With regard to calculating the soil moisture stress in
PCM, a pedotransfer function following Zacharias and Wes-
solek (2007) is implemented to estimate site-specific θs and
θr values. This (pedotransfer) submodel receives soil textural
properties (sand, clay contents, and bulk density) obtained
from field observations of spatially distributed soil profiles
as input. It provides the required field capacity (θs) and per-
manent wilting point (θr) to calculate θMSW and the corre-
sponding soil moisture stress term fSM in the calculation
of ε (Eq. 5). To maintain the consistency with the vertically
weighted soil moisture, θs and θr are estimated as weighted
average values of individual, layer-specific θs and θr, tak-
ing the respective root fractions as a weighting factor. Other
required parameters in the model related to different pro-
cesses are listed in Table 3. The LAI field measurements
were obtained via personal communication with site con-
tact persons, and a subset of 4 sites (DE-HoH, DE-Hai, US-
MMS, and US-Ha1; https://harvardforest1.fas.harvard.edu/
exist/apps/datasets/showData.html?id=hf069, last access: 5
January 2022) was selected based on data availability to eval-
uate the modeled LAI. The observation-based LAI data were
obtained using common procedures – either the LAI-2000
instrument (Gower and Norman, 1991) at the DE-Hai, US-
MMS, and US-Ha1 or the fisheye (DHP) technique (Bon-
homme and Chartier, 1972; Ariza-Carricondo et al., 2019) at

the DE-HoH site. These two methods agree very well accord-
ing to Ariza-Carricondo et al. (2019) and are thus consid-
ered to yield comparable values across different sites (Ariza-
Carricondo et al., 2019).

2.2.2 Model structure and setup

The impact of water availability (i.e., soil water deficits and
atmospheric water deficits) on canopy photosynthesis in veg-
etation models is structured in two ways: individually or in
combination with each other. Recently, plant hydraulic the-
ory has also been introduced to reflect the vegetation water
stress in the Community Land Model (CLM5), which is be-
yond the scope of this study (Kennedy et al., 2019). In some
models, water stress is quantified as an overall stress from
both atmosphere and soil (GLO-PEM; Prince and Goward,
1995, BIOME-BGC; Hidy et al., 2022). For instance, in the
GLO-PEM model, the water stress condition is reflected by
an estimated and potential evapotranspiration, a relative dry-
ing rate scalar for potential water extraction, and a volumetric
soil moisture content (more details, together with equations,
can be found in Zhang et al., 2015). Some other models ac-
count for the water stress only due to the atmospheric drought
(CASA; Potter et al., 1993, MOD17 algorithm; Running et
al., 2000). For example, in the MOD17 algorithm, only the
atmospheric variable VPD and its two parameters, vmin and
vmax, are used to calculate the water stress factor to predict
GPP (Running et al., 2000). In some other models, such as
FORMIND (Fischer et al., 2016) and EC-LUE (Yuan et al.,
2007), only the soil moisture deficit is reflected. For instance,
in the FORMIND model, the impact of the atmospheric wa-
ter deficit (VPD impact) is not presented; however, the soil
moisture deficit is represented by volumetric soil water con-
tent and soil parameters (soil field capacity, permanent wilt-
ing point, and minimum soil water content). In order to de-
termine how stress should be represented in the final version
of PCM, we conducted two sets of preliminary model exper-
iments to examine (1) whether the inclusion of fSM in addi-
tion to the other stress factors affects the results, and (2) the
effect of alternative integration approaches (i.e., Liebig’s law
and multiplicative approaches, see Sect. 2.1.1) on simulated
GPP over the DE-HoH site during the drought in 2018. Since
the best model skill of the PCM was achieved when incorpo-
rating all stress factors (fT, fVPD, and fSM) in the calculation
of the overall environmental stress and when using the mini-
mum integration approach (Eq. 6), this structure was selected
for the final setup (see Figs. S1 and S2 in the Supplement).
With regard to specific considerations in LAI simulations, the
model starts with the simulation using a fixed initial LAI state
variable to begin the carbon assimilation once weather condi-
tions become more favorable for plant growth. Following the
CABLE model parameterizations (Li et al., 2018), we set the
initial LAI value to 0.35. We also consider a local maximum
LAI (so-called Lb in this study), obtained from reported val-
ues in the literature (Fleischer et al., 2013), that individual
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Figure 2. Location of the FLUXNET2015 sites investigated in this study.

Table 1. Descriptions of flux tower sites from FLUXNET2015 global database collection. Note that, since the phenology submodel for sim-
ulating budburst in each year needs the temperature data from the last 10–11 days of the previous year, the very first year of the investigation
period at each site is not included in the simulations.

Site ID Site name Latitude Longitude Elevation Mean Mean Downloaded Simulation Source
(m) annual annual period period

temperature precipitation
(◦C) (mm)

DK-Sor Soroe 55.48 11.64 40 8.2 660 1996–2014 2006–2013 https://doi.org/10.18140/FLX/1440155
CA-Oas Saskatchewan –

Western Boreal
53.62 −106.19 530 0.34 428.53 1996–2010 1996–2010 https://doi.org/10.18140/FLX/1440043

DE-HoH Hohes Holz 52.08 11.21 193 9.1 563 2014–2019 2014–2019 Own dataset
DE-Hai Hainich 51.07 10.45 430 8.3 720 2000–2018 2000–2018 https://doi.org/10.18140/FLX/1440148
FR-Fon Fontainebleau-

Barbeau
48.47 2.78 103 10.2 720 2005–2014 2005–2014 https://doi.org/10.18140/FLX/1440161

IT-Ro1 Rocca Respampani 1 42.40 11.93 235 15.15 876.2 2000–2008 2001–2006 https://doi.org/10.18140/FLX/1440174
US-Ha1 Harvard Forest EMS

Tower
42.53 −72.17 340 6.62 1071 1991–2012 2003–2012 https://doi.org/10.18140/FLX/1440071

US-Oho Oak Openings 41.55 −83.84 230 10.1 849 2004–2013 2004–2013 https://doi.org/10.18140/FLX/1440088
US-MMS Morgan Monroe

State Forest
39.32 −86.41 275 10.58 1032 1999–2014 1999–2014 https://doi.org/10.18140/FLX/1440083

mature forests can sustain at canopy closure. However, the
local maximum LAI is, later in the calibration step, allowed
to vary within±1 m2 m−2 of the reported value. The Lb con-
strains the simulated LAI up to the reported value at each site
across years.

2.2.3 Global sensitivity analysis

Despite the simplicity of parsimonious models, assessing
model robustness remains a fundamental step when build-
ing and developing a model. One of the powerful and in-
valuable tools for robustness assessment is global sensitivity
analysis (GSA) to test the underlying model parameteriza-
tions and to reveal sensitive model parameters for the subse-
quent parameter inference. In general, the GSA can be per-
formed to understand the influence of parameter perturba-
tions on modeled simulations and to determine the informa-
tive parameters that contribute the most to an output behav-
ior (Iooss and Lemaître, 2014; Cuntz et al., 2016; Rakovec et
al., 2014). In this study, during the GSA, the parameters vary
over boundaries reported in the literature. In case there were
no reports of upper and lower bounds available for some pa-

rameters (e.g., phenological parameters from Yue and Unger,
2015), we varied them at ±20 % level of their default val-
ues. We utilize the Sobol’ variance-based sensitivity method
(Saltelli et al., 1999) with the Sobol2002 formula (Saltelli,
2002), in which decomposition of the output variance is per-
formed in terms of Sobol’ indices. The Sobol’ first-order in-
dex (Si) and total-order Sobol’ index (ST) express the share
of output variance associated with a given parameter i and
the share of output variance where all parameters are varied
except the parameter i, respectively. These indices range be-
tween 0 and 1, with 0 value indicating that the model output
is entirely insensitive to the respective parameter changes.
The closer the value is to 1, the more important and sensi-
tive the respective parameter. Generally, the model param-
eters are deemed sensitive if the sensitivity index is above
a certain threshold value. Here in this study, we report the
total-order Sobol’ index and set the selection threshold at 1 %
(Tang et al., 2007), meaning that if the variation of a given
parameter contributes to a change greater than 1 %, then that
parameter is recognized as an informative parameter. In con-
trast, non-informative parameters are reported as parameters
with Sobol’ indices below 1 %. Given the focus of the present
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Table 2. List of input and state variables (at daily time step) in PCM.

Input variables Unit Description

T ◦C Mean air temperature
PPFD µmolm−2 s−1 Photosynthetically active radiation
VPD hPa Vapor pressure deficit
SM % Soil moisture
Soil textural properties % Sand, clay, and bulk density
Lat ◦ Latitude of site

State variables Unit Description

Bl gCm−2 Biomass of leaf
D gCm−2 Leaf biomass decay
LAI m2 m−2 Leaf area index
fPAR % Fraction of photosynthetically active radiation

study on two main output variables (i.e., GPP and LAI), we
use the time mean for both outputs over the entire period for
the sensitivity analysis at each study site. However, the re-
sults are expected to differ not only according to the site and
selected target output but also between the individual years
if a specific year is of investigative interest (Göhler et al.,
2013; Hou et al., 2012). To conduct the sensitivity analysis,
we opt to use all coefficients in the empirical equations as ad-
justable parameters (Table 3). It helps to explore the model
sensitivities of often hidden parameters to properly constrain
the model (Cuntz et al., 2016). Overall, we apply the global
sensitivity analysis to all study sites for the common 29 pa-
rameters and analyze the sensitivity of the soil moisture stress
parameters together with other parameters only for the DE-
HoH site at which representative soil moisture data at dif-
ferent depths, down to 80 cm into the soil, were available.
Given the importance of the number of model evaluations
required to conduct the Sobol’ sensitivity analysis (Nossent
and Bauwens, 2012) and the stability of sensitivity indices,
we also check the convergence of the Sobol’ indices through
a visual assessment of diagnostic plots.

2.2.4 Parameter estimation

Based on the results of the sensitivity analysis, informative
and non-informative parameters were identified. Later, we
fixed the non-informative parameters to their corresponding
values reported in the literature (see Table 3 for details);
the remaining informative parameters were inferred using
a Monte Carlo approach (Kuczera and Parent, 1998). The
parameters were calibrated against the GPP_NT_VUT_REF
time series from the corresponding flux tower measurements
(global FLUXNET Tier1 network, accessed on 13 February
2021) (Pastorello et al., 2020). It is important to note that,
besides the maximum LAI value, we did not use LAI field
observations in the calibration process, as LAI is not read-
ily available from the FLUXNET dataset. Instead, some LAI
observations (obtained from site contacts) were used in the

model validation step. The first year of the dataset is con-
sidered a spin-up period. The rest of the time series are di-
vided into two sub-periods. The first half is used for the cal-
ibration phase, and the remaining years are used to indepen-
dently evaluate the model performance (i.e., over the out-of-
calibration set). A total of 10 000 parameter sets were sam-
pled from their a priori defined ranges (Table 3) in each study
site to estimate the parameters and to simulate the GPP flux
and LAI. Model performance was quantified using a group
of performance metrics, including Kling–Gupta efficiency
(KGE) (Gupta et al., 2009), root-mean-square error (RMSE),
and coefficient of determination (r2). We selected an ensem-
ble of informative model runs that simultaneously lie within
the top 5 % of all the performance metrics.

2.2.5 Site-specific validation and model generalization

The second half of the GPP time series at each study site was
used for the model validation step. In addition to the at-site
validation, it is also equally important to consider the gener-
ality of the model structure, including underlying model pa-
rameterizations. To this end, we considered an independent
(spatial) validation approach – so called cross-validation –
for assessing the robustness of model parameterizations be-
yond the conditions during which they were calibrated. The
relevance of the cross-validation to the modeling framework
is that transferable models can be used beyond the spatial and
temporal limits of their underlying data, especially in the face
of the pervasive scarcity of observational data to constrain
model parameterizations (Yates et al., 2018). Therefore, as
the next step in our modeling framework, after performing
the site-specific calibration and validation, a cross-validation
of the model is conducted to come up with a compromise
solution (here, the parameter set) applicable across the study
sites, following the approach of Zink et al. (2017). In doing
so, the behavioral parameter sets found from the on-site cali-
bration for each study site are grouped together as one unique
set of all possible behavioral parameters. Then the model is
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Table 3. Model parameters in PCM.

Calibration model Unit Description Lower Upper References
parameters, based boundary boundary
on sensitivity
analysis

K – Extinction coefficient 0.45 0.60 Ruimy et al. (1999);
Yuan et al. (2007)

C – Beer–Lambert law parameter 0.85 1 Monsi and Saeki (1953)
LUE g CMJ−1 Light use efficiency 1.04 2.25 Cheng et al. (2014);

Yuan et al. (2010)
Lb m2 m−2 Maximum balanced LAI 4 6.5 Fleischer et al. (2013)
SLA m2 g−1 Specific leaf area 0.01 0.03 Kattge et al. (2011);

Gim et al. (2017);
Dyderski et al. (2020)

fcov % Vegetation fractional coverage per unit area 0.60 0.95 FLUXNETsite descrip-
tion

PWP % Permanent wilting point 7 13 Intermediate output of
PCM model

β – Root distribution coefficient 0.966 1 Jackson et al. (1996)
vmin hPa Mean VPD at which LUE= LUEpotential 6.5 10 Heinsch et al. (2003);

Cheng et al. (2014)
Lg Degree day Phenological growing length 300 450 Yue and Unger (2015)
Fs Degree day Phenological threshold for leaf fall −500 −112 Yue and Unger (2015),

calibrated
b Degree day Phenological parameter for budburst threshold Gb 440 660 Yue and Unger (2015)
r – Phenological parameter for budburst threshold Gb −0.012 −0.008 Yue and Unger (2015)
p2 – Second-parameter Arrhenius equation 44.96 67.44 Sitch et al. (2003)
p3 – Third-parameter Arrhenius equation 36.96 55.44 Sitch et al. (2003)

Fixed model
parameters based
on sensitivity
analysis

FC % Field capacity 23 23 Intermediate output of
PCM model

scw – Critical threshold value of soil moisture 0.4 0.4 Granier et al. (1999)
Thot

◦C Mean air temperature of warmest month 19 19 Rödig et al. (2017);
Sitch et al. (2003)

Tlow
◦C Low temperature limit for CO2 assimilation −2 −2 Rödig et al. (2017);

Sitch et al. (2003)
Tcold

◦C Mean air temperature of coldest month 10 10 Rödig et al. (2017);
Sitch et al. (2003)

Thigh
◦C High temperature limit for CO2 assimilation 38 38 Rödig et al. (2017);

Sitch et al. (2003)
vmax hPa Mean VPD at which LUE= 0 25 25 Heinsch et al. (2003);

Cheng et al. (2014)
Lf Degree day Phenological falling length 410 410 Yue and Unger (2015)
dlmin min Phenological day length threshold for leaf fall 585 585 Yue and Unger (2015)
dlmax min Phenological day length threshold for leaf fall 695 695 Yue and Unger (2015)
a Degree day Phenological parameter for budburst threshold Gb −110 −110 Yue and Unger (2015)
r – Phenological parameter for budburst threshold Gb −0.01 −0.01 Yue and Unger (2015)
Tb

◦C Base temperature for budburst occurrence 5 5 Yue and Unger (2015)
Ts

◦C Base temperature for senescence occurrence 20 20 Yue and Unger (2015)
CNr g Cg N−1 Leaf C : N ratio 25 25 White et al. (2000)
p1 – First-parameter Arrhenius 308.56 308.56 Sitch et al. (2003)
Tc

◦C Temperature threshold for determining cold stress 5 5 Melton and Arora (2016)
rr g Cg N−1 Leaf respiration coefficient 0.066 0.066 Kattge et al. (2011);

Sitch et al. (2003);
Rödig et al. (2017)

ODmax d−1 Maximum drought stress loss rate 0.15 0.15 Melton and Arora (2016)
OCmax d−1 Maximum cold stress loss rate 0.005 0.005 Melton and Arora (2016)
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run using all possible parameter sets, and the respective per-
formance metric (i.e., KGE) for each parameter set at each
investigated site is estimated. After that, the mean values of
KGEs corresponding to each parameter set over all the study
sites are calculated. Finally, a set of parameters associated
with the highest mean KGE score is recognized as a compro-
mise solution. Here, the goal of this analysis is to investigate
the generality of the underlying model structure and to al-
low the inference of a common (compromise) set of model
parameters for the PCM for a broader applicability (i.e., be-
yond the calibration sites).

3 Results and Discussion

In the following section, we first show and discuss findings
from the global sensitivity analysis and site-specific param-
eter calibration. This is followed by a discussion of the site-
specific model performance. Finally, we present the results of
a cross-validation to test the generality of underlying model
parameterizations. This also allows us to propose a standard
set of PCM parameters for locations where calibration is not
possible.

3.1 Sensitivity analysis

Here, we explore the sensitivity of the output variables (i.e.,
GPP and LAI) to the model parameter variations using
Sobol’ method at each study site. Although a direct compar-
ison of PCM parameters sensitivities from this study with
similar models in other studies is difficult due to differences
in model structures and representation of photosynthesis pro-
cesses, one can gain insights by comparative assessments
among conducted studies. For instance, the light utilization in
LUE-oriented GPP models is based on photon absorption and
photosynthetic efficiency of incident light (Frost-Christensen
and Sand-Jensen, 1992). Hence, one can compare the sig-
nificance of the LUE parameter of our model with that of
the quantum yield of photosynthesis, which is a measure of
photosynthetic efficiency in the Farquhar equation (Farquhar
et al., 1980) in several land surface models. As can be seen
from Fig. 3a (mean GPP) and b (mean LAI), different sensi-
tive parameters are associated with different output variables.
However, for the same output variable, all sites more or less
share a similar informative set of parameters, although the
magnitudes differ. Furthermore, the evaluation of Sobol’ in-
dices convergence (see Fig. 4) showed relative stability of
sensitivity indices at around 8000 model evaluations. In the
following, we show and discuss the sensitivity of the model
outputs to different PCM parameters.

3.1.1 Parameter sensitivity for GPP estimation

We first investigate the sensitivity of GPP output to the model
parameters. Figure 3a shows the total-order Sobol’ index of
all parameters contributing to the GPP output. The boxes in
Fig. 3a indicate the variation of the sensitivity of a given pa-
rameter across different sites. Only a small number of them
out of the 34 model parameters (Fig. 3a) have ultimate con-
trol over the simulated GPP. This is in agreement with previ-
ous studies using LPJ-DGVM (Zaehle et al., 2005), BETHY
(White et al., 2000), and BIOME-BGC (Knorr, 2000) mod-
els showing only a few of the investigated parameters signif-
icantly influencing the modeled carbon flux outputs (includ-
ing GPP).

The most sensitive parameter for the GPP estimates turned
out to be the light use efficiency (LUE) in Eq. (3). This agrees
with numerous other studies confirming that light use effi-
ciency is a significant parameter affecting GPP. For instance,
Zaehle et al. (2005) conducted a probability-based sensitivity
analysis using the LPJ-DGVM ecosystem model, utilizing
the Farquhar photosynthesis scheme, and found that carbon
fluxes (including GPP) are highly sensitive to parameters re-
lated to the photosynthesis process, particularly the intrinsic
quantum efficiency parameter (so called αq in their model),
which is related to the LUE in PCM. Similarly, Ma et al.
(2020), using a GSA in the Flux-based ecosystem model and
based on the Farquhar photosynthesis scheme, found canopy
quantum efficiency of photon conversion to be among the
most sensitive parameters with a strong influence on forest
GPP. The multiplicative coefficient of canopy reflectance,
C, and the light extinction coefficient, k, parameters in the
fPAR formulation (Eq. 4) based on Lambert–Beer’s law also
showed substantial sensitivities. Notably, these parameters
are fixed to constant values by default in the fPAR formula-
tion in similar studies (e.g., Xiao et al., 2004, and Xin et al.,
2019), whereas, here, we let these parameters (C and k) vary
at ±20 % level of their fixed values. The next group of sen-
sitive parameters are those involved in the imposed environ-
mental stresses on GPP. (I) The vmin parameter (Eq. 10) ex-
hibits some sensitivity and controls the impact of vapor pres-
sure deficit stress on simulated GPP (fVPD). Balzarolo et al.
(2019) also reported the strong impact of VPD in general on
radiation use efficiency and on resultant GPP. (II) The next
environmental factor constraining the GPP is soil moisture
stress. Here, we identify β (Eq. 11) and θr (Eq. 15) as sen-
sitive parameters. We can only consider and discuss the soil
moisture stress-related parameters at the DE-HoH site due to
the lack of soil moisture data at other sites. The investigated
sensitivity of fSM-related parameters are shown in Fig. S3 in
the Supplement. Similar findings of the pronounced impact
of parameters controlling soil moisture availability (e.g., θr
and β) on simulated GPP have been reported by Li et al.
(2016) for the CABLE and JULES models. From a soil sci-
ence perspective, θr is often a fixed value of soil water content
corresponding to a soil matric potential of 1500 kPa (Zhang
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Figure 3. Distribution of the total-order Sobol’ indices for GPP (a) and LAI (b) outputs across all sites. Each gray box on the y axis
represents parameters involved in a specific process as follows: GPP-related parameters (Eqs. 3 and 4); LAI-related parameters (Eqs. 2
and 26); environmental stresses-related parameters (Eq. 10); phenology-related parameters (Eqs. 18, 20, and 22); canopy respiration-related
parameters (Eq. 17). The vertical dotted red line corresponds to the threshold of 1 %.

Figure 4. Illustration of the evolution of total-order Sobol’ indices (total-order indices convergence) for sensitive parameters with an in-
creasing number of samples for GPP (a) and LAI (b) outputs at the DE-HoH site, taken as an example including soil moisture stress-related
parameters.

and Han, 2019) and is typically not considered as a param-
eter. However, our result shows that θr might not be consid-
ered as fixed. Pedotransfer functions (PTFs) link soil textural
properties (e.g., sand, clay contents) to soil parameters (e.g.,
θr), and various functional forms have been developed in past

decades (Van Looy et al., 2017). Empirical coefficients of
PTFs can also be regarded as model parameters (Samaniego
et al., 2010; Kumar et al., 2013; Schweppe et al., 2022). Hir-
mas et al. (2018) also showed that soil retention properties
can change over time. For example, climate change may in-
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duce rapid changes in the soil macroporosity and the associ-
ated soil hydraulic properties. Those may alter the feedback
between climate and land surface.

The SLA parameter (Eq. 2), as one of the structural pa-
rameters, is also a major contributor to simulated GPP. Its
sensitivity can be explained by the direct effect of SLA on the
LAI calculation (Eq. 2), through which the carbon assimila-
tion (GPP) eventually takes place (Eqs. 3 and 4). Arsenault et
al. (2018) and Li et al. (2016) also reported the SLA parame-
ter among very sensitive model parameters when simulating
carbon fluxes (including GPP) in the Noah-MP and CABLE
land surface models, respectively.

Finally, the last group of sensitive parameters in modeled
GPP are those involved in the phenology submodel. The pa-
rameter Fs (Eq. 21), determining the timing of leaf fall, ap-
peared as a major informative parameter for all sites; how-
ever, some parameters were only sensitive at some sites, in-
cluding those for the leaf budburst threshold – namely, b
and r (Eq. 19). The b parameter appeared sensitive only at
DE-HoH, and the parameter r is sensitive at CA-Oas and
US-Oho. Generally, the implemented phenology submodel
controls the plant’s active period and, at the same time, ac-
counts for the impact of the temperature factor on leaf de-
velopment and resultant GPP. This might be a reason why
temperature-related parameters in the temperature stress fac-
tors (Eqs. 8 and 9) are not found to be informative in the
sensitivity analysis. In other words, temperature stress limits
CO2 assimilation and gross primary productivity outside of
the growing season. Phenology parameters play their roles
during the growing season. This period demonstrates favor-
able conditions for plant growth when the temperature stress
is mostly not active. Therefore, temperature stress parame-
ters do not significantly influence the modeled GPP. In agree-
ment with our results, Yuan et al. (2007) also reported little
impact by environmental stresses due to temperature on GPP
during the growing season. It is worth mentioning that the
temperature stress is still applied during the growing season,
but as the upper-most limits of temperature (Tlow =−2 and
Thigh = 38 ◦C) do not occur frequently – unless during cold
or heat stresses (particularly hot years in 2018 and 2019 at
the DE-HoH site) – the sensitivity of GPP to temperature pa-
rameters is less pronounced during the growing season.

Another interesting point emerging from Fig. 3a is the in-
sensitivity of GPP output to the LAI balanced (maximum)
Lb. This effect can also be seen in the LAI simulation (e.g.,
at DE-HoH site) where an ensemble of simulated LAI at each
time step during the maturity phase (i.e., in Fig. 7) did not
cause much difference in the corresponding GPP output (i.e.,
in Fig. 5). This is in agreement with the previous studies of
Jung et al. (2007) and Lee et al. (2019), which showed that
GPP output saturates and becomes insensitive at LAI values
above 4 m2 m−2.

3.1.2 Parameter sensitivity for LAI estimation

We further explore the parameter sensitivity for LAI output
similarly to the GPP described above. In general, a similar set
of sensitive parameters were identified for GPP and LAI out-
puts across sites (Fig. 3b). However, some differences were
also detected: parameters such as Lb, fcov, Lg, p2, and p3
showed substantial sensitivity, while the sensitivity to vmin
was almost negligible. Regarding the similarity of parame-
ters between GPP and LAI, it is worth noting that the calcu-
lations of GPP and LAI depend on each other, since assim-
ilated carbon (i.e., GPP) is partly converted to leaf biomass,
from which the LAI is calculated and used in turn for the
GPP calculation in the next time step. Therefore, LAI output
should be sensitive to roughly the same set of parameters as
the GPP output. The result in Fig. 3b shows that LUE, C,
and k, directly involved in the GPP formulation, have con-
siderable influence on the LAI output. These parameters, in
particular the LUE, strongly control the assimilated carbon
and consequently affect the modeled LAI.

Figure 3b also shows a major contribution of SLA (Eq. 2),
fcov (Eq. 2), and Lb (Eq. 24) to the LAI output. Similar to the
LUE for GPP, the SLA is central for the calculation of LAI
(Eq. 2) and thus shows by far the largest sensitivity. Since
the LAI output in the model depends on GPP, the studies
(mentioned above) that report the impact of SLA on GPP are
probably applicable to LAI output as well (Li et al., 2016;
Arsenault et al., 2018). The fcov parameter represents the
fractional vegetation coverage per unit area and is a critical
parameter in calculating forest GPP (Ma et al., 2015). Ma et
al. (2015) assumed 100 % forest coverage in their calculation
of GPP, from which LAI was calculated. They showed how
this inappropriate assumption (i.e., 100 % forest coverage),
in the place of a realistic coverage, can exaggerate the for-
est area when calculating forest GPP (and consequently the
LAI). Here in the PCM, the fcov parameter is allowed to vary
between 60 % and 95 % as an adjustable parameter (based
on the Fluxnet2015 Dataset description of percent coverage
greater than 60 % at DBF sites; http://sites.fluxdata.org/, last
access: 20 March 2022). We observe that fractional vegeta-
tion coverage substantially influences the simulation of LAI.
In agreement with Ma et al. (2015), our result supports the
importance of the fractional coverage (fcov) as an impor-
tant structural parameter in carbon cycle modeling studies.
The Lb parameter (Eq. 24) also exhibits a marked sensitiv-
ity for the LAI output (Fig. 3b), because it directly affects
how long carbon allocation to the leaf pool continues until
the canopy LAI reaches its maximum value at canopy clo-
sure (see Eq. 26). Other parameters the LAI output is sen-
sitive to are those governing the leaf phenology in the phe-
nology submodel: Lg (Eq. 18), Fs (Eq. 22), b (Eq. 20), and
r (Eq. 20) (i.e., in Fig. 3b). To the best of our knowledge,
these parameters have not been studied elsewhere within a
sensitivity analysis framework; therefore, we could not per-
form any comparative assessment. Parameters b and r con-
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Figure 5. Time series of observed and simulated GPP at each study site during the last 3 years of calibration and the first 2 years of validation.
The vertical dashed line marks the calibration–validation periods. The black dots indicate the tower-estimated GPP. The light gray, shaded
area corresponds to the resultant ensemble output members at each time step. The dark gray line refers to the median of ensemble members.
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tribute to the simulation of leaf budburst day, Fs contributes
to the identification of leaf fall day, and Lg influences the
LAI output estimation through its influence on the length of
the growing season. The Fs parameter exhibits higher sensi-
tivity and a larger between-site variation than other param-
eters (Fig. 3b). This parameter represents a coldness thresh-
old for leaf fall in degree day. If the cumulative cold degree
days from the summer solstice (FDD) become equal to or
less than this threshold, then leaves start falling (more detail
can be found in Yue and Unger, 2015). For instance, a higher
threshold would lead to an early leaf shedding, especially in
the cold climates where cumulative cold degree days can be
reached faster. Therefore, the between-site variation of this
parameter is not surprising given the differences in tempera-
ture and accumulated cold degree days among study sites.

Other additional parameters that showed sensitivity for the
LAI output are p2 and p3 (Eq. 17). These parameters be-
long to the canopy respiration process in the modified Ar-
rhenius equation (Eq. 17). They are typically considered as
fixed parameters (e.g., in TETIS-VEG model, Perez, 2016,
in LPJ-ML model, Schaphoff et al., 2018), while here we
varied these parameters within 20 % of their nominal value.
Notably, these parameters showed greater sensitivity for the
LAI estimation than that of the GPP. It might be due partly to
the reduced/raised carbon (GPP) assimilated by canopy res-
piration, which in turn might decrease/increase the available
carbon to be allocated to leaf biomass and affect the resultant
LAI. In addition to that, to the best of our knowledge, it is
the first time that these parameters have been thoroughly an-
alyzed within a sensitivity analysis framework, and we might
not be able to find a reason or explanation for this pattern in
this study. This calls for future studies to further investigate
this aspect.

3.2 Site-specific model assessment

We conduct site-specific parameter estimation for all avail-
able eddy covariance (EC) flux tower study sites (Fig. 5).
For this, only the most sensitive parameters (depending on
the sensitivity analysis result at each site, the number of the
most sensitive parameters varied between 8 and 14 parame-
ters) identified in the sensitivity analysis are calibrated, and
the others are fixed (Table 3). For model parameter calibra-
tions, we used the first half of the available time series and
the remaining years for validation (Table 1). Calibration and
validation of the model are only performed for the GPP flux,
because direct LAI measurements are not available at all of
the flux sites. Figure 5 shows the seven-day mean of simu-
lated GPP for a set of ensemble members for each study site
during both the calibration and validation periods. Since the
different sites were operational at different times and since
some sites (e.g., DE-Hai) cover a relatively long time period,
we show only 5 years of simulation at each site: the last 3
years of calibration and the first 2 years of validation (Fig. 5).
A complete simulation for each site during the entire avail-

able times series is provided in Fig. S4 in the Supplement. In
addition, Table 4 summarizes the model performance in sim-
ulating GPP during the calibration and validation periods at
different sites. In general, the model achieved KGE values of
above 0.65, RMSE of less than 2.5 gCm−2 d−1, and r2 val-
ues of above 0.65 over all study sites. We compare the per-
formance of our model to other modeling studies whenever
there is either an identical site or a similar biome type (i.e.,
DBF) to our study presented. To this end, our results are sim-
ilar to Yue and Unger (2015), who found a high correlation
of more than 0.8 and RMSE lower than 3 gCm−2 d−1 for the
GPP simulations at DBF forest sites in a global setting us-
ing the Yale Interactive terrestrial Biosphere model. Another
study conducted by Asaadi et al. (2018) showed a quite good
model performance using the CLASS-CTEM land surface
model (Melton and Arora, 2014) applied at US-Ha1 (1998–
2013) and US-MMs (1999–2006) flux tower sites, with an
r2 value of 0.99 accompanying RMSE of 0.62 and an r2

value of 0.98 accompanying RMSE of 1.07 gCm−2 d−1 at
US-Ha1 and US-MMs, respectively. In a recent study, Holt-
mann et al. (2021) assessed the daily carbon fluxes over
the DE-HoH forest during 2015–2017 using the FORMIND
model (Fischer et al., 2016). They showed that the simulated
and measured GPP correlates with an r2 of 0.82 and RMSE
of 9 MgCha−1 a−1 equivalent to 2.46 gCm−2 d−1 using the
FORMIND model.

Taken together, our model exhibits a reasonable perfor-
mance and performs equally well in estimating the tempo-
ral dynamics of GPP (Table 4) compared to other, more
complex land surface and biogeochemical models. The PCM
shows skill in capturing GPP at most of the investigated sites,
although it overestimates GPP at the IT-Ro1 during sum-
mer. IT-Ro1 is located in a Mediterranean climate exposed
to dry summers (Vicca et al., 2016). The forest ecosystems
in Mediterranean-type climates are affected by water limita-
tions that can affect the GPP flux significantly (Cueva et al.,
2021). The lack of soil moisture data probably contributed to
the misrepresentation of GPP at this site. This is in agreement
with previous studies that found similarly poor modeling per-
formance across sites located in the Mediterranean climate
in central Italy in dry summer periods when simulating GPP
(Maselli et al., 2012; Chiesi et al., 2011; Fibbi et al., 2019).
Vargas et al. (2013) also discussed the interannual dynamics
of the effect of soil moisture on GPP flux in Mediterranean
ecosystems using five process-oriented ecosystem models,
including water balance. They observed a systematic under-
estimation of GPP in the models that were accounting for
soil water balance. Those underestimations may have been
related to the complex nature of Mediterranean ecosystems,
e.g., due to deep roots and the important role of the lower
canopy. In contrast, here we overestimate the GPP and be-
lieve that this is due to lack of local information on soil mois-
ture stress. More information regarding soil moisture stress is
therefore expected to improve the model. Overall, they em-
phasize the importance of drought conditions and the com-
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Table 4. Summary statistics for the comparison between model-estimated GPP and tower-estimated GPP at different sites. Statistics include
KGE, root-mean-square error (RMSE), and r2. GPP units are [gCm−2 d−1]. The statistics refer to ensemble medians of model-estimated
GPP. The linear regression is over both the calibration and validation periods.

Site Calibration Validation Linear regression

Period KGE RMSE r2 Period KGE RMSE r2 –

DK-Sor 2007–2010 0.89 2.09 0.89 2011–2013 0.89 2.15 0.89 y = 0.99x− 0.51
CA-Oas 1997–2004 0.92 1.5 0.89 2005–2010 0.90 1.4 0.91 y = 0.9x+ 0.29
DE-HoH 2015–2017 0.88 1.8 0.88 2018–2019 0.75 2.5 0.80 y = 1.04x− 0.34
DE-Hai 2001–2015 0.93 1.9 0.85 2016–2018 0.91 2.01 0.84 y = 0.96x+ 0.05
FR-Fon 2006–2010 0.95 1.7 0.91 2011–2014 0.91 1.94. 0.85 y = 0.96x+ 0.04
US-Ha1 2004–2008 0.92 2.03 0.86 2009–2012 0.88 2.56 0.80 y = 0.91x+ 0.11
IT-Ro1 2002–2004 0.79 2.45 0.65 2005–2006 0.86 1.87 0.78 y = 0.87x+ 0.2
US-Oho 2005–2010 0.87 2.22 0.85 2011–2013 0.85 2.39 0.82 y = 0.84x+ 0.55
US-MMS 2000–2007 0.9 2.1 0.85 2008–2014 0.89 1.9 0.87 y = 0.93x+ 0.75

Figure 6. Estimated GPP based on flux tower measurements vs.
modeled GPP ± 1 standard deviation (error bars) across the 9 stud-
ied sites. The solid line indicates the 1 : 1 line, and the dashed line
indicates the regression line. Each dot represents one of the sites and
refers to site-averaged GPP over the entire available time series.

plex nature of Mediterranean ecosystems in representing for-
est dynamics, including GPP flux. In addition, the impact of
water limitation on GPP could be related to the irregular oc-
currence of extreme events (e.g., the European-wide drought
in 2018). Such conditions were observed at DE-HoH and
DE-Hai sites, where the model overestimated GPP during the
late summer of 2018, which coincided with the Europe-wide
drought of 2018 (Buras et al., 2020). In the next step, we
also examined the model’s overall performance in reproduc-
ing GPP in terms of the multi-year average of GPP at each
site. Figure 6 shows that the model can generally explain the
spatial variation of GPP with an r2 as high as 0.90.

As an independent validation step, we evaluate the PCM
simulations of LAI against field-measurement data from

Table 5. Summary statistics for the comparison between model-
estimated LAI and field measurement LAI at different sites. Statis-
tics include r2 and RMSE. LAI units are [m−2 m−2]. The statistics
refer to ensemble medians of model-estimated LAI.

Site Period RMSE r2 Linear regression

US-MMS 2000–2014 0.96 0.90 y = 1.08x− 0.8
US-Ha1 2005–2012 1.58 0.85 y = 0.92x− 1.52
DE-Hai 2002–2009 2.21 0.78 y = 0.89x− 1.32
DE-HoH 2018–2019 1.4 0.90 y = 1.32x− 2.62

some study sites where observational data were made avail-
able via personal contacts with site investigators. Figure 7
compares the simulated values of LAI with their field mea-
surements at four sites (US-MMS, US-Ha1, DE-Hai, and
DE-HoH). In general, a good spatial and temporal consis-
tency between the simulated LAI and the field-measurement
LAI can be seen from the plots (Fig. 7). The r2 correspond-
ing to the US-MMS, US-Ha1, DE-Hai, and DE-HoH sites
are 0.90, 0.85, 0.78, and 0.90, respectively. Furthermore, the
comparisons yield RMSE of 0.96, 1.58, 2.21, 1.4 m2 m−2 to
the US-MMS, US-Ha1, DE-Hai, and DE-HoH sites, respec-
tively. Table 5 summarizes the model performance in simu-
lating LAI during a common period of observed and modeled
data.

The simulated LAI captures the observed LAI seasonality
at almost all the sites reasonably well. It demonstrates the ca-
pability of the model in capturing the canopy status at differ-
ent phenophases. However, there are some pronounced devi-
ations between modeled and observed LAI at some sites (US-
Ha1, DE-HoH) during the dormancy phase and autumn leaf
decline period. Given the deciduous nature of those ecosys-
tems, it is likely that the higher winter values of the field
measurements compared to the simulated LAI reflects the
presence of understory vegetation (Asaadi et al., 2018) or
the instrument’s reading of present stand and/or dead leaves
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Figure 7. Time series of observed and simulated LAI at study flux tower sites during the common years of field measurements and simula-
tions. The black dots indicate the field measurement LAI. The light gray, shaded area corresponds to ensemble members of the LAI output
at each time step. The dark gray line refers to the median of ensemble members.

on trees after the onset of leaf shedding. We also notice a
slight phase of lag in the simulated LAI during the spring as
compared to the field measurements data (e.g., at the DE-Hai
site). Such discrepancy may be due to the lack of account-
ing for the dependence of the green-up rate on non-structural
carbohydrates from previous years as a buffer to initiate leaf
onset (Asaadi et al., 2018), which is currently not represented
in the PCM.

3.3 Spatial model validation and model generalization

We conduct a cross-validation of the parameter transferabil-
ity for all sites against tower-derived GPP data (Sect. 2.2.5).
Figure 8 summarizes the results of this analysis, providing a
comparison between the range of obtained Kling–Gupta effi-
ciency performance metrics (KGE) from on-site calibrations
and KGE obtained from a compromised solution. It can be
seen that the model with a compromise parameter set still
shows a reasonable predictive skill (KGE> 0.5) while leav-
ing space for skill improvement with a site-specific param-
eter (1KGE≈ 0.10). The poorest performances are associ-
ated with the northernmost site, DK-Sor, and the Mediter-
ranean IT-Ro1 site. The associated bias in those sites is
likely related to GPP response to the maximum LUE pa-
rameter obtained from the compromise solution applied over
all the sites. As was shown in the sensitivity analysis (see
Sect. 3.1.1), the variation of GPP is predominantly driven
by the LUE variation; thus, a constant, fixed maximum LUE
across all sites might be a reason for the limited performance
at the sites located in maximum latitude and water-limited
regions. It has been shown that maximum LUE varies in dif-
ferent geographical locations (Jung et al., 2007), and this is
in line with our on-site calibration result indicating largest
maximum LUE at the DK-Sor (northernmost site with a cold
and moist climate) and lowest at the IT-Ro1 (a relatively

drier, Mediterranean site) sites. Thus, applying a compromise
value for LUE at these two sites would result in a bias in
GPP estimation. Previous studies (Wang et al., 2010; Madani
et al., 2014) showed a large variation in maximum LUE not
only between different biomes but also within an individual
biome and plant functional type. Concerning the large spatial
variability of maximum LUE, several factors – such as the
spatial heterogeneity of vegetation, canopy densities, ages,
soil nutrition, and leaf nutrient content – have been men-
tioned in previous studies (Wang et al., 2010; Madani et al.,
2014). Some methods, such as spatially explicit estimation
of optimum LUE (Madani et al., 2014) or the introduction
of pixel-level maximum LUE (Wang et al., 2010), have been
employed in satellite-based LUE models to overcome this
shortcoming. It is argued that the assumption of a constant
maximum LUE (i.e., based on a standard MODIS-based GPP
algorithm and a biome property look-up table; Heinsch et al.,
2003) needs to be re-examined so that spatial heterogene-
ity between individual plant functional types is represented.
Therefore, the uncertainty introduced by the fixed maximum
LUE may be reduced and ecosystem productivity modeling
would be improved.

3.4 Limitations and opportunities

While the model performs well, in general, in simulating the
GPP, some inconsistencies in the observed and modeled GPP
across sites help to identify the model’s limitations and in-
troduce future opportunities to improve the model’s perfor-
mance. One of the limitations is that the model was unable
to adequately capture the observed decline in GPP in 2019
(Fig. 5) at the DE-HoH. This may be related to a possible
legacy impact of the drought year 2018 on the successive
year 2019 (Buras et al., 2020; Schuldt et al., 2020; Schnabel
et al., 2021; Reichstein et al., 2013). Here, we infer that the
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Figure 8. Comparison between KGE obtained from ensemble-simulated GPP performing at-site calibration, and the KGE obtained from
compromised solution.

reduction in the tower GPP in 2019 might be due to a change
in the LUE parameter. Based on calibration from previous
non-drought years, the obtained LUE value might lead the
model to overestimate GPP in early 2019. Indeed, calibrat-
ing the model to the drought years of 2018 and 2019 yielded
a lower LUE parameter (reduction of LUE value by 12 %),
which might support the possible legacy impact of last year’s
drought on the LUE parameter. Another possible explana-
tion, alternatively to or collectively with the plant legacy ef-
fect, would be the variation in or depletion of deep soil mois-
ture storage (Jung et al., 2009). Since the model does not
represent established internal feedback for carry-over effects
after extreme events (Reichstein et al., 2013) and only con-
siders the soil moisture up to 80 cm depth, the current model
version would not reflect on such a process, and GPP is likely
to be overestimated.

Another limitation in our simulation is that the possible ef-
fect of diffuse light on GPP response is not accounted for in
the current model structure. We observed the potential role
of diffuse light on GPP during some mismatch periods be-
tween eddy flux tower and modeled GPP across some of
the sites (e.g., DE-HoH year 2017, FR-Fon year 2012, and
US-Ha1 year 2010) (see Fig. S1). The model underestimates
GPP during these periods based on a lower PAR input; how-
ever, the observations show greater GPP despite lower input
PAR. This is in line with the findings of Knohl and Baldocchi
(2008), who investigated the effect of diffuse light on the for-
est ecosystem and discussed how diffuse radiation can lead
to an increase in carbon uptake. The enhancement of GPP
due to diffuse light is related to a more even distribution and
more efficient light penetration within the canopy (Yuan et
al., 2014). Integration of such effects in the current model

by means of introducing a time-varying LUE (condition-
varying) (Wei et al., 2017) instead of the fixed LUE would
improve the simulation result. In particular, under unprece-
dented global warming and climate change, future changes
in cloud cover and aerosol concentrations are expected to
modify the solar radiation and the subsequent ecosystem pro-
ductivity (Durand et al., 2021; Meyer et al., 2014). Regard-
ing LAI simulation, one limitation is that, at some points,
the model cannot increase LAI in the initial onset of LAI
as fast as that which is observed in the early growing pe-
riod. In previous studies, it has been shown that the inclusion
of non-structural carbon storage at the beginning of green-
up might help to overcome this issue (Asaadi et al., 2018)
and refine the model simulation results further. Aside from
the current model limitations to be subjected to further im-
provement, the model exhibits a reasonable validity and per-
forms equally well in estimating the temporal dynamics of
GPP and LAI development compared to more complex land
surface and biogeochemical models. The PCM being parsi-
monious makes it suitable for more far-reaching applications
in coupled models. Dynamic development of LAI is relevant
to GPP estimation and is beneficial for hydrologic models,
providing them with prognostically driven LAI time series
based on vegetation responses to temperature, particularly in
the context of water budget responses to climate variability.

We aim, as a next step, to implement the presented model
into the existing open-source mesoscale Hydrologic Model
(mHM; Samaniego et al., 2010; Kumar et al., 2013, available
at https://www.ufz.de/mhm, last access: 20 March 2022),
with a proven predictive power in simulating root-zone soil
moisture dynamics (Boeing et al., 2021). The spatially simu-
lated soil moisture derived from mHM would provide an al-
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ternative to the (limited) soil moisture observations required
for GPP simulation. In particular, in the face of ongoing
and future climate changes and the increasing occurrence
of droughts (Harper et al., 2021), reliable simulations of
soil moisture are invaluable information for capturing plant
drought responses for the carbon cycle and climate feedbacks
(Harper et al., 2021). Finally, in doing so, we expect the im-
proved capability of the hydrological model to represent the
coupled water and carbon (i.e., GPP/LAI in this study) com-
ponents.

4 Conclusion

In view of ongoing natural and anthropogenic changes, as-
sessing the extent to which terrestrial plants can sequester at-
mospheric carbon and affect the water balance through LAI
is essential for effective climate-adaptation and resilience
plans. Here, we present a parsimonious canopy model (PCM)
with a medium level of complexity to simulate canopy GPP
and LAI. In the PCM model, the carbon uptake drives leaf
biomass accumulation based on a mass balance approach.
The model employs the light use efficiency principle, in
which the core concept is the conversion of absorbed pho-
tosynthetically active radiation (PAR) into biomass. An in-
tegrated phenology submodel, from which the allocation of
carbon to and decay from the leaf pool is guided, is incor-
porated to predict the timing of leaf development and to
characterize different phenological stages. The PCM model
performed reasonably well in reproducing the daily devel-
opment of GPP and LAI in deciduous broad-leaved for-
est biomes across Europe and North America. The model
runs with a few required inputs: air temperature, vapor pres-
sure deficit, PAR, and soil moisture (optional, though rec-
ommended in dry regions and drought events). Although the
proposed model runs with a number of parameters for rep-
resenting the relevant processes (29 parameters without the
soil moisture-related parameters), a global sensitivity analy-
sis showed that only 10 parameters (on average across sites)
were sensitive and had to be inferred via calibration. The re-
sult reaffirms that light use efficiency and specific leaf area
index parameters are by far the most informative parame-
ters in GPP and LAI simulations, respectively. The on-site
calibrated maximum LUE parameter showed relatively large
variation within the sites, with greater maximum LUE in
Denmark (Dk-Sor site) and lower values in Italy (IT-Ro1
site). It implies that applying a fixed, biome-specific, max-
imum LUE would not be applicable over different locations.
Moreover, modeled GPP during the growing season was
shown to be almost insensitive to LAI changes. This indicates
that GPP is saturated at a particular value of LAI, and any fur-
ther increase in LAI does not necessarily increase the resul-
tant GPP. We also tested the robustness and generality of the
underlying model structure, identifying a compromise set of
model parameters applicable to all sites (region-wide). The

results show that the model application is possible without
site-specific calibration while still yielding reasonable model
quality. The model’s skill in capturing the LAI dynamics –
which were not used in the parameter inference process – fur-
ther confirms the robustness of the presented model structure.
Given the scarce soil moisture information, we expect that
simulated soil moisture derived from a hydrological model
would improve the representation of GPP simulations, partic-
ularly at semiarid regions or during drought events. We envi-
sion that the medium complexity of the presented model will
allow for a seamless integration into large-scale hydrologi-
cal models to better represent the ecohydrological aspects of
ecosystems. We plan to implement the PCM model into the
existing hydrologic models (e.g., open-source mesoscale Hy-
drologic Model; mHM), thereby enabling an improved repre-
sentation of coupled water and carbon fluxes in the face of a
changing environment. To allow for a seamless estimation of
carbon and water fluxes, we plan to include the implementa-
tion of a robust, regional parameter inference approach (e.g.,
establishing regionalized LUE parameters through a multi-
scale parameterization approach; Samaniego et al., 2010) and
performing extensive cross-validation experiments to ensure
credible model simulations across a wide range of spatial do-
mains.

Code availability. The PCM is archived at
https://doi.org/10.5281/zenodo.6373776 (Bahrami et al., 2022)
(last access: 21 March 2022). It is also publicly available at
https://git.ufz.de/bahrami/pcm (last access: 21 March 2022).

Data availability. The flux tower datasets for DK-Sor, CA-Oas,
DE-Hai, FR-Fon, IT-Ro1, US-Ha1, US-Oho, and US-MMS can
be can be accessed from the FLUXNET 2015 Tier 1 at https:
//fluxnet.org/data/fluxnet2015-dataset/ (last access: 20 July 2021).
Data from DE-HoH are available from corinna.bebmann@ufz.de
and felix.pohl@ufz.de. LAI field measurements for US-Ha1 can be
downloaded from https://harvardforest1.fas.harvard.edu/exist/apps/
datasets/showData.html?id=hf069 (last access: 20 January 2022)
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