Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5787-2022
https://doi.org/10.5194/gmd-15-5787-2022
Model description paper
 | 
27 Jul 2022
Model description paper |  | 27 Jul 2022

Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations

Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles

Related authors

Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
EGUsphere, https://doi.org/10.5194/egusphere-2024-2700,https://doi.org/10.5194/egusphere-2024-2700, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A Data-Efficient Deep Transfer Learning Framework for Methane Super-Emitter Detection in Oil and Gas Fields Using Sentinel-2 Satellite
Shutao Zhao, Yuzhong Zhang, Shuang Zhao, Xinlu Wang, and Daniel J. Varon
EGUsphere, https://doi.org/10.5194/egusphere-2024-2565,https://doi.org/10.5194/egusphere-2024-2565, 2024
Short summary
Satellite quantification of methane emissions from South American countries: A high-resolution inversion of TROPOMI and GOSAT observations
Sarah E. Hancock, Daniel Jacob, Zichong Chen, Hannah Nesser, Aaron Davitt, Daniel J. Varon, Melissa P. Sulprizio, Nicholas Balasus, Lucas A. Estrada, James D. East, Elise Penn, Cynthia A. Randles, John Worden, Ilse Aben, Robert J. Parker, and Joannes D. Maasakkers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1763,https://doi.org/10.5194/egusphere-2024-1763, 2024
Short summary
Assessing methane emissions from collapsing Venezuelan oil production using TROPOMI
Brian Nathan, Joannes D. Maasakkers, Stijn Naus, Ritesh Gautam, Mark Omara, Daniel J. Varon, Melissa P. Sulprizio, Lucas A. Estrada, Alba Lorente, Tobias Borsdorff, Robert J. Parker, and Ilse Aben
Atmos. Chem. Phys., 24, 6845–6863, https://doi.org/10.5194/acp-24-6845-2024,https://doi.org/10.5194/acp-24-6845-2024, 2024
Short summary
Report on Landsat 8 and Sentinel-2B observations of the Nord Stream 2 pipeline methane leak
Matthieu Dogniaux, Joannes D. Maasakkers, Daniel J. Varon, and Ilse Aben
Atmos. Meas. Tech., 17, 2777–2787, https://doi.org/10.5194/amt-17-2777-2024,https://doi.org/10.5194/amt-17-2777-2024, 2024
Short summary

Related subject area

Atmospheric sciences
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025,https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025,https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary

Cited articles

AWS: Sentinel-5P Level 2, aws [data set], https://registry.opendata.aws/sentinel5p, last access: 8 June 2022. 
AWS: GEOS-Chem Input Data, AWS [data set], https://registry.opendata.aws/geoschem-input-data, last access: 8 June 2022. 
Barré, J., Aben, I., Agustí-Panareda, A., Balsamo, G., Bousserez, N., Dueben, P., Engelen, R., Inness, A., Lorente, A., McNorton, J., Peuch, V.-H., Radnoti, G., and Ribas, R.: Systematic detection of local CH4 anomalies by combining satellite measurements with high-resolution forecasts, Atmos. Chem. Phys., 21, 5117–5136, https://doi.org/10.5194/acp-21-5117-2021, 2021. 
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013. 
Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017. 
Download
Short summary
Reducing atmospheric methane emissions is critical to slow near-term climate change. Globally surveying satellite instruments like the TROPOspheric Monitoring Instrument (TROPOMI) have unique capabilities for monitoring atmospheric methane around the world. Here we present a user-friendly cloud-computing tool that enables researchers and stakeholders to quantify methane emissions across user-selected regions of interest using TROPOMI satellite observations.