Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6891-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study
Ivette H. Banos
CORRESPONDING AUTHOR
Postgraduate Division, Coordination of Teaching, Research and Extension, National Institute for Space Research, São José dos Campos, São Paulo, Brazil
now at: NCAR Mesoscale and Microscale Meteorology Laboratory, Boulder, CO, USA
Will D. Mayfield
NCAR Research Applications Laboratory, Boulder, CO, USA
Developmental Testbed Center, Boulder, CO, USA
Guoqing Ge
NOAA Global Systems Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences, CU Boulder, Boulder, CO, USA
Luiz F. Sapucci
Center for Weather Forecasts and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Jacob R. Carley
Modeling and Data Assimilation Branch, NOAA NCEP Environmental Modeling Center, College Park, MD, USA
Louisa Nance
NCAR Research Applications Laboratory, Boulder, CO, USA
Developmental Testbed Center, Boulder, CO, USA
Related authors
Tao Sun, Jonathan J. Guerrette, Zhiquan Liu, Junmei Ban, Byoung-Joo Jung, Ivette Hernández Baños, and Chris Snyder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2079, https://doi.org/10.5194/egusphere-2025-2079, 2025
Short summary
Short summary
We evaluated a new ensemble data assimilation system that uses satellite observations in all weather conditions for global weather forecasts. The results show that including cloud- and precipitation-affected satellite data improves forecasts of moisture, wind, and clouds, especially in the tropics. This work highlights the potential of this new ensemble data assimilation system to enhance global weather forecasts.
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024, https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Short summary
To mitigate the imbalances in the initial conditions, this study introduces our recent implementation of the incremental analysis update (IAU) in the Model for Prediction Across Scales – Atmospheric (MPAS-A) component coupled with the Joint Effort for Data assimilation Integration (JEDI) through the cycling system. A month-long cycling run demonstrates the successful implementation of the IAU capability in the MPAS–JEDI cycling system.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Tao Sun, Jonathan J. Guerrette, Zhiquan Liu, Junmei Ban, Byoung-Joo Jung, Ivette Hernández Baños, and Chris Snyder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2079, https://doi.org/10.5194/egusphere-2025-2079, 2025
Short summary
Short summary
We evaluated a new ensemble data assimilation system that uses satellite observations in all weather conditions for global weather forecasts. The results show that including cloud- and precipitation-affected satellite data improves forecasts of moisture, wind, and clouds, especially in the tropics. This work highlights the potential of this new ensemble data assimilation system to enhance global weather forecasts.
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
EGUsphere, https://doi.org/10.5194/egusphere-2024-4083, https://doi.org/10.5194/egusphere-2024-4083, 2025
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with seasons but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024, https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Short summary
To mitigate the imbalances in the initial conditions, this study introduces our recent implementation of the incremental analysis update (IAU) in the Model for Prediction Across Scales – Atmospheric (MPAS-A) component coupled with the Joint Effort for Data assimilation Integration (JEDI) through the cycling system. A month-long cycling run demonstrates the successful implementation of the IAU capability in the MPAS–JEDI cycling system.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Cheng-Hsuan Lu, Quanhua Liu, Shih-Wei Wei, Benjamin T. Johnson, Cheng Dang, Patrick G. Stegmann, Dustin Grogan, Guoqing Ge, Ming Hu, and Michael Lueken
Geosci. Model Dev., 15, 1317–1329, https://doi.org/10.5194/gmd-15-1317-2022, https://doi.org/10.5194/gmd-15-1317-2022, 2022
Short summary
Short summary
This article is a technical note on the aerosol absorption and scattering calculations of the Community Radiative Transfer Model (CRTM) v2.2 and v2.3. It also provides guidance for prospective users of the CRTM aerosol option and Gridpoint Statistical Interpolation (GSI) aerosol-aware radiance assimilation. Scientific aspects of aerosol-affected BT in atmospheric data assimilation are also briefly discussed.
Cited articles
Alexander, C. and Carley, J.: Short-Range Weather in operations, Bulletin of
the UFS Community, p. 9, https://doi.org/10.25923/k3zn-xe66, 2020. a, b
Alpert, J. C., Yudin, V. A., and Strobach, E.: Atmospheric Gravity Wave Sources
Correlated with Resolved-scale GW Activity and Sub-grid Scale
Parameterization in the FV3gfs Model, in: AGU Fall Meeting Abstracts, vol.
2019, SA21A–02, 2019. a
Azevedo, H. B. D., Gonçalves, L. G. G. D., Kalnay, E., and Wespetal, M.:
Dynamically weighted hybrid gain data assimilation: perfect model testing,
Tellus A, 72, 1–11,
https://doi.org/10.1080/16000870.2020.1835310, 2020. a
Bannister, R. N.: A review of operational methods of variational and
ensemble-variational data assimilation, Q. J. Roy.
Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982,
2017. a
Bannister, R. N., Chipilski, H. G., and Martinez-Alvarado, O.: Techniques and
challenges in the assimilation of atmospheric water observations for
numerical weather prediction towards convective scales, Q. J. Roy. Meteor. Soc., 146, 1–48,
https://doi.org/10.1002/qj.3652, 2020. a, b
Banos, I. H., Mayfield, W. D., Ge, G., Sapucci, L. F., Carley, J. R., and Nance, L.: Rapid Refresh Forecast System (RRFS) v0.1 (0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5546592, 2021a. a
Banos, I. H., Mayfield, W. D., Ge, G., Sapucci, L. F., Carley, J. R., and Nance, L.: Assessment of the data assimilation framework for the prototype Rapid Refresh Forecast System and impacts on forecasts of convective storms, Zenodo [code, data set], https://doi.org/10.5281/zenodo.5226389, 2021b. a
Bathmann, K.: The GSI Minimization Code Structure,
https://github.com/NOAA-EMC/GSI/wiki/GSI_Minimization_Code_Explained.pdf,
2021. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical
weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Benjamin, S. G., Weygandt, S. S., Devenyi, D., Manikin, J. B. G., Smith, T.,
and Smirnova, T.: Improved moisture and PBL initialization in the RUC using
METAR data, in: Preprints 22th Conf. Severe Local Storms, SPC,
82023, 2004. a
Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B. E.,
and Schlatter, T. W.: Relative Short-Range Forecast Impact from Aircraft,
Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the
RUC Hourly Assimilation Cycle, Mon. Weather Rev., 138, 1319–1343,
https://doi.org/10.1175/2009MWR3097.1, 2010. a
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American hourly assimilation and model forecast cycle: The
Rapid Refresh, Mon. Weather Rev., 144, 1669–1694,
2016. a, b, c, d, e, f
Benjamin, S. G., James, E. P., Brown, J. M., Szoke, E. J., Kenyon, J. S., and
Ahmadov, R.: Diagnostic fields developed for hourly updated NOAA weather
models, NOAA Technical Memorandum OAR GSL-66,
https://doi.org/10.25923/98fy-xx71, 2020. a
Benjamin, S. G., James, E. P., Hu, M., Alexander, C. R., Ladwig, T. T., Brown, J. M., Weygandt, S. S., Turner, D. D., Minnis, P., Smith, W. L., and Heidinger, A. K.:
Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range
Weather Prediction, Mon. Weather Rev., 149,
2673–2694,
https://doi.org/10.1175/MWR-D-20-0319.1, 2021. a
Bernardet, L., Firl, G., Heinzeller, D., Carson, L., Sun, X., Pan,
L., and Zhang, M.: Engaging the Community in the Development of Physics for
NWP Models, in: EGU General Assembly Conference Abstracts, p. 22093,
https://ui.adsabs.harvard.edu/abs/2020EGUGA..2222093B (last access: 14 April 2021), 2020. a
Black, T. L., Abeles, J. A., Blake, B. T., Jovic, D., Rogers, E., Zhang, X., Aligo, E. A., Dawson, L. C., Lin, Y., Strobach, E., Shafran, P. C., and Carley, J. R.: A Limited Area Modeling Capability
for the Finite-Volume Cubed-Sphere (FV3) Dynamical Core and Comparison with a
Global Two-Way Nest, J. Adv. Model. Earth Sy., https://doi.org/10.1029/2021MS002483,
e2021MS002483, 2021. a, b, c, d, e
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Flow-dependent
background-error covariances for a convective-scale data assimilation system,
Q. J. Roy. Meteor. Soc., 138, 310–322,
https://doi.org/10.1002/qj.920, 2012. a
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.:
Unified modeling and prediction of weather and climate: A 25-year journey,
B. Am. Meteorol. Soc., 93, 1865–1877,
2012. a
Brown, B., Jensen, T., Gotway, J. H., Bullock, R., Gilleland, E., Fowler, T.,
Newman, K., Adriaansen, D., Blank, L., Burek, T., Harrold, M., Hertneky, T.,
Kalb, C., Kucera, P., Nance, L., Opatz, J., Vigh, J., and Wolff, J.: The
Model Evaluation Tools (MET): More than a Decade of Community-Supported
Forecast Verification, B. Am. Meteorol. Soc., 102,
E782–E807, https://doi.org/10.1175/BAMS-D-19-0093.1, 2021. a
Buehner, M.: Ensemble-derived stationary and flow-dependent background-error
covariances: Evaluation in a quasi-operational NWP setting, Q. J. Roy.
Meteor. Soc., 131, 1013–1043,
https://doi.org/10.1256/qj.04.15, 2005. a
Campbell, W. F., Bishop, C. H., and Hodyss, D.: Vertical covariance
localization for satellite radiances in ensemble Kalman filters, Mon. Weather Rev., 138, 282–290, 2010. a
Carley, J. R., Matthews, M., Morris, M. T., De Pondeca, M. S. F. V., Colavito,
J., and Yang, R.: Variational assimilation of web camera-derived estimates of
visibility for Alaska aviation, Experimental Results, 2, e14,
https://doi.org/10.1017/exp.2020.66, 2021. a
CCPP: CCPP v5.0.0 Scientific Documentation. RRFS_v1alpha Suite,
https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/RRFS_v1alpha_page.html (last access: 18 August 2021),
2021. a
Chen, L., Liu, C., Xue, M., Zhao, G., Kong, R., and Jung, Y.: Use of Power
Transform Mixing Ratios as Hydrometeor Control Variables for Direct
Assimilation of Radar Reflectivity in GSI En3DVar and Tests with Five
Convective Storm Cases, Mon. Weather Rev., 149, 645–659, 2021. a
CIMSS: CIMSS Cooperative Agreement Annual Report, Tech. Rep. April, Cooperative
Institute for Meteorological Satellite Studies University of
Wisconsin-Madison,
https://cimss.ssec.wisc.edu/reports/CIMSS-CA-Report_2014_Final.pdf (last access: 11 August 2022),
2014. a
Davis, C. A., Brown, B. G., Bullock, R., and Halley-Gotway, J.: The Method for
Object-Based Diagnostic Evaluation (MODE) Applied to Numerical Forecasts from
the 2005 NSSL/SPC Spring Program, Weather Forecast., 24, 1252–1267,
https://doi.org/10.1175/2009WAF2222241.1, 2009. a
Derber, J. and Rosati, A.: A global oceanic data assimilation system, J. Phys. Oceanogr., 19, 1333–1347, 1989. a
Dixon, M., Li, Z., Lean, H., Roberts, N., and Ballard, S.: Impact of Data
Assimilation on Forecasting Convection over the United Kingdom Using a
High-Resolution Version of the Met Office Unified Model, Mon. Weather Rev., 137, 1562–1584, https://doi.org/10.1175/2008MWR2561.1, 2009. a
Dong, J., Liu, B., Zhang, Z., Wang, W., Mehra, A., Hazelton, A. T., Winterbottom, H. R., Zhu, L., Wu, K., Zhang, C., Tallapragada, V., Zhang, Xu., Gopalakrishnan, S., and Marks, F.: The evaluation of
real-time Hurricane Analysis and Forecast System (HAFS) Stand-Alone Regional
(SAR) model performance for the 2019 Atlantic hurricane season, Atmosphere,
11, 617, https://doi.org/10.3390/atmos11060617, 2020. a
EMC: Strategic Implementation Plan for evolution of NGGPS to a national Unified
Modeling System (First Annual Update), Tech. Rep. November, NOAA, U.S,
https://www.weather.gov/media/sti/nggps/UFS SIP FY19-21_20181129.pdf (last access: 9 July 2021),
2018. a
Gallo, B. T., Wolff, J. K., Clark, A. J., Jirak, I., Blank, L. R., Roberts, B., Wang, Y., Zhang, C., Xue, M., Supinie, T., Harris, L., Zhou, L., and Alexander, C.: Exploring
Convection-Allowing Model Evaluation Strategies for Severe Local Storms Using
the Finite-Volume Cubed-Sphere (FV3) Model Core, Weather Forecast., 36,
3–19, 2021. a, b, c
Gao, S., Du, N., Min, J., and Yu, H.: Impact of assimilating radar data using a
hybrid 4DEnVar approach on prediction of convective events, Tellus A, 73, 1–19, 2021. a
Gilleland, E., Hering, A. S., Fowler, T. L., and Brown, B. G.: Testing the
Tests: What Are the Impacts of Incorrect Assumptions When Applying Confidence
Intervals or Hypothesis Tests to Compare Competing Forecasts?, Mon. Weather Rev., 146, 1685–1703, https://doi.org/10.1175/MWR-D-17-0295.1, 2018. a
Gustafsson, N., Janji, T., Schraff, C., Leuenberger, D., Weissman, M., Reich,
H., Brousseau, P., Montmerle, T., Wattrelot, E., Bučánek, A.,
Mile, M., Hamdi, R., Lindskog, M., Barkmeijer, J., Dahlbom, M., Macpherson,
B., Ballard, S., Inverarity, G., Carley, J., Alexander, C., Dowell, D., Liu,
S., Ikuta, Y., and Fujita, T.: Survey of data assimilation methods for
convective-scale numerical weather prediction at operational centres,
Q. J. Roy. Meteor. Soc., 144, 1218–1256,
https://doi.org/10.1002/qj.3179, 2018. a, b, c, d, e
Harris, L., Chen, X., Zhou, L., and Chen, J.-H.: The Nonhydrostatic Solver of
the GFDL Finite-Volume Cubed-Sphere Dynamical Core, NOAA Technical Memorandum
OAR GFDL, 2020-003, https://doi.org/10.25923/9wdt-4895,
2020a. a
Harris, L., Zhou, L., Lin, S.-J., Chen, J.-H., Chen, X., Gao, K., Morin, M., Rees, S., Sun, Y., Tong, M., Xiang, B., Bender, M., Benson, R., Cheng, K.-Y., Clark, S., Elbert, O. D., Hazelton, A., Huff, J. J., Kaltenbaugh, A., Liang, Z., Marchok, T., Shin, H. H., and Stern, W.: GFDL SHiELD: A unified system for
weather-to-seasonal prediction, J. Adv. Model. Earth
Sy., 12, e2020MS002223, https://doi.org/10.1029/2020MS002223, 2020b. a
Harris, L. M., Lin, S.-J., and Tu, C.: High-Resolution Climate Simulations
Using GFDL HiRAM with a Stretched Global Grid, J. Climate, 29,
4293–4314, https://doi.org/10.1175/JCLI-D-15-0389.1, 2016. a
Harris, L. M., Rees, S. L., Morin, M., Zhou, L., and Stern, W. F.: Explicit
prediction of continental convection in a skillful variable resolution global
model, J. Adv. Model. Earth Sy., 11, 1847–1869,
https://doi.org/10.1029/2018MS001542, 2019. a
Harrold, M., Hertneky, T., Kalina, E., Newman, K., Ketefian, G., Grell, E. D.,
Lybarger, N. D., and Nelson, B.: Investigating the Scalability of Convective
and Microphysics Parameterizations in the Unified Forecast System Short-Range
Weather (UFS-SRW) Application, in: 101st American Meteorological Society
Annual Meeting, AMS, New Orleans, LA, USA, 10–15 January 2021, 384306,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/384306 (last access: 28 August 2022), 2021. a
Hazeleger, W., Severijns, C., Semmler, T., Stefanescu, S., Yang, S., Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P., Caballero, R., Ekman, A. M. L., Christensen, J. H., van den Hurk, B., Jimenez, P., Jones, C., Kållberg, P.,Koenigk, T., McGrath, R., Miranda, P., van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F., Storelvmo, T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and Willén, U.:
EC-Earth: a seamless earth-system prediction approach in action, B. Am. Meteorol. Soc., 91, 1357–1364,
2010. a
Heinzeller, D., Bernardet, L., Firl, G., Carson, L., Schramm, J.,
Zhang, M., Dudhia, J., Gill, D., Duda, M., Goldhaber, S., Craig,
C., Vitt, F., and Vertenstein, M.: The Common Community Physics Package
CCPP: unifying physics across NOAA and NCAR models using a common software
framework, in: EGU General Assembly Conference Abstracts, p. 223,
https://ui.adsabs.harvard.edu/abs/2019EGUGA..21..223H (last access: 15 July 2021), 2019. a
Holm, E., Andersson, E., Beljaars, A., Lopez, P., Mahfouf, J.-F., Simmons, A.,
and Thepaut, J.-N.: Assimilation and modelling of the hydrologic cycle:
ECMWF's status and plans, ECMWF Tech. Memo., 383, 55, 2002. a
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for
atmospheric data assimilation, Mon. Weather Rev., 129, 123–137, 2001. a
Hu, M., Xue, M., and Brewster, K.: 3DVAR and Cloud Analysis with WSR-88D
Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic
Thunderstorms. Part I: Cloud Analysis and Its Impact, Mon. Weather Rev.,
134, 675–698, https://doi.org/10.1175/mwr3092.1, 2006a. a
Hu, M., Xue, M., Gao, J., and Brewster, K.: 3DVAR and Cloud Analysis with
WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic
Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR, Mon. Weather Rev., 134, 699–721, https://doi.org/10.1175/mwr3093.1, 2006b. a
Hu, M., Benjamin, S. G., Ladwig, T. T., Dowell, D. C., Weygandt, S. S.,
Alexander, C. R., and Whitaker, J. S.: GSI three-dimensional
ensemble–variational hybrid data assimilation using a global ensemble for
the regional Rapid Refresh model, Mon. Weather Rev., 145, 4205–4225,
2017. a, b, c, d, e, f, g, h, i, j
Hu, M., Ge, G., Chunhua, Z., Stark, D., Shao, H., Newman, K., Beck, J., and
Zhang, X.: Grid-point Statistical Interpolation (GSI) User’s Guide version
3.7,
https://dtcenter.org/sites/default/files/GSIUserGuide_v3.7_0.pdf (last access: 10 December 2021),
2018. a
Hu, M., Li, R., Trahan, S., Holt, C., Weygandt, S., and Alexander, C. R.:
Initial Development Testing and Evaluation of the RAPHRRR Similar Data
Assimilation Functions for FV3 LAM-Based RRFs, in: 101st American
Meteorological Society Annual Meeting, AMS, 10–15 January 2021, New Orleans, LA, USA, 379264,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379264 (last access: 28 August 2022), 2021. a
Huang, B., Wang, X., Kleist, D. T., and Lei, T.: A Simultaneous Multiscale Data
Assimilation Using Scale-Dependent Localization in GSI-Based Hybrid 4DEnVar
for NCEP FV3-Based GFS, Mon. Weather Rev., 149, 479–501,
https://doi.org/10.1175/MWR-D-20-0166.1, 2021. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13, https://doi.org/10.1029/2008JD009944, 2008. a
Janjić, T., McLaughlin, D., Cohn, S. E., and Verlaan, M.: Conservation of
Mass and Preservation of Positivity with Ensemble-Type Kalman Filter
Algorithms, Mon. Weather Rev., 142, 755–773,
https://doi.org/10.1175/MWR-D-13-00056.1, 2014. a, b
Janjić, T., Ruckstuhl, Y., and Toint, P. L.: A data assimilation algorithm
for predicting rain, Q. J. Roy. Meteor. Soc.,
147, 1949–1963, 2021. a
Jensen, T., Brown, B., Bullock, R., Fowler, T., Gotway, J. H., and Newman, K.:
The Model Evaluation Tools v9.0 (METv9.0) User's Guide., Developmental
Testbed Center,
https://dtcenter.org/sites/default/les/community-code/met/docs/user-guide/MET_Users_Guide_v9.0.pdf (last access: 13 April 2021),
2020. a, b
Ji, M. and Toepfer, F.: Dynamical Core Evaluation Test Report for NOAA’s Next
Generation Global Prediction System (NGGPS), Tech. Rep. September, NOAA, U.S,
https://doi.org/10.25923/ztzy-qn82, 2016. a
Kalina, E., Grell, E. D., Harrold, M., Hertneky, T., and Newman, K.: Evaluating
Hydrometeor Type and Amount in the Unified Forecast System, in: 101st
American Meteorological Society Annual Meeting, AMS, 10–15 January 2021,
New Orleans, LA, USA, 383651,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/383651 (last access: 28 August 2022), 2021. a
Kleist, D. and Ide, K.: An OSSE-Based Evaluation of Hybrid
Variational–Ensemble Data Assimilation for the NCEP GFS. Part II: 4DEnVar
and Hybrid Variants, Mon. Weather Rev., 143, 452–470,
https://doi.org/10.1175/MWR-D-13-00350.1, 2015a. a, b
Kleist, D. T. and Ide, K.: An OSSE-based evaluation of hybrid
variational-ensemble data assimilation for the NCEP GFS. Part I: System
description and 3D-hybrid results, Mon. Weather Rev., 143, 433–451,
https://doi.org/10.1175/MWR-D-13-00351.1, 2015b. a
Kleist, D. T. and Ide, K.: An OSSE-Based Evaluation of Hybrid
Variational–Ensemble Data Assimilation for the NCEP GFS. Part II: 4DEnVar
and Hybrid Variants, Mon. Weather Rev., 143, 452–470,
https://doi.org/10.1175/mwr-d-13-00350.1, 2015c. a
Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R.,
and Halliwell, C.: Characteristics of high-resolution versions of the Met
Office Unified Model for forecasting convection over the United Kingdom,
Mon. Weather Rev., 136, 3408–3424, 2008. a
Li, X. and Derber, J.: Near Sea Surface Temperatures (NSST). Analysis in
NCEP GFS, in: JCSDA 6th Workshop on Satellite Data Assimilation, JCSDA
Workshop on Satellite Data Assimilation,
http://data.jcsda.org/Workshops/6th-workshop-onDA/Session-4/JCSDA_2008_Li.pdf (last access: 12 April 2022),
2008. a
Li, X., Derber, J., and Moorthi, S.: An atmosphere-ocean partially
coupled data assimilation and prediction system developed within the NCEP
GFS/CFS, in: EGU General Assembly Conference Abstracts, EGU General Assembly
Conference Abstracts, 12–17 April 2015,
Vienna, Austria, 2855,
https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.2855L (last access: 25 August 2022), 2015. a
Lin, S.-J.: A finite-volume integration method for computing pressure gradient
force in general vertical coordinates, Q. J. Roy. Meteor. Soc., 123, 1749–1762, https://doi.org/10.1002/qj.49712354214, 1997. a
Lin, S.-J.: A “Vertically Lagrangian” Finite-Volume Dynamical Core for
Global Models, Mon. Weather Rev., 132, 2293–2307,
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004. a, b
Lin, S.-J. and Rood, R. B.: Multidimensional Flux-Form Semi-Lagrangian
Transport Schemes, Mon. Weather Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124<2046:Mffslt>2.0.Co;2, 1996. a
Lin, S.-J. and Rood, R. B.: An explicit flux-form semi-lagrangian shallow-water
model on the sphere, Q. J. Roy. Meteor. Soc.,
123, 2477–2498, https://doi.org/10.1002/qj.49712354416, 1997. a
Lin, Y. and Mitchell, K. E.: The NCEP stage II/IV hourly precipitation
analyses: Development and applications, in: 19th Conf. on Hydrology, 1.2,
Amer. Meteor. Soc.,
http://ams.confex.com/ams/pdfpapers/83847.pdf (last access: 20 July 2021), 2005. a
Link, J. S., Tolman, H. L., Bayler, E., Holt, C., Brown, C. W., Burke, P. B.,
Carman, J. C., Cross, S. L., Dunne, J. P., Lipton, D. W., Mariotti, A.,
Methot, R. D., Myers, E. P., Schneider, T. L., Grasso, M., and Robinson, K.:
High-level NOAA unified modeling overview, NOAA,
https://doi.org/10.7289/V5GB2248, 2017. a
Lippi, D. E., Carley, J. R., and Kleist, D. T.: Improvements to the
Assimilation of Doppler Radial Winds for Convection-Permitting Forecasts of a
Heavy Rain Event, Mon. Weather Rev., 147, 3609–3632,
https://doi.org/10.1175/MWR-D-18-0411.1, 2019. a
Long, P. E.: An economical and compatible scheme for parameterizing the stable
surface layer in the medium range forecast model, NOAA,
https://repository.library.noaa.gov/view/noaa/11489 (last access: 20 July 2021),
miscellaneous, 1986. a
Lorenc, A. C.: The potential of the ensemble Kalman filter for NWP – A
comparison with 4D‐Var, Q. J. Roy. Meteor. Soc., 129, 3183–3203, 2003. a
McCaul, E. W. and Weisman, M. L.: The Sensitivity of Simulated Supercell
Structure and Intensity to Variations in the Shapes of Environmental Buoyancy
and Shear Profiles, Mon. Weather Rev., 129, 664–687,
https://doi.org/10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2, 2001. a
McCormack, J. P., Eckermann, S. D., Siskind, D. E., and McGee, T. J.: CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972, https://doi.org/10.5194/acp-6-4943-2006, 2006. a
McCormack, J. P., Hoppel, K. W., and Siskind, D. E.: Parameterization of middle atmospheric water vapor photochemistry for high-altitude NWP and data assimilation, Atmos. Chem. Phys., 8, 7519–7532, https://doi.org/10.5194/acp-8-7519-2008, 2008. a, b
Miyakoda, K. and Sirutis, J.: Manual of the E-physics, Princeton University,
97, 1986. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237,
1997. a
Morris, M. T., Carley, J. R., Colón, E., Gibbs, A., Pondeca, M. S. F. V. D.,
and Levine, S.: A Quality Assessment of the Real-Time Mesoscale Analysis
(RTMA) for Aviation, Weather Forecast., 35, 977–996,
https://doi.org/10.1175/WAF-D-19-0201.1, 2020. a
Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure
Model for the Atmospheric Boundary Layer, J. Meteorol.
Soc. Japan Ser. II, 87, 895–912,
https://doi.org/10.2151/jmsj.87.895, 2009. a, b
National Research Council: A National Strategy for Advancing Climate
Modeling, chap. Synergies Between Weather and Climate Modeling, The National
Academies Pres, Washington, D.C., https://doi.org/10.17226/13430, 2012. a
Newman, K., Grell, E. D., Kalina, E., Harrold, M., Ketefian, G., Hertneky, T.,
and Lybarger, N. D.: Investigation of Land–Atmosphere Interactions in the
Unified Forecast System Short-Range Weather (UFS-SRW) Application, in: 101st
American Meteorological Society Annual Meeting, AMS, 10–15 January 2021,
New Orleans, LA, USA, 384122,
https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/384122 (last access: 28 August 2022),
2021. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah
land surface model with multiparameterization options (Noah-MP): 1. Model
description and evaluation with local-scale measurements, J.
Geophys. Res.-Atmos., 116, D12,
https://doi.org/10.1029/2010JD015139, 2011. a
NWS: Service Change Notice 21-20 Updated: Upgrade NCEP Global Forecast Systems
(GFS) to v16: Effective 22 March 2021,
https://www.weather.gov/media/notification/scn_21-20_gfsv16.0_aaa_update.pdf (last access: 12 April 2022),
2021. a
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's Spectral
Statistical-Interpolation Analysis System, Mon. Weather Rev., 120,
1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:Tnmcss>2.0.Co;2, 1992. a
Poterjoy, J., Sobash, R. A., and Anderson, J. L.: Convective-scale data
assimilation for the weather research and forecasting model using the local
particle filter, Mon. Weather Rev., 145, 1897–1918, 2017. a
Potvin, C. K., Carley, J. R., Clark, A. J., Wicker, L. J., Skinner, P. S.,
Reinhart, A. E., Gallo, B. T., Kain, J. S., Romine, G. S., Aligo, E. A.,
Brewster, K. A., Dowell, D. C., Harris, L. M., Jirak, I. L., Kong, F.,
Supinie, T. A., Thomas, K. W., Wang, X., Wang, Y., and Xue, M.: Systematic
Comparison of Convection-Allowing Models during the 2017 NOAA HWT Spring
Forecasting Experiment, Weather Forecast., 34, 1395–1416,
https://doi.org/10.1175/WAF-D-19-0056.1, 2019. a
Putman, W. M. and Lin, S.-J.: Finite-volume transport on various cubed-sphere
grids, J. Comput. Phys., 227, 55–78,
https://doi.org/10.1016/j.jcp.2007.07.022, 2007. a, b
Roberts, B., Gallo, B. T., Jirak, I. L., Clark, A. J., Dowell, D. C., Wang, X.,
and Wang, Y.: What Does a Convection-Allowing Ensemble of Opportunity Buy Us
in Forecasting Thunderstorms?, Weather Forecast., 35, 2293–2316,
https://doi.org/10.1175/WAF-D-20-0069.1, 2020. a
Schwartz, C. S. and Sobash, R. A.: Revisiting sensitivity to horizontal grid
spacing in convection-allowing models over the central and eastern United
States, Mon. Weather Rev., 147, 4411–4435, 2019. a
Schwartz, C. S., Poterjoy, J., Carley, J. R., Dowell, D. C., Romine, G. S., and
Ide, K.: Comparing Partial and Continuously Cycling Ensemble Kalman Filter
Data Assimilation Systems for Convection-Allowing Ensemble Forecast
Initialization, Weather Forecast., 37, 85–112,
https://doi.org/10.1175/WAF-D-21-0069.1, 2022. a
Shao, H., Derber, J., Huang, X.-Y., Hu, M., Newman, K., Stark, D., Lueken, M.,
Zhou, C., Nance, L., Kuo, Y.-H., et al.: Bridging research to operations
transitions: Status and plans of community GSI, B. Am. Meteorol. Soc., 97, 1427–1440,
https://doi.org/10.1175/BAMS-D-13-00245.1, 2016. a
Shen, F., Xue, M., and Min, J.: A comparison of limited-area 3DVAR and
ETKF-En3DVAR data assimilation using radar observations at convective scale
for the prediction of Typhoon Saomai (2006), Meteorol. Appl., 24,
628–641, https://doi.org/10.1002/met.1663, 2017. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A description of the Advanced Research WRF version 3.
NCAR Technical note-475+ STR, Tech. rep., National Center For Atmospheric
Research, Boulder CO. Mesoscale and Microscale Meteorology Laboratory,
https://doi.org/10.5065/D68S4MVH, 2008. a, b
Smith, T. L., Benjamin, S. G., Gutman, S. I., and Sahm, S.: Short-range
forecast impact from assimilation of GPS-IPW observations into the Rapid
Update Cycle, Mon. Weather Rev., 135, 2914–2930,
https://doi.org/10.1175/MWR3436.1, 2007. a
Snook, N., Kong, F., Brewster, K. A., Xue, M., Thomas, K. W., Supinie, T. A.,
Perfater, S., and Albright, B.: Evaluation of convection-permitting
precipitation forecast products using WRF, NMMB, and FV3 for the 2016–17
NOAA hydrometeorology testbed flash flood and intense rainfall experiments,
Weather Forecast., 34, 781–804, 2019. a
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J.
Atmos. Sci., 71, 3636–3658,
https://doi.org/10.1175/JAS-D-13-0305.1, 2014. a
Tong, C.-C., Jung, Y., Xue, M., and Liu, C.: Direct Assimilation of Radar Data
With Ensemble Kalman Filter and Hybrid Ensemble-Variational Method in the
National Weather Service Operational Data Assimilation System GSI for the
Stand-Alone Regional FV3 Model at a Convection-Allowing Resolution,
Geophys. Res. Lett., 47, e2020GL090179, https://doi.org/10.1029/2020GL090179, 2020. a, b, c, d, e
Tong, W., Li, G., Sun, J., Tang, X., and Zhang, Y.: Design Strategies of an
Hourly Update 3DVAR Data Assimilation System for Improved Convective
Forecasting, Weather Forecast., 31, 1673–1695,
https://doi.org/10.1175/WAF-D-16-0041.1, 2016. a, b, c
UFS Development Team: Unified Forecast System (UFS) Short-Range Weather
(SRW) Application, Zenodo, https://doi.org/10.5281/zenodo.4534994, 2021. a, b
UFS-R2O: Unified Forecast System Research-to-Operations (UFS-R2O) Project
Proposal,
https://www.weather.gov/media/sti/UFS-R2O-Project-Proposal-Public.pdf (last access: 20 June 2021),
2020. a
UPP: UPP Users Guide V4,
https://dtcenter.org/sites/default/files/community-code/upp-users-guide-v4.pdf (last access: 16 August 2021),
2021. a
Wang, X.: Incorporating Ensemble Covariance in the Gridpoint Statistical
Interpolation Variational Minimization: A Mathematical Framework, Mon. Weather Rev., 138, 2990–2995, https://doi.org/10.1175/2010mwr3245.1, 2010. a, b
Wang, X. and Lei, T.: GSI-Based Four-Dimensional Ensemble–Variational
(4DEnsVar) Data Assimilation: Formulation and Single-Resolution Experiments
with Real Data for NCEP Global Forecast System, Mon. Weather Rev., 142,
3303–3325, https://doi.org/10.1175/mwr-d-13-00303.1, 2014. a
Wang, X., Parrish, D., Kleist, D., and Whitaker, J.: GSI 3DVar-Based
Ensemble – Variational Hybrid Data Assimilation for NCEP Global Forecast
System: Single-Resolution Experiments, Mon. Weather Rev., 141,
4098–4117, https://doi.org/10.1175/mwr-d-12-00141.1, 2013. a
Wang, Y. and Wang, X.: Direct Assimilation of Radar Reflectivity without
Tangent Linear and Adjoint of the Nonlinear Observation Operator in the
GSI-Based EnVar System: Methodology and Experiment with the 8 May 2003
Oklahoma City Tornadic Supercell, Mon. Weather Rev., 145, 1447–1471,
https://doi.org/10.1175/MWR-D-16-0231.1, 2017.
a
Weisman, M. L. and Klemp, J. B.: The Dependence of Numerically Simulated
Convective Storms on Vertical Wind Shear and Buoyancy, Mon. Weather Rev., 110, 504–520,
https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2, 1982. a
Wolff, J. and Beck, J.: The UFS Short-Range Weather App, Bulletin of the UFS
Community, p. 9, https://doi.org/10.25923/k3zn-xe66, 2020. a
Wong, M., Romine, G., and Snyder, C.: Model Improvement via Systematic
Investigation of Physics Tendencies, Mon. Weather Rev., 148, 671–688,
https://doi.org/10.1175/MWR-D-19-0255.1, 2020. a
Yano, J.-I., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J.,
Bengtsson, L., Carrassi, A., Davy, R., Deluca, A., Gray, S. L., Homar, V.,
Kohler, M., Krichak, S., Michaelides, S., Phillips, V. T. J., Soares, P.
M. M., and Wyszogrodzki, A. A.: Scientific Challenges of Convective-Scale
Numerical Weather Prediction, B. Am. Meteorol. Soc., 99, 699–710, https://doi.org/10.1175/BAMS-D-17-0125.1, 2018. a, b
Zhang, C., Xue, M., Supinie, T. A., Kong, F., Snook, N., Thomas, K. W.,
Brewster, K., Jung, Y., Harris, L. M., and Lin, S.-J.: How well does an
FV3-based model predict precipitation at a convection-allowing resolution?
Results from CAPS forecasts for the 2018 NOAA hazardous weather test bed with
different physics combinations, Geophys. Res. Lett., 46, 3523–3531,
2019. a
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H.,
Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J.,
and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) Quantitative
Precipitation Estimation: Initial Operating Capabilities, B. Am. Meteorol. Soc., 97(4), 621–638,
https://doi.org/10.1175/BAMS-D-14-00174.1, 2016. a
Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., and Rees, S. L.:
Toward Convective-Scale Prediction within the Next Generation Global
Prediction System, B. Am. Meteorol. Soc., 100,
1225–1243, https://doi.org/10.1175/BAMS-D-17-0246.1, 2019. a, b
Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G., and Jung,
J. A.: Enhanced radiance bias correction in the National Centers for
Environmental Prediction's Gridpoint Statistical Interpolation data
assimilation system, Q. J. Roy. Meteor. Soc.,
140, 1479–1492, 2014. a
Short summary
A prototype data assimilation system for NOAA’s next-generation rapidly updated, convection-allowing forecast system, or Rapid Refresh Forecast System (RRFS) v0.1, is tested and evaluated. The impact of using data assimilation with a convective storm case study is examined. Although the convection in RRFS tends to be overestimated in intensity and underestimated in extent, the use of data assimilation proves to be crucial to improve short-term forecasts of storms and precipitation.
A prototype data assimilation system for NOAA’s next-generation rapidly updated,...