Articles | Volume 15, issue 16
https://doi.org/10.5194/gmd-15-6429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6429-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Océane Hames
CORRESPONDING AUTHOR
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
Mahdi Jafari
CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
David Nicholas Wagner
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
Ian Raphael
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
David Clemens-Sewall
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
Chris Polashenski
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
USACE-CRREL Alaska Projects Office, Fairbanks, Alaska, USA
Matthew D. Shupe
NOAA Physical Science Laboratory, Boulder, Colorado, USA
Cooperative Institute for the Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
Martin Schneebeli
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Michael Lehning
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
Related authors
No articles found.
Peggy Achtert, Torsten Seelig, Gabriella Wallentin, Luisa Ickes, Matthew D. Shupe, Corinna Hoose, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3529, https://doi.org/10.5194/egusphere-2025-3529, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We quantify the occurrence of single- and multi-layer clouds in the Arctic based on combining soundings with cloud-radar observations. We also assess the rate of ice-crystal seeding in multi-layer cloud systems as this is an important initiator of glaciation in super-cooled liquid cloud layers. We find an abundance of multi-layer clouds in the Arctic with seeding in about half to two thirds of cases in which the gap between upper and lower layers ranges between 100 and 1000 m.
Jean Lac, Hélène Chepfer, Matthew D. Shupe, and Hannes Griesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3549, https://doi.org/10.5194/egusphere-2025-3549, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Satellite observations show that Arctic spring experiences a rapid increase in liquid-containing clouds over sea ice. Our study shows that this transition is mostly driven by warmer temperatures in early spring than in late spring, favoring more liquid clouds formation, rather than a limited moisture source in early spring. It suggests that, in the future, this transition is likely to occur earlier in spring considering the rapid Arctic warming.
Mahdi Jafari and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-3035, https://doi.org/10.5194/egusphere-2025-3035, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how air moves within snow in Arctic regions and how this affects the snow's structure. Using a new method that links two computer models, we found that cold weather can trigger air movement inside the snow, creating vertical channels and changing the snow's density and temperature. These changes are not captured by traditional models, so our work helps improve how snow and climate processes are simulated in cold environments.
Manfred Wendisch, Benjamin Kirbus, Davide Ori, Matthew D. Shupe, Susanne Crewell, Harald Sodemann, and Vera Schemann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2062, https://doi.org/10.5194/egusphere-2025-2062, 2025
Short summary
Short summary
Aircraft observations of air parcels moving into and out of the Arctic are reported. From the data, heating and cooling as well as drying and moistening of the air masses along their way into and out of the Arctic could be measured for the first time. These data enable to evaluate if numerical weather prediction models are able to accurately represent these air mass transformations. This work helps to model the future climate changes in the Arctic, which are important for mid-latitude weather.
Lexie Goldberger, Maxwell Levin, Carlandra Harris, Andrew Geiss, Matthew D. Shupe, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1501, https://doi.org/10.5194/egusphere-2025-1501, 2025
Short summary
Short summary
This study leverages machine learning models to classify cloud thermodynamic phases using multi-sensor remote sensing data collected at the Department of Energy Atmospheric Radiation Measurement North Slope of Alaska observatory. We evaluate model performance, feature importance, application of the model to another observatory, and quantify how the models respond to instrument outages.
Christopher J. Cox, Janet M. Intrieri, Brian J. Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data, 17, 1481–1499, https://doi.org/10.5194/essd-17-1481-2025, https://doi.org/10.5194/essd-17-1481-2025, 2025
Short summary
Short summary
Snow is an essential water resource in the intermountain western United States, and predictions are made using models. We made observations to validate, constrain, and develop the models. The data are from the Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH) campaign in Colorado's East River valley, 2021–2023. The measurements include meteorology and variables that quantify energy transfer between the atmosphere and surface. The data are available publicly.
Carola Barrientos-Velasco, Christopher J. Cox, Hartwig Deneke, J. Brant Dodson, Anja Hünerbein, Matthew D. Shupe, Patrick C. Taylor, and Andreas Macke
Atmos. Chem. Phys., 25, 3929–3960, https://doi.org/10.5194/acp-25-3929-2025, https://doi.org/10.5194/acp-25-3929-2025, 2025
Short summary
Short summary
Understanding how clouds affect the climate, especially in the Arctic, is crucial. This study used data from the largest polar expedition in history, MOSAiC, and the CERES satellite to analyse the impact of clouds on radiation. Simulations showed accurate results, aligning with observations. Over the year, clouds caused the atmospheric surface system to lose 5.2 W m−² of radiative energy to space, while the surface gained 25 W m−² and the atmosphere cooled by 30.2 W m−².
Yubing Cheng, Bin Cheng, Roberta Pirazzini, Amy R. Macfarlane, Timo Vihma, Wolfgang Dorn, Ruzica Dadic, Martin Schneebeli, Stefanie Arndt, and Annette Rinke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1164, https://doi.org/10.5194/egusphere-2025-1164, 2025
Short summary
Short summary
We study snow density from the MOSAiC expedition. Several snow density schemes were tested and compared with observation. A thermodynamic ice model was employed to assess the impact of snow density and precipitation on the thermal regime of sea ice. The parameterized mean snow densities are consistent with observations. Increased snow density reduces snow and ice temperatures, promoting ice growth, while increased precipitation leads to warmer snow and ice temperatures and reduced ice thickness.
Francesca Carletti, Carlo Marin, Chiara Ghielmini, Mathias Bavay, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2025-974, https://doi.org/10.5194/egusphere-2025-974, 2025
Short summary
Short summary
This work presents the first high-resolution dataset of wet snow properties for satellite applications. With it, we validate links between Sentinel-1 backscattering and snowmelt stages, and investigate scattering mechanisms through a radiative transfer model. We disclose the influence of liquid water content and surface roughness at different melting stages and address future challenges, such as capturing large-scale scattering mechanisms and enhancing radiative transfer modules for wet snow.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Ian A. Raphael, Donald K. Perovich, Christopher M. Polashenski, and Robert L. Hawley
EGUsphere, https://doi.org/10.5194/egusphere-2025-187, https://doi.org/10.5194/egusphere-2025-187, 2025
Short summary
Short summary
Snow plays competing roles in the sea ice cycle by reflecting sunlight during summer (reducing melt) and insulating the ice from the cold atmosphere during winter (reducing growth). Observing where, when, and how much snow accumulates on sea ice is thus central to understanding the Arctic. Here, we describe a new snow depth observation system that is substantially cheaper and lighter than existing tools, and present a study demonstrating its potential to improve snow measurements on sea ice.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
The Cryosphere, 19, 619–644, https://doi.org/10.5194/tc-19-619-2025, https://doi.org/10.5194/tc-19-619-2025, 2025
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snowmelt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a 2020 central Arctic field campaign to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
EGUsphere, https://doi.org/10.5194/egusphere-2024-4174, https://doi.org/10.5194/egusphere-2024-4174, 2025
Short summary
Short summary
Global warming provokes permafrost to thaw, damaging landscapes and infrastructure. This study explores methods to slow this thawing at an alpine site. We investigate different methods based on passive and active cooling system. The best approach mixes both methods and manages heat flow, potentially allowing excess energy to be used locally.
Johanna Tjernström, Michael Gallagher, Jareth Holt, Gunilla Svensson, Matthew D. Shupe, Jonathan J. Day, Lara Ferrighi, Siri Jodha Khalsa, Leslie M. Hartten, Ewan O'Connor, Zen Mariani, and Øystein Godøy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2088, https://doi.org/10.5194/egusphere-2024-2088, 2024
Preprint archived
Short summary
Short summary
The value of numerical weather predictions can be enhanced in several ways, one is to improve the representations of small-scale processes in models. To understand what needs to be improved, the model results need to be evaluated. Following standardized principles, a file format has been defined to be as similar as possible for both observational and model data. Python packages and toolkits are presented as a community resource in the production of the files and evaluation analysis.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
The Cryosphere, 18, 4493–4515, https://doi.org/10.5194/tc-18-4493-2024, https://doi.org/10.5194/tc-18-4493-2024, 2024
Short summary
Short summary
Wind-driven airborne transport of snow is a frequent phenomenon in snow-covered regions and a process difficult to study in the field as it is unfolding over large distances. Thus, we use a ring wind tunnel with infinite fetch positioned in a cold laboratory to study the evolution of the shape and size of airborne snow. With the help of stable water isotope analyses, we identify the hitherto unobserved process of airborne snow metamorphism that leads to snow particle rounding and growth.
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024, https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
Short summary
Information about atmospheric variables is needed to produce simulations of mountain snowpacks. We present a model that can represent processes that shape mountain snowpack, focusing on the accumulation of snow. Simulations show that this model can simulate the complex path that a snowflake takes towards the ground and that this leads to differences in the distribution of snow by the end of winter. Overall, this model shows promise with regard to improving forecasts of snow in mountains.
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024, https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Short summary
Observations over several winters at two boreal sites in eastern Canada show that rain-on-snow (ROS) events lead to the formation of melt–freeze layers and that preferential flow is an important water transport mechanism in the sub-canopy snowpack. Simulations with SNOWPACK generally show good agreement with observations, except for the reproduction of melt–freeze layers. This was improved by simulating intercepted snow microstructure evolution, which also modulates ROS-induced runoff.
Daniela Brito Melo, Armin Sigmund, and Michael Lehning
The Cryosphere, 18, 1287–1313, https://doi.org/10.5194/tc-18-1287-2024, https://doi.org/10.5194/tc-18-1287-2024, 2024
Short summary
Short summary
Snow saltation – the transport of snow close to the surface – occurs when the wind blows over a snow-covered surface with sufficient strength. This phenomenon is represented in some climate models; however, with limited accuracy. By performing numerical simulations and a detailed analysis of previous works, we show that snow saltation is characterized by two regimes. This is not represented in climate models in a consistent way, which hinders the quantification of snow transport and sublimation.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Michael Lonardi, Elisa F. Akansu, André Ehrlich, Mauro Mazzola, Christian Pilz, Matthew D. Shupe, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 24, 1961–1978, https://doi.org/10.5194/acp-24-1961-2024, https://doi.org/10.5194/acp-24-1961-2024, 2024
Short summary
Short summary
Profiles of thermal-infrared irradiance were measured at two Arctic sites. The presence or lack of clouds influences the vertical structure of these observations. In particular, the cloud top region is a source of radiative energy that can promote cooling and mixing in the cloud layer. Simulations are used to further characterize how the amount of water in the cloud modifies this forcing. A case study additionally showcases the evolution of the radiation profiles in a dynamic atmosphere.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Amy R. Macfarlane, Henning Löwe, Lucille Gimenes, David N. Wagner, Ruzica Dadic, Rafael Ottersberg, Stefan Hämmerle, and Martin Schneebeli
The Cryosphere, 17, 5417–5434, https://doi.org/10.5194/tc-17-5417-2023, https://doi.org/10.5194/tc-17-5417-2023, 2023
Short summary
Short summary
Snow acts as an insulating blanket on Arctic sea ice, keeping the underlying ice "warm", relative to the atmosphere. Knowing the snow's thermal conductivity is essential for understanding winter ice growth. During the MOSAiC expedition, we measured the thermal conductivity of snow. We found spatial and vertical variability to overpower any temporal variability or dependency on underlying ice type and the thermal resistance to be directly influenced by snow height.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023, https://doi.org/10.5194/acp-23-9647-2023, 2023
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analyzed to see if the near-surface air in the Arctic is warmed or cooled if warm–humid air masses from the south enter the Arctic or cold–dry air moves from the north from the Arctic to mid-latitude areas. It is important to study these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the future Arctic climate.
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023, https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary
Short summary
Snow layer segmentation and snow grain classification are essential diagnostic tasks for cryospheric applications. A SnowMicroPen (SMP) can be used to that end; however, the manual classification of its profiles becomes infeasible for large datasets. Here, we evaluate how well machine learning models automate this task. Of the 14 models trained on the MOSAiC SMP dataset, the long short-term memory model performed the best. The findings presented here facilitate and accelerate SMP data analysis.
Shijie Peng, Qinghua Yang, Matthew D. Shupe, Xingya Xi, Bo Han, Dake Chen, Sandro Dahlke, and Changwei Liu
Atmos. Chem. Phys., 23, 8683–8703, https://doi.org/10.5194/acp-23-8683-2023, https://doi.org/10.5194/acp-23-8683-2023, 2023
Short summary
Short summary
Due to a lack of observations, the structure of the Arctic atmospheric boundary layer (ABL) remains to be further explored. By analyzing a year-round radiosonde dataset collected over the Arctic sea-ice surface, we found the annual cycle of the ABL height (ABLH) is primarily controlled by the evolution of ABL thermal structure, and the surface conditions also show a high correlation with ABLH variation. In addition, the Arctic ABLH is found to be decreased in summer compared with 20 years ago.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Ulrike Egerer, John J. Cassano, Matthew D. Shupe, Gijs de Boer, Dale Lawrence, Abhiram Doddi, Holger Siebert, Gina Jozef, Radiance Calmer, Jonathan Hamilton, Christian Pilz, and Michael Lonardi
Atmos. Meas. Tech., 16, 2297–2317, https://doi.org/10.5194/amt-16-2297-2023, https://doi.org/10.5194/amt-16-2297-2023, 2023
Short summary
Short summary
This paper describes how measurements from a small uncrewed aircraft system can be used to estimate the vertical turbulent heat energy exchange between different layers in the atmosphere. This is particularly important for the atmosphere in the Arctic, as turbulent exchange in this region is often suppressed but is still important to understand how the atmosphere interacts with sea ice. We present three case studies from the MOSAiC field campaign in Arctic sea ice in 2020.
Julia Martin and Martin Schneebeli
The Cryosphere, 17, 1723–1734, https://doi.org/10.5194/tc-17-1723-2023, https://doi.org/10.5194/tc-17-1723-2023, 2023
Short summary
Short summary
The grain size of snow determines how light is reflected and other physical properties. The IceCube measures snow grain size at the specific near-infrared wavelength of 1320 nm. In our study, the preparation of snow samples for the IceCube creates a thin layer of small particles. Comparisons of the grain size with computed tomography, particle counting and numerical simulation confirm the aforementioned observation. We conclude that measurements at this wavelength underestimate the grain size.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, https://doi.org/10.5194/gmd-16-1857-2023, 2023
Short summary
Short summary
Evaluating climate models usually requires long observational time series, but we present a method that also works for short field campaigns. We compare climate model output to observations from the MOSAiC expedition in the central Arctic Ocean. All models show how the arrival of a warm air mass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days.
Hongxiang Yu, Guang Li, Benjamin Walter, Michael Lehning, Jie Zhang, and Ning Huang
The Cryosphere, 17, 639–651, https://doi.org/10.5194/tc-17-639-2023, https://doi.org/10.5194/tc-17-639-2023, 2023
Short summary
Short summary
Snow cornices lead to the potential risk of causing snow avalanche hazards, which are still unknown so far. We carried out a wind tunnel experiment in a cold lab to investigate the environmental conditions for snow cornice accretion recorded by a camera. The length growth rate of the cornices reaches a maximum for wind speeds approximately 40 % higher than the threshold wind speed. Experimental results improve our understanding of the cornice formation process.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Joel Fiddes, Kristoffer Aalstad, and Michael Lehning
Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, https://doi.org/10.5194/gmd-15-1753-2022, 2022
Short summary
Short summary
This study describes and evaluates a new downscaling scheme that addresses the need for hillslope-scale atmospheric forcing time series for modelling the local impact of regional climate change on the land surface in mountain areas. The method has a global scope and is able to generate all model forcing variables required for hydrological and land surface modelling. This is important, as impact models require high-resolution forcings such as those generated here to produce meaningful results.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Michael R. Gallagher, Matthew D. Shupe, Hélène Chepfer, and Tristan L'Ecuyer
The Cryosphere, 16, 435–450, https://doi.org/10.5194/tc-16-435-2022, https://doi.org/10.5194/tc-16-435-2022, 2022
Short summary
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998, https://doi.org/10.5194/tc-15-4981-2021, https://doi.org/10.5194/tc-15-4981-2021, 2021
Short summary
Short summary
As the most reflective and most insulative natural material, snow has important climate effects. For snow on sea ice, its high reflectivity reduces ice melt. However, its high insulating capacity limits ice growth. These counteracting effects make its net influence on sea ice uncertain. We find that with increasing snow, sea ice in both hemispheres is thicker and more extensive. However, the drivers of this response are different in the two hemispheres due to different climate conditions.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021, https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Short summary
As the hydraulic permeability of sea ice is difficult to measure, observations are sparse. The present work presents numerical simulations of the permeability of young sea ice based on a large set of 3D X-ray tomographic images. It extends the relationship between permeability and porosity available so far down to brine porosities near the percolation threshold of a few per cent. Evaluation of pore scales and 3D connectivity provides novel insight into the percolation behaviour of sea ice.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021, https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Nicholas C. Wright, Chris M. Polashenski, Scott T. McMichael, and Ross A. Beyer
The Cryosphere, 14, 3523–3536, https://doi.org/10.5194/tc-14-3523-2020, https://doi.org/10.5194/tc-14-3523-2020, 2020
Short summary
Short summary
This work presents a new dataset of sea ice surface fractions along NASA Operation IceBridge flight tracks created by processing hundreds of thousands of aerial images. These results are then analyzed to investigate the behavior of meltwater on first-year ice in comparison to multiyear ice. We find preliminary evidence that first-year ice frequently has a lower melt pond fraction than adjacent multiyear ice, contrary to established knowledge in the sea ice community.
Cited articles
Ackley, S. F., Lange, M. A., and Wadhams, P.: Snow cover effects on Antarctic
sea ice thickness, in: Sea ice properties and processes: Proceedings of the W.F. Weeks Sea
Ice Symposium held December 1988, edited by: Ackley, S. F. and Weeks, W. F., U.S. Army Cold Regions
Research and Engineering Laboratory, San Francisco, CA,
CRREL monograph 90-1, 16–21,
https://epic.awi.de/id/eprint/26/ (last access: 19 July 2022), 1990. a
Aksamit, N. O. and Pomeroy, J. W.: Near-surface snow particle dynamics from particle tracking velocimetry and turbulence measurements during alpine blowing snow storms, The Cryosphere, 10, 3043–3062, https://doi.org/10.5194/tc-10-3043-2016, 2016. a, b
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung: Polar Research and Supply Vessel POLARSTERN Operated by the Alfred-Wegener-Institute, Journal of large-scale research facilities, 3, A119, https://doi.org/10.17815/jlsrf-3-163, 2017. a, b
Anderson, R. S. and Haff, P. K.: Wind modification and bed response during
saltation of sand in air, in: Aeolian Grain Transport 1, edited by:
Barndorff-Nielsen, O. E. and Willetts, B. B., Acta Mechanica
Supplementum, Springer, Vienna, 21–51,
https://doi.org/10.1007/978-3-7091-6706-9_2, 1991. a, b, c
Andreas, E. L. and Claffey, K. J.: Air-ice drag coefficients in the western
Weddell Sea: 1. Values deduced from profile measurements,
J. Geophys. Res.-Oceans, 100, 4821–4831, https://doi.org/10.1029/94JC02015,
1995. a, b
Bintanja, R., van der Wiel, K., Van der Linden, E., Reusen, J., Bogerd, L.,
Krikken, F., and Selten, F.: Strong future increases in Arctic
precipitation variability linked to poleward moisture transport, Sci.
Adv., 6, eaax6869, https://doi.org/10.1126/sciadv.aax6869, 2020. a
Blackford, J. R.: Sintering and microstructure of ice: a review,
J. Phys. D, 40, R355–R385,
https://doi.org/10.1088/0022-3727/40/21/R02, 2007. a
Boisvert, L., Webster, M., Petty, A., Markus, T., Bromwich, D., and Cullather,
R.: Intercomparison of Precipitation Estimates over the Arctic Ocean
and Its Peripheral Seas from Reanalyses, J. Climate, 31, 8441–8462,
https://doi.org/10.1175/JCLI-D-18-0125.1, 2018. a, b
Chung, Y.-C., Bélair, S., and Mailhot, J.: Blowing Snow on Arctic Sea
Ice: Results from an Improved Sea Ice-Snow-Blowing Snow
Coupled System, J. Hydrometeorol., 12, 678–689,
https://doi.org/10.1175/2011JHM1293.1, 2011. a, b, c
Clemens-Sewall, D.: Terrestrial Laser Scans of the Snow 2 area of the
Multidisciplinary drifting Observatory for the Study of Arctic
Climate from November 6 and 13 2019, Arctic Data Center [data set], https://doi.org/10.18739/A2DZ03304,
2021. a, b
Clifton, A. and Lehning, M.: Improvement and validation of a snow saltation
model using wind tunnel measurements,
Earth Surf. Proc. Land.,
33, 2156–2173, https://doi.org/10.1002/esp.1673, 2008. a
Clifton, A., Rüedi, J.-D., and Lehning, M.: Snow saltation threshold
measurements in a drifting-snow wind tunnel, J. Glaciol., 52,
585–596, https://doi.org/10.3189/172756506781828430, 2006. a, b, c
Cox, C., Gallagher, M., Shupe, M., Persson, O., Solomon, A., Blomquist, B.,
Brooks, I., Costa, D., Gottas, D., Hutchings, J., Osborn, J., Morris, S.,
Preusser, A., and Uttal, T.: 10-meter (m) meteorological flux tower
measurements (Level 1 Raw), Multidisciplinary Drifting Observatory
for the Study of Arctic Climate (MOSAiC), central Arctic, October
2019–September 2020, Arctic Data
Center [data set], https://doi.org/10.18739/A2VM42Z5F, 2021. a, b, c
Doorschot, J. J. J. and Lehning, M.: Equilibrium Saltation: Mass Fluxes,
Aerodynamic Entrainment, and Dependence on Grain Properties,
Bound.-Lay. Meteorol., 104, 111–130, https://doi.org/10.1023/A:1015516420286,
2002. a
Déry, S. J. and Tremblay, L.-B.: Modeling the Effects of Wind
Redistribution on the Snow Mass Budget of Polar Sea Ice,
J. Phys. Oceanogr., 34, 258–271,
https://doi.org/10.1175/1520-0485(2004)034<0258:MTEOWR>2.0.CO;2, 2004. a, b
Fernandes, C. B. P., Semyonov, D., Ferrás, L. J. L., and Nóbrega, J. M.:
Validation of the CFD-DPM solver DPMFoam in OpenFOAM (R) through
analytical, numerical and experimental comparisons,
Springer, https://doi.org/10.1007/s10035-018-0834-x,
2018. a, b
Filhol, S. and Sturm, M.: Snow bedforms: A review, new data, and a formation
model, J. Geophys. Res.-Earth, 120, 1645–1669,
https://doi.org/10.1002/2015JF003529, 2015. a
Gauer, P.: Numerical modeling of blowing and drifting snow in Alpine terrain,
J. Glaciol., 47, 97–110, https://doi.org/10.3189/172756501781832476, 2001. a, b, c
Gerber, F., Lehning, M., Hoch, S. W., and Mott, R.: A close-ridge small-scale
atmospheric flow field and its influence on snow accumulation, J. Geophys. Res.-Atmos., 122, 7737–7754,
https://doi.org/10.1002/2016JD026258, 2017. a, b
Gerber, F., Besic, N., Sharma, V., Mott, R., Daniels, M., Gabella, M., Berne, A., Germann, U., and Lehning, M.: Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain, The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, 2018. a
Gromke, C., Horender, S., Walter, B., and Lehning, M.: Snow particle
characteristics in the saltation layer, J. Glaciol., 60, 431–439,
https://doi.org/10.3189/2014JoG13J079, 2014. a
Groot Zwaaftink, C. D., Mott, R., and Lehning, M.: Seasonal simulation of
drifting snow sublimation in Alpine terrain, Water Resour. Res., 49,
1581–1590, https://doi.org/10.1002/wrcr.20137, 2013. a, b
Groot Zwaaftink, C. D., Diebold, M., Horender, S., Overney, J., Lieberherr, G.,
Parlange, M. B., and Lehning, M.: Modelling Small-Scale Drifting Snow
with a Lagrangian Stochastic Model Based on Large-Eddy
Simulations, Bound.-Lay. Meteorol., 153, 117–139,
https://doi.org/10.1007/s10546-014-9934-2, 2014. a, b, c, d, e
Guala, M., Manes, C., Clifton, A., and Lehning, M.: On the saltation of fresh
snow in a wind tunnel: Profile characterization and single particle
statistics, J. Geophys. Res.-Earth, 113, F03024,
https://doi.org/10.1029/2007JF000975, 2008. a
Haberkorn, A.: European Snow Booklet – an Inventory of Snow Measurements in
Europe, EnviDat, https://doi.org/10.16904/envidat.59, 2019. a
Hames, O., Jafari, M., and Lehning, M.: snowBedFoam: an OpenFOAM
Eulerian-Lagrangian solver for modelling snow transport, EnviDat [code],
https://doi.org/10.16904/envidat.223, 2021. a
He, S. and Ohara, N.: A New Formula for Estimating the Threshold Wind
Speed for Snow Movement,
J. Adv. Model. Earth Sy.,
9, 2514–2525, https://doi.org/10.1002/2017MS000982, 2017. a
Hesp, P. A. and Smyth, T. A. G.: Nebkha flow dynamics and shadow dune
formation, Geomorphology, 282, 27–38, https://doi.org/10.1016/j.geomorph.2016.12.026,
2017. a, b
Huntington, H. P., Gearheard, S., Holm, L. K., Noongwook, G., Opie, M., and
Sanguya, J.: Sea ice is our beautiful garden: indigenous perspectives on sea
ice in the Arctic, in: Sea Ice, 583–599, John Wiley & Sons, Ltd,
https://doi.org/10.1002/9781118778371.ch25, 2017. a
Ivanell, S., Arnqvist, J., Avila, M., Cavar, D., Chavez-Arroyo, R. A., Olivares-Espinosa, H., Peralta, C., Adib, J., and Witha, B.: Micro-scale model comparison (benchmark) at the moderately complex forested site Ryningsnäs, Wind Energ. Sci., 3, 929–946, https://doi.org/10.5194/wes-3-929-2018, 2018. a
Jafari, M., Sharma, V., and Lehning, M.: Convection of water vapour in
snowpacks, J. Fluid Mech., 934, A38, https://doi.org/10.1017/jfm.2021.1146,
2022. a
JDoorschot, J. J., Lehning, M., and Vrouwe, A.: Field measurements of
snow-drift threshold and mass fluxes, and related model simulations,
Bound.-Lay. Meteorol., 113, 347–368, https://doi.org/10.1007/s10546-004-8659-z,
2004. a
Kok, J. F. and Renno, N. O.: A comprehensive numerical model of steady state
saltation (COMSALT), J. Geophys. Res.-Atmos., 114,
D17204, https://doi.org/10.1029/2009JD011702, 2009. a
Launder, B. E. and Spalding, D. B.: The numerical computation of turbulent
flows, Comput. Method. Appl. M., 3, 269–289,
https://doi.org/10.1016/0045-7825(74)90029-2, 1974. a
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and Zimmerli, M.:
snowpack model calculations for avalanche warning based upon a new network of
weather and snow stations, Cold Reg. Sci. Technol., 30, 145–157,
https://doi.org/10.1016/S0165-232X(99)00022-1, 1999. a
Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.: Inhomogeneous
precipitation distribution and snow transport in steep terrain, Water Resour. Res., 44, W07404, https://doi.org/10.1029/2007WR006545, 2008. a, b, c
Leonard, E., Qiao, H., and Nabi, S.: A Comparison of Interpolation
Methods in Fast Fluid Dynamics, 6th International High Performance Buildings Conference at Purdue, 24–28 May 2021, https://docs.lib.purdue.edu/ihpbc/341 (last access: 17 August 2022),
2021. a
Leonard, K. C. and Maksym, T.: The importance of wind-blown snow redistribution
to snow accumulation on Bellingshausen Sea ice, Ann. Glaciol., 52,
271–278, https://doi.org/10.3189/172756411795931651, 2011. a, b, c, d
Li, L. and Pomeroy, J. W.: Estimates of Threshold Wind Speeds for Snow
Transport Using Meteorological Data,
J. Appl. Meteorol. Clim., 36, 205–213,
https://doi.org/10.1175/1520-0450(1997)036<0205:EOTWSF>2.0.CO;2, 1997. a
Lindenmaier, I., Johnson, K., Nelson, D., Isom, B., Hardin, J., Matthews, A.,
Wendler, T., and Castro, V.: Ka-Band ARM Zenith Radar (KAZRCFRGE),
Atmospheric Radiation Measurement (ARM) user facility [data set],
https://doi.org/10.5439/1498936, 2019. a, b
Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling
System (SnowModel), J. Hydrometeorol., 7, 1259–1276,
https://doi.org/10.1175/JHM548.1, 2006. a
Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J., Merkouriadi,
I., and Haapala, J.: A Distributed Snow-Evolution Model for
Sea-Ice Applications (SnowModel), J. Geophys. Res.-Oceans, 123, 3786–3810, https://doi.org/10.1002/2017JC013706, 2018. a, b, c, d
Macpherson, G. B., Nordin, N., and Weller, H. G.: Particle tracking in
unstructured, arbitrary polyhedral meshes for use in CFD and molecular
dynamics, Commun. Numer. Meth. En., 25, 263–273,
https://doi.org/10.1002/cnm.1128, 2009. a
Maslanik, J. A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., and
Emery, W.: A younger, thinner Arctic ice cover: Increased potential for
rapid, extensive sea-ice loss, Geophys. Res. Lett., 34, L24501,
https://doi.org/10.1029/2007GL032043, 2007. a
Massom, R. A., Eicken, H., Hass, C., Jeffries, M. O., Drinkwater, M. R., Sturm,
M., Worby, A. P., Wu, X., Lytle, V. I., Ushio, S., Morris, K., Reid, P. A.,
Warren, S. G., and Allison, I.: Snow on Antarctic sea ice, Rev.
Geophys., 39, 413–445, https://doi.org/10.1029/2000RG000085, 2001. a
Matrosov, S. Y.: Modeling Backscatter Properties of Snowfall at
Millimeter Wavelengths, J. Atmos. Sci., 64,
1727–1736, https://doi.org/10.1175/JAS3904.1, 2007. a
Matrosov, S. Y., Shupe, M. D., and Uttal, T.: High temporal resolution
estimates of Arctic snowfall rates emphasizing gauge and radar-based
retrievals from the MOSAiC expedition, Elementa: Science of the
Anthropocene, 10, 00101, https://doi.org/10.1525/elementa.2021.00101, 2022. a, b
Matthews, S., Johannessen, O., and Michelsen, L.-H.: The geopolitical
implications of arctic sea ice melt, Tech. rep.,
https://doi.org/10.13140/RG.2.2.13641.49765, 2019. a
Melo, D. B., Sharma, V., Comola, F., Sigmund, A., and Lehning, M.: Modeling
Snow Saltation: The Effect of Grain Size and Interparticle
Cohesion, J. Geophys. Res.-Atmos., 127,
e2021JD035260, https://doi.org/10.1029/2021JD035260, 2022. a
METEK GmbH: Ultrasonic Wind Sensor uSonic-3 Cage MP Datasheet, https://metek.de/wp-content/uploads/2016/09/20161007_Data-sheet_uSonic3_Cage_MP.pdf, last access: 16 August 2022. a
Mott, R. and Lehning, M.: Meteorological Modeling of Very
High-Resolution Wind Fields and Snow Deposition for Mountains,
J. Hydrometeorol., 11, 934–949, https://doi.org/10.1175/2010JHM1216.1, 2010. a, b
Mott, R., Vionnet, V., and Grünewald, T.: The Seasonal Snow Cover
Dynamics: Review on Wind-Driven Coupling Processes, Front.
Earth Sci., 6, 197,
https://doi.org/10.3389/feart.2018.00197,
2018. a, b, c
Moukalled, F., Mangani, L., and Darwish, M.: The Finite Volume Method in
Computational Fluid Dynamics: An Advanced Introduction with
OpenFOAM® and Matlab®, Springer, 113, https://doi.org/10.1007/978-3-319-16874-6, 2015. a, b, c, d
Nemoto, M. and Nishimura, K.: Numerical simulation of snow saltation and
suspension in a turbulent boundary layer, J. Geophys. Res.-Atmos., 109, D18206, https://doi.org/10.1029/2004JD004657, 2004. a
Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., von Albedyll, L.,
Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H. J., Bessonov, V.,
Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B.,
Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O., Dethloff,
K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró,
C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas, C.,
Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuzé, C.,
Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings, J. K., Hwang, B.,
Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C.,
Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T., Kurtz, N.,
Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E.,
Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus, S.,
Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt,
N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C.,
Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe,
K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller, M.,
Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D., Smith, M. M.,
Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L.,
Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner, D. N.,
Watkins, D., Webster, M., and Wendisch, M.: Overview of the MOSAiC
expedition: Snow and sea ice, Elementa: Science of the Anthropocene, 10,
000046, https://doi.org/10.1525/elementa.2021.000046, 2022. a
OpenCFD Ltd: OpenFOAM: The Open Source CFD Toolbox,
https://www.openfoam.com (last access: 17 August 2022), 2019. a
OpenFOAM API Guide: DPMFoam.C File Reference,
https://www.openfoam.com/documentation/guides/latest/api/DPMFoam_8C.html (last access: 17 August 2022),
2020. a
OpenFOAM API Guide: Forces,
https://www.openfoam.com/documentation/guides/latest/api/group__grpLagrangianIntermediateForceSubModels.html (last access: 17 August 2022),
2021a. a
OpenFOAM API Guide: SphereDragForce< CloudType > Class Template Reference,
https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1SphereDragForce.html (last access: 17 August 2022),
2021b. a
Peng, F. K.: Numerical Modelling of Diesel Spray Injection, Turbulence
Interaction and Combustion, Doctoral thesis, ISBN 978-91-7385-173-2, 2008. a
Perovich, D., Meier, W., Tschudi, M., Hendricks, S., Petty, A. A., Divine, D.,
Farrell, S., Gerland, S., Haas, C., Kaleschke, L., Pavlova, O., Ricker, R.,
Tian-Kunze, X., Wood, K., and Webster, M.: Arctic Report Card 2020: Sea
Ice,
United States. National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Pacific Marine Environmental Laboratory (U.S.), Thayer School of Engineering, National Snow and Ice Data Center (U.S.),
University of Colorado (Boulder campus),
Alfred-Wegener-Institut für Polar- und Meeresforschung/Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Goddard Space Flight Center,
Norsk polarinstitutt/Norwegian Polar Institute,
University of Alaska Fairbanks, Geophysical Institute, https://doi.org/10.25923/N170-9H57, 2020. a
Polashenski, C., Perovich, D., and Courville, Z.: The mechanisms of sea ice
melt pond formation and evolution, J. Geophys. Res.-Oceans,
117, C01001, https://doi.org/10.1029/2011JC007231, 2012. a
Pomeroy, J. W. and Gray, D. M.: Saltation of snow, Water Resour. Res.,
26, 1583–1594, https://doi.org/10.1029/WR026i007p01583, 1990. a
Pomeroy, J. W. and Gray, D. M.: Snowcover Accumulation, Relocation and
Management, National Hydrology Research Institute, National Hydrology Research Institute Saskatoon, Sask., Canada, Vol. 350, google-Books-ID:
kOBekQEACAAJ, 1995. a
Prokop, A., Schirmer, M., Rub, M., Lehning, M., and Stocker, M.: A comparison
of measurement methods: terrestrial laser scanning, tachymetry and snow
probing for the determination of the spatial snow-depth distribution on
slopes, Ann. Glaciol., 49, 210–216, https://doi.org/10.3189/172756408787814726,
2008. a
Provost, C., Sennéchael, N., Miguet, J., Itkin, P., Rösel, A., Koenig, Z.,
Villacieros-Robineau, N., and Granskog, M. A.: Observations of flooding and
snow-ice formation in a thinner Arctic sea-ice regime during the
N-ICE2015 campaign: Influence of basal ice melt and storms, J.
Geophys. Res.-Oceans, 122, 7115–7134, https://doi.org/10.1002/2016JC012011, 2017. a
QGIS.org: QGIS Geographic Information System, QGIS Association,
https://www.qgis.org (last access: 18 August 2022), 2022. a
Radl, S. and Sundaresan, S.: Coarse-Grid Simulations Using Parcels:
An Advanced Drag Model based on Filtered CFD-DEM Data, The
14th International Conference on Fluidization – From Fundamentals to
Products, 26–31 May 2013, NH Conference Centre Leeuwenhorst Noordwijkerhout, The Netherlands https://dc.engconfintl.org/fluidization_xiv/86 (last access: 17 August 2022),
2013. a
Richards, K., Dove, M., Cleary, P. W., and Prakash, M.: Discrete-element
modelling and smoothed particle hydrodynamics: potential in the environmental
sciences, Philos. T. Roy. Soc. Lond.
A, 362, 2003–2030,
https://doi.org/10.1098/rsta.2004.1428, 2004. a
RIEGL: Data Sheet: 3D Terrestrial Laser Scanner with Online Waveform Processing
RIEGL VZ – 1000, RIEGL Laser Measurement Systems,
http://www.riegl.com/uploads/tx_pxpriegldownloads/DataSheet_VZ-1000_2017-06-14.pdf (last access: 15 July 2022),
2017. a
RIEGL: Data Sheet: Operating and Processing software RiSCAN PRO for RIEGL 3D
Laser Scanners, RIEGL Laser Measurement Systems,
http://www.riegl.com/uploads/tx_pxpriegldownloads/RiSCAN-PRO_DataSheet_2020-10-07.pdf (last access: 15 July 2022),
2020. a
Schmidt, R. A.: Transport rate of drifting snow and the mean wind speed
profile, Bound.-Lay. Meteorol., 34, 213–241, https://doi.org/10.1007/BF00122380,
1986. a
Sharma, V., Comola, F., and Lehning, M.: On the suitability of the Thorpe–Mason model for calculating sublimation of saltating snow, The Cryosphere, 12, 3499–3509, https://doi.org/10.5194/tc-12-3499-2018, 2018. a, b, c
Shupe, M. D., Rex, M., Dethloff, K., Damm, E., Fong, A. A., Gradinger, R.,
Heuzé, C., B, L., Makarov, A., Maslowski, W., Nicolaus, M., Perovich, D.,
Rabe, B., Rinke, A., Sokolov, V., and Sommerfeld, A.: Arctic Report Card
2020: The MOSAiC Expedition: A Year Drifting with the Arctic
Sea Ice, United States, National
Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric
Research, https://doi.org/10.25923/9G3V-XH92, 2020. a, b
Shupe, M. D., Rex, M., Blomquist, B., Persson, P. O. G., Schmale, J., Uttal,
T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry,
J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R.,
Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C. J., Creamean, J.,
Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K.,
Dütsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A. A.,
Frey, M. M., Gallagher, M. R., Ganzeveld, L., Gradinger, R., Graeser, J.,
Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G.,
Helmig, D., Herber, A., Heuzé, C., Hofer, J., Houchens, T., Howard, D.,
Inoue, J., Jacobi, H.-W., Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G.,
King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T.,
Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B.,
Lüpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M.,
Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J.,
Pätzold, F., Perovich, D. K., Petäjä, T., Pilz, C., Pirazzini, R., Posman,
K., Powers, H., Pratt, K. A., Preußer, A., Quéléver, L., Radenz, M., Rabe,
B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A.,
Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, G., Uin, J.,
Viegas, J., Voigt, C., von der Gathen, P., Wehner, B., Welker, J. M.,
Wendisch, M., Werner, M., Xie, Z., and Yue, F.: Overview of the MOSAiC
expedition: Atmosphere, Elementa: Science of the Anthropocene, 10, 00060,
https://doi.org/10.1525/elementa.2021.00060, 2022. a
Sommer, C. G., Wever, N., Fierz, C., and Lehning, M.: Investigation of a wind-packing event in Queen Maud Land, Antarctica, The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018, 2018. a
Sturm, M. and Benson, C.: Scales of spatial heterogeneity for perennial and
seasonal snow layers, Ann. Glaciol., 38, 253–260,
https://doi.org/10.3189/172756404781815112,
2004. a
Sturm, M. and Massom, R. A.: Snow in the sea ice system: friend or foe?, in:
Sea Ice, John Wiley & Sons, Ltd, 65–109,
https://doi.org/10.1002/9781118778371.ch3, 2017. a, b, c
Sturm, M., Holmgren, J., and Perovich, D. K.: Winter snow cover on the sea ice
of the Arctic Ocean at the Surface Heat Budget of the Arctic
Ocean (SHEBA): Temporal evolution and spatial variability, J. Geophys. Res.-Oceans, 107, SHE 23-1–SHE 23-17,
https://doi.org/10.1029/2000JC000400, 2002. a
Sugiura, K., Yang, D., and Ohata, T.: Systematic error aspects of
gauge-measured solid precipitation in the Arctic, Barrow, Alaska,
Geophys. Res. Lett., 30, 1192, https://doi.org/10.1029/2002GL015547, 2003. a
The OpenFOAM Foundation: OpenFOAM – Free CFD Software
- The OpenFOAM Foundation,
https://openfoam.org/ (last access: 15 July 2022), 2022. a
Vaisala: HMT330 Series Humidity and Temperature Transmitters Datasheet, B210951EN, https://docs.vaisala.com/v/u/ B210951EN-S/en-US (last access: 16 August 2022), 2020. a
Wagenbrenner, N. S., Forthofer, J. M., Page, W. G., and Butler, B. W.:
Development and Evaluation of a Reynolds-Averaged Navier-Stokes
Solver in WindNinja for Operational Wildland Fire Applications,
Atmosphere, 10, 672, https://doi.org/10.3390/atmos10110672, 2019.
a, b, c
Wagner, D. N., Shupe, M. D., Cox, C., Persson, O. G., Uttal, T., Frey, M. M., Kirchgaessner, A., Schneebeli, M., Jaggi, M., Macfarlane, A. R., Itkin, P., Arndt, S., Hendricks, S., Krampe, D., Nicolaus, M., Ricker, R., Regnery, J., Kolabutin, N., Shimanshuck, E., Oggier, M., Raphael, I., Stroeve, J., and Lehning, M.: Snowfall and snow accumulation during the MOSAiC winter and spring seasons, The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, 2022. a, b, c, d, e
Wang, Z. and Huang, N.: Numerical simulation of the falling snow deposition
over complex terrain, J. Geophys. Res.-Atmos., 122,
980–1000, https://doi.org/10.1002/2016JD025316, 2017. a, b, c, d
Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O.,
Massom, R., Perovich, D., and Sturm, M.: Snow in the changing sea-ice
systems, Nature Climate Change, 8, 946–953, https://doi.org/10.1038/s41558-018-0286-7,
2018. a
Webster, M. A., DuVivier, A. K., Holland, M. M., and Bailey, D. A.: Snow on
Arctic Sea Ice in a Warming Climate as Simulated in CESM,
J. Geophys. Res.-Oceans, 126, e2020JC016308,
https://doi.org/10.1029/2020JC016308, 2021. a, b, c, d
Weller, H. G., Tabor, G., Jasak, H., and Fureby, C.: A tensorial approach to
computational continuum mechanics using object-oriented techniques, Comput. Phys., 12, 620–631, https://doi.org/10.1063/1.168744, 1998. a, b
Wever, N., Rossmann, L., Maaß, N., Leonard, K. C., Kaleschke, L., Nicolaus, M., and Lehning, M.: Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model, Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, 2020. a
Widener, K., Bharadwaj, N., and Johnson, K.: Ka-Band ARM Zenith Radar
(KAZR) Instrument Handbook, Tech. Rep. DOE/SC-ARM/TR-106, PNNL,
Richland, WA, https://doi.org/10.2172/1035855, 2012. a
Wong, K.: Performance of Several Present Weather Sensors as
Precipitation Gauges,
https://www.semanticscholar.org/paper/Performance-of-Several-Present-Weather-Sensors-as-Wong/bd54d345aa0a35e8d864c2e94e5a929e0fa0bed1 (last access: 17 August 2022),
2012. a
Yumashev, D., van Hussen, K., Gille, J., and Whiteman, G.: Towards a balanced
view of Arctic shipping: estimating economic impacts of emissions from
increased traffic on the Northern Sea Route, Climatic Change, 143,
143–155, https://doi.org/10.1007/s10584-017-1980-6, 2017. a
Zhang, X.: FD simulation of neutral ABL flows, Danmarks Tekniske Universitet, Risø
Nationallaboratoriet for Bæredygtig Energi, Denmark, Forskningscenter Risoe, Risoe-R No. 1688(EN),
2009. a
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid...