Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study
Ivette H. Banos
CORRESPONDING AUTHOR
Postgraduate Division, Coordination of Teaching, Research and Extension, National Institute for Space Research, São José dos Campos, São Paulo, Brazil
now at: NCAR Mesoscale and Microscale Meteorology Laboratory, Boulder, CO, USA
Will D. Mayfield
NCAR Research Applications Laboratory, Boulder, CO, USA
Developmental Testbed Center, Boulder, CO, USA
Guoqing Ge
NOAA Global Systems Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, CU Boulder, Boulder, CO, USA
Luiz F. Sapucci
Center for Weather Forecasts and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Jacob R. Carley
Modeling and Data Assimilation Branch, NOAA NCEP Environmental Modeling Center, College Park, MD, USA
Louisa Nance
NCAR Research Applications Laboratory, Boulder, CO, USA
Developmental Testbed Center, Boulder, CO, USA
Related authors
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024, https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Short summary
To mitigate the imbalances in the initial conditions, this study introduces our recent implementation of the incremental analysis update (IAU) in the Model for Prediction Across Scales – Atmospheric (MPAS-A) component coupled with the Joint Effort for Data assimilation Integration (JEDI) through the cycling system. A month-long cycling run demonstrates the successful implementation of the IAU capability in the MPAS–JEDI cycling system.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
EGUsphere, https://doi.org/10.5194/egusphere-2024-4083, https://doi.org/10.5194/egusphere-2024-4083, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with seasons but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024, https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Short summary
To mitigate the imbalances in the initial conditions, this study introduces our recent implementation of the incremental analysis update (IAU) in the Model for Prediction Across Scales – Atmospheric (MPAS-A) component coupled with the Joint Effort for Data assimilation Integration (JEDI) through the cycling system. A month-long cycling run demonstrates the successful implementation of the IAU capability in the MPAS–JEDI cycling system.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Cheng-Hsuan Lu, Quanhua Liu, Shih-Wei Wei, Benjamin T. Johnson, Cheng Dang, Patrick G. Stegmann, Dustin Grogan, Guoqing Ge, Ming Hu, and Michael Lueken
Geosci. Model Dev., 15, 1317–1329, https://doi.org/10.5194/gmd-15-1317-2022, https://doi.org/10.5194/gmd-15-1317-2022, 2022
Short summary
Short summary
This article is a technical note on the aerosol absorption and scattering calculations of the Community Radiative Transfer Model (CRTM) v2.2 and v2.3. It also provides guidance for prospective users of the CRTM aerosol option and Gridpoint Statistical Interpolation (GSI) aerosol-aware radiance assimilation. Scientific aspects of aerosol-affected BT in atmospheric data assimilation are also briefly discussed.
Luiz F. Sapucci, Luiz A. T. Machado, Eniuce Menezes de Souza, and Thamiris B. Campos
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-378, https://doi.org/10.5194/amt-2016-378, 2016
Revised manuscript not accepted
Short summary
Short summary
This study employs precipitable water vapor from a Global Positioning System (GPS-PWV) signal, in high time resolution, to be used as precursor information of intense rainfall events. A typical jump in the GPS-PWV values before the occurrence of more intense rainfalls has been found, it is probably related to humid convergence occurring before intense rainfall events. The results from this manuscript create the physical basis for further development of a nowcasting tool in future studies.
Related subject area
Atmospheric sciences
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
Development of A Fast Radiative Transfer Model for Ground-based Microwave Radiometers (ARMS-gb v1.0): Validation and Comparison to RTTOV-gb
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Cell tracking -based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Improving the EnSRF in the Community Inversion Framework: a case study with ICON-ART 2024.01
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2884, https://doi.org/10.5194/egusphere-2024-2884, 2024
Short summary
Short summary
Assimilating Ground-based microwave radiometers' observations into numerical weather prediction models holds significant promise for enhancing forecast accuracy. Radiative transfer models (RTM) are crucial for direct data assimilation. We propose a new RTM capable of simulating brightness temperatures observed by GMRs and their Jacobians. Several improvements are introduced to achieve higher accuracy.The RTM align with RTTOV-gb well and can achieve smaller STD in water vapor absorption channels.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145, https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements in 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99, https://doi.org/10.5194/gmd-2024-99, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rainfall. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and then the model skill is evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with 4 open-source models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2197, https://doi.org/10.5194/egusphere-2024-2197, 2024
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a more efficient implementation of the serial and batch versions of the Ensemble Square Root Filter (EnSRF) algorithm in CIF.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Cited articles
Alexander, C. and Carley, J.: Short-Range Weather in operations, Bulletin of
the UFS Community, p. 9, https://doi.org/10.25923/k3zn-xe66, 2020. a, b
Alpert, J. C., Yudin, V. A., and Strobach, E.: Atmospheric Gravity Wave Sources
Correlated with Resolved-scale GW Activity and Sub-grid Scale
Parameterization in the FV3gfs Model, in: AGU Fall Meeting Abstracts, vol.
2019, SA21A–02, 2019. a
Azevedo, H. B. D., Gonçalves, L. G. G. D., Kalnay, E., and Wespetal, M.:
Dynamically weighted hybrid gain data assimilation: perfect model testing,
Tellus A, 72, 1–11,
https://doi.org/10.1080/16000870.2020.1835310, 2020. a
Bannister, R. N.: A review of operational methods of variational and
ensemble-variational data assimilation, Q. J. Roy.
Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982,
2017. a
Bannister, R. N., Chipilski, H. G., and Martinez-Alvarado, O.: Techniques and
challenges in the assimilation of atmospheric water observations for
numerical weather prediction towards convective scales, Q. J. Roy. Meteor. Soc., 146, 1–48,
https://doi.org/10.1002/qj.3652, 2020. a, b
Banos, I. H., Mayfield, W. D., Ge, G., Sapucci, L. F., Carley, J. R., and Nance, L.: Rapid Refresh Forecast System (RRFS) v0.1 (0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5546592, 2021a. a
Banos, I. H., Mayfield, W. D., Ge, G., Sapucci, L. F., Carley, J. R., and Nance, L.: Assessment of the data assimilation framework for the prototype Rapid Refresh Forecast System and impacts on forecasts of convective storms, Zenodo [code, data set], https://doi.org/10.5281/zenodo.5226389, 2021b. a
Bathmann, K.: The GSI Minimization Code Structure,
https://github.com/NOAA-EMC/GSI/wiki/GSI_Minimization_Code_Explained.pdf,
2021. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical
weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Benjamin, S. G., Weygandt, S. S., Devenyi, D., Manikin, J. B. G., Smith, T.,
and Smirnova, T.: Improved moisture and PBL initialization in the RUC using
METAR data, in: Preprints 22th Conf. Severe Local Storms, SPC,
82023, 2004. a
Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B. E.,
and Schlatter, T. W.: Relative Short-Range Forecast Impact from Aircraft,
Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the
RUC Hourly Assimilation Cycle, Mon. Weather Rev., 138, 1319–1343,
https://doi.org/10.1175/2009MWR3097.1, 2010. a
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American hourly assimilation and model forecast cycle: The
Rapid Refresh, Mon. Weather Rev., 144, 1669–1694,
2016. a, b, c, d, e, f
Benjamin, S. G., James, E. P., Brown, J. M., Szoke, E. J., Kenyon, J. S., and
Ahmadov, R.: Diagnostic fields developed for hourly updated NOAA weather
models, NOAA Technical Memorandum OAR GSL-66,
https://doi.org/10.25923/98fy-xx71, 2020. a
Benjamin, S. G., James, E. P., Hu, M., Alexander, C. R., Ladwig, T. T., Brown, J. M., Weygandt, S. S., Turner, D. D., Minnis, P., Smith, W. L., and Heidinger, A. K.:
Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range
Weather Prediction, Mon. Weather Rev., 149,
2673–2694,
https://doi.org/10.1175/MWR-D-20-0319.1, 2021. a
Bernardet, L., Firl, G., Heinzeller, D., Carson, L., Sun, X., Pan,
L., and Zhang, M.: Engaging the Community in the Development of Physics for
NWP Models, in: EGU General Assembly Conference Abstracts, p. 22093,
https://ui.adsabs.harvard.edu/abs/2020EGUGA..2222093B (last access: 14 April 2021), 2020. a
Black, T. L., Abeles, J. A., Blake, B. T., Jovic, D., Rogers, E., Zhang, X., Aligo, E. A., Dawson, L. C., Lin, Y., Strobach, E., Shafran, P. C., and Carley, J. R.: A Limited Area Modeling Capability
for the Finite-Volume Cubed-Sphere (FV3) Dynamical Core and Comparison with a
Global Two-Way Nest, J. Adv. Model. Earth Sy., https://doi.org/10.1029/2021MS002483,
e2021MS002483, 2021. a, b, c, d, e
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Flow-dependent
background-error covariances for a convective-scale data assimilation system,
Q. J. Roy. Meteor. Soc., 138, 310–322,
https://doi.org/10.1002/qj.920, 2012. a
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.:
Unified modeling and prediction of weather and climate: A 25-year journey,
B. Am. Meteorol. Soc., 93, 1865–1877,
2012. a
Brown, B., Jensen, T., Gotway, J. H., Bullock, R., Gilleland, E., Fowler, T.,
Newman, K., Adriaansen, D., Blank, L., Burek, T., Harrold, M., Hertneky, T.,
Kalb, C., Kucera, P., Nance, L., Opatz, J., Vigh, J., and Wolff, J.: The
Model Evaluation Tools (MET): More than a Decade of Community-Supported
Forecast Verification, B. Am. Meteorol. Soc., 102,
E782–E807, https://doi.org/10.1175/BAMS-D-19-0093.1, 2021. a
Buehner, M.: Ensemble-derived stationary and flow-dependent background-error
covariances: Evaluation in a quasi-operational NWP setting, Q. J. Roy.
Meteor. Soc., 131, 1013–1043,
https://doi.org/10.1256/qj.04.15, 2005. a
Campbell, W. F., Bishop, C. H., and Hodyss, D.: Vertical covariance
localization for satellite radiances in ensemble Kalman filters, Mon. Weather Rev., 138, 282–290, 2010. a
Carley, J. R., Matthews, M., Morris, M. T., De Pondeca, M. S. F. V., Colavito,
J., and Yang, R.: Variational assimilation of web camera-derived estimates of
visibility for Alaska aviation, Experimental Results, 2, e14,
https://doi.org/10.1017/exp.2020.66, 2021. a
CCPP: CCPP v5.0.0 Scientific Documentation. RRFS_v1alpha Suite,
https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/RRFS_v1alpha_page.html (last access: 18 August 2021),
2021. a
Chen, L., Liu, C., Xue, M., Zhao, G., Kong, R., and Jung, Y.: Use of Power
Transform Mixing Ratios as Hydrometeor Control Variables for Direct
Assimilation of Radar Reflectivity in GSI En3DVar and Tests with Five
Convective Storm Cases, Mon. Weather Rev., 149, 645–659, 2021. a
CIMSS: CIMSS Cooperative Agreement Annual Report, Tech. Rep. April, Cooperative
Institute for Meteorological Satellite Studies University of
Wisconsin-Madison,
https://cimss.ssec.wisc.edu/reports/CIMSS-CA-Report_2014_Final.pdf (last access: 11 August 2022),
2014. a
Davis, C. A., Brown, B. G., Bullock, R., and Halley-Gotway, J.: The Method for
Object-Based Diagnostic Evaluation (MODE) Applied to Numerical Forecasts from
the 2005 NSSL/SPC Spring Program, Weather Forecast., 24, 1252–1267,
https://doi.org/10.1175/2009WAF2222241.1, 2009. a
Derber, J. and Rosati, A.: A global oceanic data assimilation system, J. Phys. Oceanogr., 19, 1333–1347, 1989. a
Dixon, M., Li, Z., Lean, H., Roberts, N., and Ballard, S.: Impact of Data
Assimilation on Forecasting Convection over the United Kingdom Using a
High-Resolution Version of the Met Office Unified Model, Mon. Weather Rev., 137, 1562–1584, https://doi.org/10.1175/2008MWR2561.1, 2009. a
Dong, J., Liu, B., Zhang, Z., Wang, W., Mehra, A., Hazelton, A. T., Winterbottom, H. R., Zhu, L., Wu, K., Zhang, C., Tallapragada, V., Zhang, Xu., Gopalakrishnan, S., and Marks, F.: The evaluation of
real-time Hurricane Analysis and Forecast System (HAFS) Stand-Alone Regional
(SAR) model performance for the 2019 Atlantic hurricane season, Atmosphere,
11, 617, https://doi.org/10.3390/atmos11060617, 2020. a
EMC: Strategic Implementation Plan for evolution of NGGPS to a national Unified
Modeling System (First Annual Update), Tech. Rep. November, NOAA, U.S,
https://www.weather.gov/media/sti/nggps/UFS SIP FY19-21_20181129.pdf (last access: 9 July 2021),
2018. a
Gallo, B. T., Wolff, J. K., Clark, A. J., Jirak, I., Blank, L. R., Roberts, B., Wang, Y., Zhang, C., Xue, M., Supinie, T., Harris, L., Zhou, L., and Alexander, C.: Exploring
Convection-Allowing Model Evaluation Strategies for Severe Local Storms Using
the Finite-Volume Cubed-Sphere (FV3) Model Core, Weather Forecast., 36,
3–19, 2021. a, b, c
Gao, S., Du, N., Min, J., and Yu, H.: Impact of assimilating radar data using a
hybrid 4DEnVar approach on prediction of convective events, Tellus A, 73, 1–19, 2021. a
Gilleland, E., Hering, A. S., Fowler, T. L., and Brown, B. G.: Testing the
Tests: What Are the Impacts of Incorrect Assumptions When Applying Confidence
Intervals or Hypothesis Tests to Compare Competing Forecasts?, Mon. Weather Rev., 146, 1685–1703, https://doi.org/10.1175/MWR-D-17-0295.1, 2018. a
Gustafsson, N., Janji, T., Schraff, C., Leuenberger, D., Weissman, M., Reich,
H., Brousseau, P., Montmerle, T., Wattrelot, E., Bučánek, A.,
Mile, M., Hamdi, R., Lindskog, M., Barkmeijer, J., Dahlbom, M., Macpherson,
B., Ballard, S., Inverarity, G., Carley, J., Alexander, C., Dowell, D., Liu,
S., Ikuta, Y., and Fujita, T.: Survey of data assimilation methods for
convective-scale numerical weather prediction at operational centres,
Q. J. Roy. Meteor. Soc., 144, 1218–1256,
https://doi.org/10.1002/qj.3179, 2018. a, b, c, d, e
Harris, L., Chen, X., Zhou, L., and Chen, J.-H.: The Nonhydrostatic Solver of
the GFDL Finite-Volume Cubed-Sphere Dynamical Core, NOAA Technical Memorandum
OAR GFDL, 2020-003, https://doi.org/10.25923/9wdt-4895,
2020a. a
Harris, L., Zhou, L., Lin, S.-J., Chen, J.-H., Chen, X., Gao, K., Morin, M., Rees, S., Sun, Y., Tong, M., Xiang, B., Bender, M., Benson, R., Cheng, K.-Y., Clark, S., Elbert, O. D., Hazelton, A., Huff, J. J., Kaltenbaugh, A., Liang, Z., Marchok, T., Shin, H. H., and Stern, W.: GFDL SHiELD: A unified system for
weather-to-seasonal prediction, J. Adv. Model. Earth
Sy., 12, e2020MS002223, https://doi.org/10.1029/2020MS002223, 2020b. a
Harris, L. M., Lin, S.-J., and Tu, C.: High-Resolution Climate Simulations
Using GFDL HiRAM with a Stretched Global Grid, J. Climate, 29,
4293–4314, https://doi.org/10.1175/JCLI-D-15-0389.1, 2016. a
Harris, L. M., Rees, S. L., Morin, M., Zhou, L., and Stern, W. F.: Explicit
prediction of continental convection in a skillful variable resolution global
model, J. Adv. Model. Earth Sy., 11, 1847–1869,
https://doi.org/10.1029/2018MS001542, 2019. a
Harrold, M., Hertneky, T., Kalina, E., Newman, K., Ketefian, G., Grell, E. D.,
Lybarger, N. D., and Nelson, B.: Investigating the Scalability of Convective
and Microphysics Parameterizations in the Unified Forecast System Short-Range
Weather (UFS-SRW) Application, in: 101st American Meteorological Society
Annual Meeting, AMS, New Orleans, LA, USA, 10–15 January 2021, 384306,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/384306 (last access: 28 August 2022), 2021. a
Hazeleger, W., Severijns, C., Semmler, T., Stefanescu, S., Yang, S., Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A. M. L., Christensen, J. H., van den Hurk, B., Jimenez, P., Jones, C., Kållberg, P.,Koenigk, T., McGrath, R., Miranda, P., van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F., Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and Willén, U.:
EC-Earth: a seamless earth-system prediction approach in action, B. Am. Meteorol. Soc., 91, 1357–1364,
2010. a
Heinzeller, D., Bernardet, L., Firl, G., Carson, L., Schramm, J.,
Zhang, M., Dudhia, J., Gill, D., Duda, M., Goldhaber, S., Craig,
C., Vitt, F., and Vertenstein, M.: The Common Community Physics Package
CCPP: unifying physics across NOAA and NCAR models using a common software
framework, in: EGU General Assembly Conference Abstracts, p. 223,
https://ui.adsabs.harvard.edu/abs/2019EGUGA..21..223H (last access: 15 July 2021), 2019. a
Holm, E., Andersson, E., Beljaars, A., Lopez, P., Mahfouf, J.-F., Simmons, A.,
and Thepaut, J.-N.: Assimilation and modelling of the hydrologic cycle:
ECMWF's status and plans, ECMWF Tech. Memo., 383, 55, 2002. a
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for
atmospheric data assimilation, Mon. Weather Rev., 129, 123–137, 2001. a
Hu, M., Xue, M., and Brewster, K.: 3DVAR and Cloud Analysis with WSR-88D
Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic
Thunderstorms. Part I: Cloud Analysis and Its Impact, Mon. Weather Rev.,
134, 675–698, https://doi.org/10.1175/mwr3092.1, 2006a. a
Hu, M., Xue, M., Gao, J., and Brewster, K.: 3DVAR and Cloud Analysis with
WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic
Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR, Mon. Weather Rev., 134, 699–721, https://doi.org/10.1175/mwr3093.1, 2006b. a
Hu, M., Benjamin, S. G., Ladwig, T. T., Dowell, D. C., Weygandt, S. S.,
Alexander, C. R., and Whitaker, J. S.: GSI three-dimensional
ensemble–variational hybrid data assimilation using a global ensemble for
the regional Rapid Refresh model, Mon. Weather Rev., 145, 4205–4225,
2017. a, b, c, d, e, f, g, h, i, j
Hu, M., Ge, G., Chunhua, Z., Stark, D., Shao, H., Newman, K., Beck, J., and
Zhang, X.: Grid-point Statistical Interpolation (GSI) User’s Guide version
3.7,
https://dtcenter.org/sites/default/files/GSIUserGuide_v3.7_0.pdf (last access: 10 December 2021),
2018. a
Hu, M., Li, R., Trahan, S., Holt, C., Weygandt, S., and Alexander, C. R.:
Initial Development Testing and Evaluation of the RAPHRRR Similar Data
Assimilation Functions for FV3 LAM-Based RRFs, in: 101st American
Meteorological Society Annual Meeting, AMS, 10–15 January 2021, New Orleans, LA, USA, 379264,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379264 (last access: 28 August 2022), 2021. a
Huang, B., Wang, X., Kleist, D. T., and Lei, T.: A Simultaneous Multiscale Data
Assimilation Using Scale-Dependent Localization in GSI-Based Hybrid 4DEnVar
for NCEP FV3-Based GFS, Mon. Weather Rev., 149, 479–501,
https://doi.org/10.1175/MWR-D-20-0166.1, 2021. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13, https://doi.org/10.1029/2008JD009944, 2008. a
Janjić, T., McLaughlin, D., Cohn, S. E., and Verlaan, M.: Conservation of
Mass and Preservation of Positivity with Ensemble-Type Kalman Filter
Algorithms, Mon. Weather Rev., 142, 755–773,
https://doi.org/10.1175/MWR-D-13-00056.1, 2014. a, b
Janjić, T., Ruckstuhl, Y., and Toint, P. L.: A data assimilation algorithm
for predicting rain, Q. J. Roy. Meteor. Soc.,
147, 1949–1963, 2021. a
Jensen, T., Brown, B., Bullock, R., Fowler, T., Gotway, J. H., and Newman, K.:
The Model Evaluation Tools v9.0 (METv9.0) User's Guide., Developmental
Testbed Center,
https://dtcenter.org/sites/default/les/community-code/met/docs/user-guide/MET_Users_Guide_v9.0.pdf (last access: 13 April 2021),
2020. a, b
Ji, M. and Toepfer, F.: Dynamical Core Evaluation Test Report for NOAA’s Next
Generation Global Prediction System (NGGPS), Tech. Rep. September, NOAA, U.S,
https://doi.org/10.25923/ztzy-qn82, 2016. a
Kalina, E., Grell, E. D., Harrold, M., Hertneky, T., and Newman, K.: Evaluating
Hydrometeor Type and Amount in the Unified Forecast System, in: 101st
American Meteorological Society Annual Meeting, AMS, 10–15 January 2021,
New Orleans, LA, USA, 383651,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/383651 (last access: 28 August 2022), 2021. a
Kleist, D. and Ide, K.: An OSSE-Based Evaluation of Hybrid
Variational–Ensemble Data Assimilation for the NCEP GFS. Part II: 4DEnVar
and Hybrid Variants, Mon. Weather Rev., 143, 452–470,
https://doi.org/10.1175/MWR-D-13-00350.1, 2015a. a, b
Kleist, D. T. and Ide, K.: An OSSE-based evaluation of hybrid
variational-ensemble data assimilation for the NCEP GFS. Part I: System
description and 3D-hybrid results, Mon. Weather Rev., 143, 433–451,
https://doi.org/10.1175/MWR-D-13-00351.1, 2015b. a
Kleist, D. T. and Ide, K.: An OSSE-Based Evaluation of Hybrid
Variational–Ensemble Data Assimilation for the NCEP GFS. Part II: 4DEnVar
and Hybrid Variants, Mon. Weather Rev., 143, 452–470,
https://doi.org/10.1175/mwr-d-13-00350.1, 2015c. a
Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R.,
and Halliwell, C.: Characteristics of high-resolution versions of the Met
Office Unified Model for forecasting convection over the United Kingdom,
Mon. Weather Rev., 136, 3408–3424, 2008. a
Li, X. and Derber, J.: Near Sea Surface Temperatures (NSST). Analysis in
NCEP GFS, in: JCSDA 6th Workshop on Satellite Data Assimilation, JCSDA
Workshop on Satellite Data Assimilation,
http://data.jcsda.org/Workshops/6th-workshop-onDA/Session-4/JCSDA_2008_Li.pdf (last access: 12 April 2022),
2008. a
Li, X., Derber, J., and Moorthi, S.: An atmosphere-ocean partially
coupled data assimilation and prediction system developed within the NCEP
GFS/CFS, in: EGU General Assembly Conference Abstracts, EGU General Assembly
Conference Abstracts, 12–17 April 2015,
Vienna, Austria, 2855,
https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.2855L (last access: 25 August 2022), 2015. a
Lin, S.-J.: A finite-volume integration method for computing pressure gradient
force in general vertical coordinates, Q. J. Roy. Meteor. Soc., 123, 1749–1762, https://doi.org/10.1002/qj.49712354214, 1997. a
Lin, S.-J.: A “Vertically Lagrangian” Finite-Volume Dynamical Core for
Global Models, Mon. Weather Rev., 132, 2293–2307,
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004. a, b
Lin, S.-J. and Rood, R. B.: Multidimensional Flux-Form Semi-Lagrangian
Transport Schemes, Mon. Weather Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124<2046:Mffslt>2.0.Co;2, 1996. a
Lin, S.-J. and Rood, R. B.: An explicit flux-form semi-lagrangian shallow-water
model on the sphere, Q. J. Roy. Meteor. Soc.,
123, 2477–2498, https://doi.org/10.1002/qj.49712354416, 1997. a
Lin, Y. and Mitchell, K. E.: The NCEP stage II/IV hourly precipitation
analyses: Development and applications, in: 19th Conf. on Hydrology, 1.2,
Amer. Meteor. Soc.,
http://ams.confex.com/ams/pdfpapers/83847.pdf (last access: 20 July 2021), 2005. a
Link, J. S., Tolman, H. L., Bayler, E., Holt, C., Brown, C. W., Burke, P. B.,
Carman, J. C., Cross, S. L., Dunne, J. P., Lipton, D. W., Mariotti, A.,
Methot, R. D., Myers, E. P., Schneider, T. L., Grasso, M., and Robinson, K.:
High-level NOAA unified modeling overview, NOAA,
https://doi.org/10.7289/V5GB2248, 2017. a
Lippi, D. E., Carley, J. R., and Kleist, D. T.: Improvements to the
Assimilation of Doppler Radial Winds for Convection-Permitting Forecasts of a
Heavy Rain Event, Mon. Weather Rev., 147, 3609–3632,
https://doi.org/10.1175/MWR-D-18-0411.1, 2019. a
Long, P. E.: An economical and compatible scheme for parameterizing the stable
surface layer in the medium range forecast model, NOAA,
https://repository.library.noaa.gov/view/noaa/11489 (last access: 20 July 2021),
miscellaneous, 1986. a
Lorenc, A. C.: The potential of the ensemble Kalman filter for NWP – A
comparison with 4D‐Var, Q. J. Roy. Meteor. Soc., 129, 3183–3203, 2003. a
McCaul, E. W. and Weisman, M. L.: The Sensitivity of Simulated Supercell
Structure and Intensity to Variations in the Shapes of Environmental Buoyancy
and Shear Profiles, Mon. Weather Rev., 129, 664–687,
https://doi.org/10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2, 2001. a
McCormack, J. P., Eckermann, S. D., Siskind, D. E., and McGee, T. J.: CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972, https://doi.org/10.5194/acp-6-4943-2006, 2006. a
McCormack, J. P., Hoppel, K. W., and Siskind, D. E.: Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation, Atmos. Chem. Phys., 8, 7519–7532, https://doi.org/10.5194/acp-8-7519-2008, 2008. a, b
Miyakoda, K. and Sirutis, J.: Manual of the E-physics, Princeton University,
97, 1986. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237,
1997. a
Morris, M. T., Carley, J. R., Colón, E., Gibbs, A., Pondeca, M. S. F. V. D.,
and Levine, S.: A Quality Assessment of the Real-Time Mesoscale Analysis
(RTMA) for Aviation, Weather Forecast., 35, 977–996,
https://doi.org/10.1175/WAF-D-19-0201.1, 2020. a
Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure
Model for the Atmospheric Boundary Layer, J. Meteorol.
Soc. Japan Ser. II, 87, 895–912,
https://doi.org/10.2151/jmsj.87.895, 2009. a, b
National Research Council: A National Strategy for Advancing Climate
Modeling, chap. Synergies Between Weather and Climate Modeling, The National
Academies Pres, Washington, D.C., https://doi.org/10.17226/13430, 2012. a
Newman, K., Grell, E. D., Kalina, E., Harrold, M., Ketefian, G., Hertneky, T.,
and Lybarger, N. D.: Investigation of Land–Atmosphere Interactions in the
Unified Forecast System Short-Range Weather (UFS-SRW) Application, in: 101st
American Meteorological Society Annual Meeting, AMS, 10–15 January 2021,
New Orleans, LA, USA, 384122,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/384122 (last access: 28 August 2022),
2021. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah
land surface model with multiparameterization options (Noah-MP): 1. Model
description and evaluation with local-scale measurements, J.
Geophys. Res.-Atmos., 116, D12,
https://doi.org/10.1029/2010JD015139, 2011. a
NWS: Service Change Notice 21-20 Updated: Upgrade NCEP Global Forecast Systems
(GFS) to v16: Effective 22 March 2021,
https://www.weather.gov/media/notification/scn_21-20_gfsv16.0_aaa_update.pdf (last access: 12 April 2022),
2021. a
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's Spectral
Statistical-Interpolation Analysis System, Mon. Weather Rev., 120,
1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:Tnmcss>2.0.Co;2, 1992. a
Poterjoy, J., Sobash, R. A., and Anderson, J. L.: Convective-scale data
assimilation for the weather research and forecasting model using the local
particle filter, Mon. Weather Rev., 145, 1897–1918, 2017. a
Potvin, C. K., Carley, J. R., Clark, A. J., Wicker, L. J., Skinner, P. S.,
Reinhart, A. E., Gallo, B. T., Kain, J. S., Romine, G. S., Aligo, E. A.,
Brewster, K. A., Dowell, D. C., Harris, L. M., Jirak, I. L., Kong, F.,
Supinie, T. A., Thomas, K. W., Wang, X., Wang, Y., and Xue, M.: Systematic
Comparison of Convection-Allowing Models during the 2017 NOAA HWT Spring
Forecasting Experiment, Weather Forecast., 34, 1395–1416,
https://doi.org/10.1175/WAF-D-19-0056.1, 2019. a
Putman, W. M. and Lin, S.-J.: Finite-volume transport on various cubed-sphere
grids, J. Comput. Phys., 227, 55–78,
https://doi.org/10.1016/j.jcp.2007.07.022, 2007. a, b
Roberts, B., Gallo, B. T., Jirak, I. L., Clark, A. J., Dowell, D. C., Wang, X.,
and Wang, Y.: What Does a Convection-Allowing Ensemble of Opportunity Buy Us
in Forecasting Thunderstorms?, Weather Forecast., 35, 2293–2316,
https://doi.org/10.1175/WAF-D-20-0069.1, 2020. a
Schwartz, C. S. and Sobash, R. A.: Revisiting sensitivity to horizontal grid
spacing in convection-allowing models over the central and eastern United
States, Mon. Weather Rev., 147, 4411–4435, 2019. a
Schwartz, C. S., Poterjoy, J., Carley, J. R., Dowell, D. C., Romine, G. S., and
Ide, K.: Comparing Partial and Continuously Cycling Ensemble Kalman Filter
Data Assimilation Systems for Convection-Allowing Ensemble Forecast
Initialization, Weather Forecast., 37, 85–112,
https://doi.org/10.1175/WAF-D-21-0069.1, 2022. a
Shao, H., Derber, J., Huang, X.-Y., Hu, M., Newman, K., Stark, D., Lueken, M.,
Zhou, C., Nance, L., Kuo, Y.-H., et al.: Bridging research to operations
transitions: Status and plans of community GSI, B. Am. Meteorol. Soc., 97, 1427–1440,
https://doi.org/10.1175/BAMS-D-13-00245.1, 2016. a
Shen, F., Xue, M., and Min, J.: A comparison of limited-area 3DVAR and
ETKF-En3DVAR data assimilation using radar observations at convective scale
for the prediction of Typhoon Saomai (2006), Meteorol. Appl., 24,
628–641, https://doi.org/10.1002/met.1663, 2017. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A description of the Advanced Research WRF version 3.
NCAR Technical note-475+ STR, Tech. rep., National Center For Atmospheric
Research, Boulder CO. Mesoscale and Microscale Meteorology Laboratory,
https://doi.org/10.5065/D68S4MVH, 2008. a, b
Smith, T. L., Benjamin, S. G., Gutman, S. I., and Sahm, S.: Short-range
forecast impact from assimilation of GPS-IPW observations into the Rapid
Update Cycle, Mon. Weather Rev., 135, 2914–2930,
https://doi.org/10.1175/MWR3436.1, 2007. a
Snook, N., Kong, F., Brewster, K. A., Xue, M., Thomas, K. W., Supinie, T. A.,
Perfater, S., and Albright, B.: Evaluation of convection-permitting
precipitation forecast products using WRF, NMMB, and FV3 for the 2016–17
NOAA hydrometeorology testbed flash flood and intense rainfall experiments,
Weather Forecast., 34, 781–804, 2019. a
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J.
Atmos. Sci., 71, 3636–3658,
https://doi.org/10.1175/JAS-D-13-0305.1, 2014. a
Tong, C.-C., Jung, Y., Xue, M., and Liu, C.: Direct Assimilation of Radar Data
With Ensemble Kalman Filter and Hybrid Ensemble-Variational Method in the
National Weather Service Operational Data Assimilation System GSI for the
Stand-Alone Regional FV3 Model at a Convection-Allowing Resolution,
Geophys. Res. Lett., 47, e2020GL090179, https://doi.org/10.1029/2020GL090179, 2020. a, b, c, d, e
Tong, W., Li, G., Sun, J., Tang, X., and Zhang, Y.: Design Strategies of an
Hourly Update 3DVAR Data Assimilation System for Improved Convective
Forecasting, Weather Forecast., 31, 1673–1695,
https://doi.org/10.1175/WAF-D-16-0041.1, 2016. a, b, c
UFS Development Team: Unified Forecast System (UFS) Short-Range Weather
(SRW) Application, Zenodo, https://doi.org/10.5281/zenodo.4534994, 2021. a, b
UFS-R2O: Unified Forecast System Research-to-Operations (UFS-R2O) Project
Proposal,
https://www.weather.gov/media/sti/UFS-R2O-Project-Proposal-Public.pdf (last access: 20 June 2021),
2020. a
UPP: UPP Users Guide V4,
https://dtcenter.org/sites/default/files/community-code/upp-users-guide-v4.pdf (last access: 16 August 2021),
2021. a
Wang, X.: Incorporating Ensemble Covariance in the Gridpoint Statistical
Interpolation Variational Minimization: A Mathematical Framework, Mon. Weather Rev., 138, 2990–2995, https://doi.org/10.1175/2010mwr3245.1, 2010. a, b
Wang, X. and Lei, T.: GSI-Based Four-Dimensional Ensemble–Variational
(4DEnsVar) Data Assimilation: Formulation and Single-Resolution Experiments
with Real Data for NCEP Global Forecast System, Mon. Weather Rev., 142,
3303–3325, https://doi.org/10.1175/mwr-d-13-00303.1, 2014. a
Wang, X., Parrish, D., Kleist, D., and Whitaker, J.: GSI 3DVar-Based
Ensemble – Variational Hybrid Data Assimilation for NCEP Global Forecast
System: Single-Resolution Experiments, Mon. Weather Rev., 141,
4098–4117, https://doi.org/10.1175/mwr-d-12-00141.1, 2013. a
Wang, Y. and Wang, X.: Direct Assimilation of Radar Reflectivity without
Tangent Linear and Adjoint of the Nonlinear Observation Operator in the
GSI-Based EnVar System: Methodology and Experiment with the 8 May 2003
Oklahoma City Tornadic Supercell, Mon. Weather Rev., 145, 1447–1471,
https://doi.org/10.1175/MWR-D-16-0231.1, 2017.
a
Weisman, M. L. and Klemp, J. B.: The Dependence of Numerically Simulated
Convective Storms on Vertical Wind Shear and Buoyancy, Mon. Weather Rev., 110, 504–520,
https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2, 1982. a
Wolff, J. and Beck, J.: The UFS Short-Range Weather App, Bulletin of the UFS
Community, p. 9, https://doi.org/10.25923/k3zn-xe66, 2020. a
Wong, M., Romine, G., and Snyder, C.: Model Improvement via Systematic
Investigation of Physics Tendencies, Mon. Weather Rev., 148, 671–688,
https://doi.org/10.1175/MWR-D-19-0255.1, 2020. a
Yano, J.-I., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J.,
Bengtsson, L., Carrassi, A., Davy, R., Deluca, A., Gray, S. L., Homar, V.,
Kohler, M., Krichak, S., Michaelides, S., Phillips, V. T. J., Soares, P.
M. M., and Wyszogrodzki, A. A.: Scientific Challenges of Convective-Scale
Numerical Weather Prediction, B. Am. Meteorol. Soc., 99, 699–710, https://doi.org/10.1175/BAMS-D-17-0125.1, 2018. a, b
Zhang, C., Xue, M., Supinie, T. A., Kong, F., Snook, N., Thomas, K. W.,
Brewster, K., Jung, Y., Harris, L. M., and Lin, S.-J.: How well does an
FV3-based model predict precipitation at a convection-allowing resolution?
Results from CAPS forecasts for the 2018 NOAA hazardous weather test bed with
different physics combinations, Geophys. Res. Lett., 46, 3523–3531,
2019. a
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H.,
Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J.,
and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) Quantitative
Precipitation Estimation: Initial Operating Capabilities, B. Am. Meteorol. Soc., 97(4), 621–638,
https://doi.org/10.1175/BAMS-D-14-00174.1, 2016. a
Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., and Rees, S. L.:
Toward Convective-Scale Prediction within the Next Generation Global
Prediction System, B. Am. Meteorol. Soc., 100,
1225–1243, https://doi.org/10.1175/BAMS-D-17-0246.1, 2019. a, b
Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G., and Jung,
J. A.: Enhanced radiance bias correction in the National Centers for
Environmental Prediction's Gridpoint Statistical Interpolation data
assimilation system, Q. J. Roy. Meteor. Soc.,
140, 1479–1492, 2014. a
Short summary
A prototype data assimilation system for NOAA’s next-generation rapidly updated, convection-allowing forecast system, or Rapid Refresh Forecast System (RRFS) v0.1, is tested and evaluated. The impact of using data assimilation with a convective storm case study is examined. Although the convection in RRFS tends to be overestimated in intensity and underestimated in extent, the use of data assimilation proves to be crucial to improve short-term forecasts of storms and precipitation.
A prototype data assimilation system for NOAA’s next-generation rapidly updated,...