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Abstract. We present a user-friendly, cloud-based facil-
ity for quantifying methane emissions with 0.25◦× 0.3125◦

(≈ 25 km× 25 km) resolution by inverse analysis of satel-
lite observations from the TROPOspheric Monitoring In-
strument (TROPOMI). The facility is built on an Integrated
Methane Inversion optimal estimation workflow (IMI 1.0)
and supported for use on the Amazon Web Services (AWS)
cloud. It exploits the GEOS-Chem chemical transport model
and TROPOMI data already resident on AWS, thus avoiding
cumbersome big-data download. Users select a region and
period of interest, and the IMI returns an analytical solution
for the Bayesian optimal estimate of period-average emis-
sions on the 0.25◦× 0.3125◦ grid including error statistics,
information content, and visualization code for inspection of
results. The inversion uses an advanced research-grade al-
gorithm fully documented in the literature. An out-of-the-
box inversion with rectilinear grid and default prior emis-
sion estimates can be conducted with no significant learning
curve. Users can also configure their inversions to infer emis-
sions for irregular regions of interest, swap in their own prior
emission inventories, and modify inversion parameters. In-
version ensembles can be generated at minimal additional
cost once the Jacobian matrix for the analytical inversion
has been constructed. A preview feature allows users to de-
termine the TROPOMI information content for their region
and time period of interest before actually performing the

inversion. The IMI is heavily documented and is intended
to be accessible by researchers and stakeholders with no ex-
pertise in inverse modelling or high-performance computing.
We demonstrate the IMI’s capabilities by applying it to esti-
mate methane emissions from the US oil-producing Permian
Basin in May 2018.

Copyright statement. Cynthia A. Randles’s and Ashutosh Tewari’s
copyrights for this publication are transferred to ExxonMobil Tech-
nology and Engineering Company.

1 Introduction

Controlling methane emissions is a major focus of cli-
mate policy (EC and USA, 2021). Anthropogenic methane
emissions are primarily from livestock, oil and gas opera-
tions, coal mining, waste management, and rice cultivation
(Saunois et al., 2020). Emission inventories use “bottom-up”
methods to estimate emissions from activity levels and emis-
sion factors in these different sectors, but the emission factors
are often highly uncertain (IPCC, 2019). “Top-down” inverse
methods using satellite observations of atmospheric methane
in combination with an atmospheric transport model and sta-
tistical optimization can evaluate the bottom-up inventories
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and monitor emissions worldwide, but they are difficult to
use and have their own errors (Jacob et al., 2016).

Here we present an open-access, cloud-based facility for
researchers and stakeholders to estimate methane emissions
for user-selected regions of interest by performing high-
resolution analytical inversions of TROPOspheric Monitor-
ing Instrument (TROPOMI) satellite data archived on the
cloud and including quality control and error characteriza-
tion as part of the inversion results. This facility enables users
to infer methane emissions from TROPOMI data without
requiring expert knowledge of inverse methods or cumber-
some data download. It exemplifies the emerging concept of
“bringing compute to data” that is viewed as crucial for ef-
fective utilization of very large Earth science datasets (Yang
et al., 2017).

Satellite instruments observe atmospheric methane col-
umn concentrations by solar backscatter in the shortwave in-
frared (SWIR). Earlier instruments (SCIAMACHY, GOSAT)
demonstrated effectiveness for inferring methane emissions
on large regional scales (Bergamaschi et al., 2013; Wecht
et al., 2014; Turner et al., 2015; Miller et al., 2019) but
were limited by coarse pixel resolution (SCIAMACHY,
2003–2012) or sparse sampling (GOSAT, 2009–present).
TROPOMI, launched in October 2017 aboard the European
Space Agency’s Sentinel-5P satellite, offers unprecedented
capability for monitoring emissions on regional scales, with
daily global observations at 5.5 km× 7 km nadir pixel res-
olution over land (Hu et al., 2018; Schneising et al., 2019;
Lorente et al., 2021). The retrieval success rate averages only
3 % because of clouds and dark and heterogeneous surfaces
(Hasekamp et al., 2019), but the data density is still at least
2 orders of magnitude higher than for GOSAT (Qu et al.,
2021). TROPOMI data have been used in regional inversions
at up to 25 km resolution (Zhang et al., 2020; Shen et al.,
2021, 2022; Z. Chen et al., 2022).

Inverse analysis of TROPOMI data to infer methane emis-
sions requires a chemical transport model (CTM), known
as forward model for the inversion, to relate emissions to
the observed methane columns through simulation of atmo-
spheric transport. The problem is generally underconstrained
because of uneven data density and because of errors in the
satellite retrievals and in the CTM, referred to collectively as
observational error. The solution must therefore be regular-
ized, typically with prior information in the form of bottom-
up emissions on the CTM grid, to produce posterior emission
estimates that improve on the prior. This is generally done by
minimization of a Bayesian cost function, using either vari-
ational methods or an analytical solution (Brasseur and Ja-
cob, 2017). Variational methods can infer methane emissions
on any grid, for any nonlinear problem, and for any error
probability density function (pdf), but they do not immedi-
ately provide error characterization of the posterior estimate.
An analytical solution takes advantage of the linearity of the
relationship between methane emissions and concentrations
(Chen and Prinn, 2006; Maasakkers et al., 2021). It requires

explicit construction of the Jacobian matrix expressing the
sensitivity of concentrations to emissions, but this is readily
done on supercomputing clusters as an embarrassingly paral-
lel problem (Maasakkers et al., 2019). Two major advantages
of the analytical solution are that (1) it provides closed-form
characterizations of the posterior error pdf and the informa-
tion content of the observations, and (2) it allows easy gener-
ation of solution ensembles exploring the inversion parame-
ter space (Lu et al., 2022).

Inverse analysis of satellite observations requires com-
plex modelling tools, advanced data processing, and ac-
cess to high-end computational resources. These are ma-
jor barriers for novice and occasional users and for stake-
holders lacking technical expertise. Our user-friendly, cloud-
based facility for inferring high-resolution methane emis-
sions from TROPOMI satellite data lifts those barriers. The
facility is based on an Integrated Methane Inversion work-
flow (IMI 1.0) that builds on current best practices for an-
alytical inversion of TROPOMI data (Shen et al., 2021).
It draws on the GEOS-Chem CTM already accessible on
the Amazon Web Services (AWS) cloud (Zhuang et al.,
2019, 2020), directly accesses the operational TROPOMI
data maintained on the cloud by Meteorological Environ-
mental Earth Observation S.r.l. (MEEO), and infers methane
emissions at 0.25◦× 0.3125◦ (≈ 25 km× 25 km) resolution
for user-selected regions. It is designed to be easily config-
urable for users wishing to quantify emissions for specific
regions and periods. The workflow can be run “out of the
box” or modified with user-supplied information, and it can
be downloaded for users who wish to work on their own com-
putational clusters. Our objective in this paper is to provide a
high-level description of the facility and exemplify its prac-
tical use. Detailed technical documentation for user support
is available online (https://imi.seas.harvard.edu, last access:
8 June 2022).

2 Integrated Methane Inversion (IMI)

The IMI infers methane emissions for a user-selected region
and period by inverse analysis of TROPOMI methane ob-
servations with GEOS-Chem as forward model. The forward
model F relates the period-average methane emissions (grid-
ded state vector x) to the observed methane columns (obser-
vation vector y) such that y = F (x)+ εo, where the obser-
vational error εo includes errors in both the satellite data and
the forward model. The inversion optimizes x to match the
observations, subject to constraints from the prior emission
estimates (xa), which have their own error εa. The optimiza-
tion is done by analytical minimization of a least-squares
Bayesian cost function, yielding a posterior estimate x̂ for
the state vector with accompanying error statistics. Here we
describe the different components of the IMI and use a 1-
month inversion for the US Permian Basin (Fig. 1) as a guid-
ing example.
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Figure 1. Example of an IMI state vector for inferring methane
emissions from TROPOMI observations. Here the region of interest
is the US Permian Basin in Texas and New Mexico (grid with white
background), comprising 235 grid elements at 0.25◦× 0.3125◦ res-
olution generated from a shapefile. The inversion domain also in-
cludes the areas in color bordering the region of interest, represent-
ing eight buffer elements added to the state vector to correct errors
in boundary conditions (see Sect. 2.3).

2.1 TROPOMI satellite observations

TROPOMI retrieves atmospheric methane columns from
backscattered sunlight in the 2.3 µm methane absorption
band, with daily global coverage at 5.5 km× 7 km nadir pixel
resolution (7 km× 7 km prior to August 2019). Measure-
ments are made at ∼ 13:30 local solar time. The methane re-
trieval is produced by the Netherlands Institute for Space Re-
search (SRON). It is based on the RemoTeC full-physics al-
gorithm (Butz et al., 2009, 2010, 2011) and retrieves methane
data as column-average dry-air mixing ratios XCH4 (ppb)
along with surface reflectivity and scattering properties of
the atmosphere (Butz et al., 2012; Hu et al., 2016). The
TROPOMI data are posted operationally on the AWS cloud
and updated daily by MEEO with a latency of a few
days (https://registry.opendata.aws/sentinel5p, last access:
8 June 2022). The methane product provides information on
numerous retrieval parameters together withXCH4 , including
the center and boundaries of the pixel, the surface pressure,
the 12-layer pressure grid of the retrieval, the vertical aver-
aging kernel vector and prior vertical profile of methane dry-
air mixing ratio, a quality assurance value, and the retrieved
surface albedo in the near-infrared (NIR) and SWIR spectral
ranges.

The operational TROPOMI record begins in May 2018.
The methane retrieval is presently Version 1 (Hasekamp
et al., 2019) until July 2021 and Version 2 (Lorente et al.,

2021) afterward. Validation of Version 1.3.0 showed a global
mean bias of −2.7 ppb relative to ground-based measure-
ments from 19 sites in the Total Column Carbon Observing
Network (TCCON; Wunch et al., 2011a; Qu et al., 2021), but
global bias is of no consequence for regional inversions be-
cause it is effectively corrected through the boundary con-
ditions. Of more concern are spatially variable biases (re-
gional biases), caused mainly by aliasing of surface albedo
errors into the methane retrieval (Lorente et al., 2021) but
also by scattering-induced surface reflectance errors (Barré
et al., 2021) and errors in surface altitude (Hachmeister et al.,
2022). Qu et al. (2021) quantified a nominal TROPOMI re-
gional bias of 6.7 ppb in Version 1.3.0 as the standard de-
viation of station-to-station biases between TROPOMI and
the 19 TCCON sites, and a similar analysis for Version
2.2.0 shows a regional bias of 5.6 ppb (Lorente et al., 2021).
This is sufficiently small to enable successful regional in-
versions, for which Buchwitz et al. (2015) estimated a re-
gional bias threshold of 10 ppb. In the IMI we only use rec-
ommended high-quality retrievals over land, with quality as-
surance value ≥ 0.5 (Hu et al., 2016). We further remove ob-
servations with low SWIR albedo (< 0.05; de Gouw et al.,
2020) and high “blended albedo” (> 0.85), a linear combina-
tion of NIR and SWIR albedo, to avoid biases from dark and
snow-covered scenes (Wunch et al., 2011b; Lorente et al.,
2021). The quantity of data removed by these additional fil-
ters depends on the region and period for the inversion; we
find for example that they remove roughly 25 % (summer) to
40 % (winter) of otherwise high-quality observations across
North America in 2019.

2.2 GEOS-Chem chemical transport model as forward
model for the inversion

GEOS-Chem is a three-dimensional CTM that simulates
methane concentrations on the basis of prescribed emissions
either globally or for user-selected nested domains (Wecht
et al., 2014). It is driven by Goddard Earth Observation Sys-
tem (GEOS) meteorological data from the NASA Global
Modelling and Assimilation Office (GMAO). The IMI uses
as default the GEOS Fast Processing (GEOS-FP) meteoro-
logical data product at 0.25◦× 0.3125◦ resolution, with an
option to use the GEOS Modern-Era Retrospective Analy-
sis for Research and Applications, version 2 (MERRA-2) at
0.5◦× 0.625◦ resolution. The GEOS data have 72 vertical
levels from the surface to the mesopause, and these are con-
densed to 47 levels in our GEOS-Chem simulations by merg-
ing levels in the upper stratosphere and mesosphere.

We use the nested capability of GEOS-Chem to simulate
methane concentrations over the inversion domain, with dy-
namic boundary conditions outside the inversion domain up-
dated every 3 h from a global archive of TROPOMI data
smoothed spatially over a rolling ± 10◦ window and tem-
porally over a 1-month period centered on each grid square
and day and distributed vertically following a GEOS-Chem
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simulation at 4◦× 5◦ resolution (Shen et al., 2021). This
smoothed TROPOMI 3-D archive is provided as part of
the IMI. Using smoothed TROPOMI data as boundary con-
ditions minimizes bias from boundary conditions advected
over the user-selected region. Smoothing of the TROPOMI
data is necessary because of the sparsity of successful re-
trievals and the noise therein. To further reduce the bias as-
sociated with boundary conditions, we expand the inversion
domain beyond the user-selected region of interest to include
a buffer area, and coarse buffer elements are added to the
state vector of methane emissions to be optimized (Fig. 1,
Sect. 2.3).

The user-specified period of interest defines the time
window for the GEOS-Chem simulation. Starting from the
smoothed TROPOMI fields as initial conditions, we apply a
1-month spin-up with prior emission estimates to properly
initialize the model concentration fields within the inversion
domain; 1 month is sufficient to fully ventilate any practical
regional domain. This spin-up only needs to be done once.

The GEOS-Chem simulation includes chemical methane
sinks from archived (offline) tropospheric concentrations
of oxidants (OH, Cl) and stratospheric loss frequencies
(Maasakkers et al., 2019), as well as soil uptake (Murguia-
Flores et al., 2018), but these are inconsequential for nested-
domain simulations and are not optimized by the IMI. Ven-
tilation of the inversion domain takes place on much shorter
timescales than the methane atmospheric lifetime, and the
sinks are relatively spatially smooth, so no information on
methane sinks is to be gained from a regional inversion. The
effect of methane sinks is implicitly included in the specifi-
cation of boundary conditions.

2.3 Methane emission state vector to be optimized

The state vector x is the ensemble of variables (“state
variables”) to be optimized in the inversion. In the IMI,
these are the gridded methane emissions (temporal mean) at
0.25◦× 0.3125◦ resolution for the region and period of inter-
est, plus buffer elements at coarser resolution bordering the
region of interest and filling out the inversion domain (eight
elements by default). Users specify a region and time period
of interest in the IMI configuration file. The region of inter-
est can have any irregular shape, as illustrated in Fig. 1. In
that example case, the region of interest is an assemblage of
235 0.25◦× 0.3125◦ grid cells covering the geological extent
of the Permian Basin, and the eight buffer elements expand
to a rectangular inversion domain 24–39◦ N, 95–111◦W. The
state vector in this example has length n= 235+ 8= 243.

The simplest (default) option for the user is to select a rect-
angular region of interest as latitude and longitude bounds.
The IMI then infers emissions for the 0.25◦× 0.3125◦ grid
cells within that region, excluding any grid cells less than
25 % over land (adjustable default), and selects eight addi-
tional buffer elements with a k-means algorithm to pad out
the rectangular inversion domain. The k-means algorithm

sorts grid cells by latitude–longitude coordinates, and the
number of buffer elements can be adjusted in the configu-
ration file. Users also have the option to select an irregular
region of interest, as in the Permian example of Fig. 1, by
providing a previously defined state vector file or a shape-
file for the region boundaries. Offshore emissions can be in-
cluded in the state vector by lowering the default 25 % land
cover requirement or by directly modifying the state vector
file. TROPOMI does not observe over water except in the
glint mode, but information on offshore emissions can still be
gained from the plumes transported over nearby land (Shen
et al., 2021).

2.4 Prior emission estimates

The prior emission estimates xa should represent the best
knowledge of methane emissions prior to performing the
inversion. They need to be available in gridded format to
match the resolution of the inversion. Table 1 compiles the
bottom-up emission inventories used as default prior esti-
mates in the IMI. The North American anthropogenic emis-
sions are gridded versions of the national sector-resolved in-
ventories reported by the individual countries to the United
Nations Framework Convention on Climate Change (UN-
FCCC) as given by Maasakkers et al. (2016) for the United
States, Scarpelli et al. (2020a) for Mexico, and Scarpelli
et al. (2022a) for Canada. The emissions from fuel exploita-
tion (oil, gas, coal) in the rest of the world similarly grid
the national emissions reported annually to the UNFCCC
(Scarpelli et al., 2022b). The Emission Database for Global
Atmospheric Research (EDGAR) v6 is otherwise used as the
global default. Natural emissions include contributions from
wetlands with monthly resolution (Bloom et al., 2017), open
fires with daily resolution (Randerson et al., 2018), and small
sources from geological seeps and termites. These default in-
ventories can be superseded by users with their own prior
estimates, and we give an example of this in Sect. 4.

The inversion infers emissions on the 0.25◦× 0.3125◦

grid, and this may include contributions from different sec-
tors. Users can attribute the corrections to individual sectors
based on the sectoral distribution of the emissions in the prior
inventories and estimates of prior errors for each sector (Shen
et al., 2021; Cusworth et al., 2021a). This needs to be done
in post-processing of the inversion results.

2.5 TROPOMI operator

The forward model y = F (x) for the inversion involves suc-
cessive application of a GEOS-Chem operator C =G(x)
that relates the emission state vector x to the resulting 3-
D simulated dry-air mixing ratio field C and a TROPOMI
operator y = T (C) that relates the vertical profile of sim-
ulated dry-air mixing ratios to the corresponding column-
average dry-air mixing ratio (XCH4 ) that would be observed
by TROPOMI. The TROPOMI retrieval provides informa-
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Table 1. Bottom-up methane emission inventories used as default prior estimates in IMI 1.0 a.

Anthropogenicb

United States EPA GHGI (Maasakkers et al., 2016)c

Mexico INECC (Scarpelli et al., 2020a)d

Canada ECCC NIR (Scarpelli et al., 2022a)e

Rest of world
– Fuel exploitation GFEI v2.0 (Scarpelli et al., 2022b)f

– Other EDGAR v6 (Janssens-Maenhout et al., 2019)g

Natural

Wetlands WetCHARTS v1.2.1 (Bloom et al., 2017)h

Geological seeps Etiope et al. (2019)i

Open fires GFED4 (Randerson et al., 2018)j

Termites Fung et al. (1991)k

a The inventories are archived on AWS on their native grids and over their temporal records and are re-gridded and
summed for use as IMI prior estimates through the Harmonized Emissions Component (HEMCO) emissions processor
in GEOS-Chem (Lin et al., 2021). The inventories listed here are those available as of January 2022. They will be
updated in the future as improved or more recent emission inventory data become available. Users can also substitute
their own inventories. b All anthropogenic emissions are on a 0.1◦ × 0.1◦ grid and resolved by emission sector. They do
not vary with time of year except for manure (Maasakkers et al., 2016) and rice (Zhang et al., 2021). c Gridded version
of the US EPA Inventory of US Greenhouse Gas Emissions and Sinks (GHGI; EPA, 2016) for 2012. d Gridded version
of the Instituto Nacional de Ecología y Cambio Climático (INECC) national inventory (INECC and SEMARNAT,
2018) for 2015. e Gridded version of the Environment and Climate Change Canada (ECCC) National Inventory Report
(NIR; ECCC, 2020) for 2018. f Global Fuel Emission Inventory (GFEI v2) constructed by gridding the national
sectoral emission inventories reported by individual countries to the UNFCCC for 2018 and 2019. g Data for 2018.
h Emissions for individual years and months specified on a 0.5◦ × 0.5◦ grid from the mean of the WetCHARTs
ensemble. i Scaled to a global total emission of 1.6 Tg a−1 (Hmiel et al., 2020). j Daily emissions specified on a
0.25◦ × 0.25◦ grid from the Global Fire Emissions Database (GFED4). k Emissions specified on a 4◦ × 5◦ grid.

tion on the operator T as the dependence of XCH4 on the
local vertical profile vector of dry-air mixing ratios c (with
prior estimate ca) for 12 sub-column pressure layers extend-
ing from the local surface to the top of the atmosphere, with
vertical sensitivity described by a column-averaging kernel
vector η for those 12 layers:

XCH4 = η
Tc+ (1− η)Tca, (1)

where 1 denotes a 12-dimensional unit vector.
Figure 2 summarizes the operations involved in simulat-

ing TROPOMI observations of the GEOS-Chem atmosphere.
The first step is to geo-locate the TROPOMI pixel (nadir res-
olution 5.5 km× 7 km, but coarser off-nadir) on the GEOS-
Chem 0.25◦× 0.3125◦ grid, including the region of interest
and the surrounding buffer elements. If the pixel overlaps
two or more GEOS-Chem grid cells then the calculation is
done for each grid cell column followed by area-weighted
averaging. We remap the sub-column mixing ratios from
the GEOS-Chem vertical grid (47 layers) to the TROPOMI
vertical grid (12 layers) with total or partial allocation of
GEOS-Chem layers to TROPOMI layers on the basis of pres-
sure edges (Fig. 2). We then apply the TROPOMI column-
averaging kernel vector η with Eq. (1) to obtain the column-
average dry-air mixing ratio XCH4 as would be observed by
TROPOMI in the GEOS-Chem atmosphere. When remap-
ping GEOS-Chem to the TROPOMI vertical grid, we address
differences in surface pressure between GEOS-Chem and

TROPOMI by adjusting the lowest GEOS-Chem pressure
edge to match that of TROPOMI, as illustrated in Fig. 2; this
applies the lowest-level sub-column mixing ratio in GEOS-
Chem down to the lowest TROPOMI pressure edge.

The column-averaging kernel sensitivities in TROPOMI
are generally within 2 % of unity in the troposphere and drop
off slowly in the stratosphere (Hu et al., 2016). Thus the pres-
sure remapping has relatively little effect except in regions
with strong topography, where high-elevation pixels have
greater stratospheric contribution to XCH4 . Stanevich et al.
(2020) reported that stratospheric methane in GEOS-Chem
exhibits a high bias relative to ACE-FTS satellite observa-
tions, but Zhang et al. (2021) found that this bias is largely
restricted to polar vortex conditions where TROPOMI does
not have observations.

2.6 Optimization procedure

Our Bayesian inversion to infer methane emissions fits the
GEOS-Chem simulation to the TROPOMI observations,
weighing prior and observational uncertainties and assuming
normal error pdf’s. This involves minimization of the scalar
cost function (Brasseur and Jacob, 2017)

J (x)= (x− xa)
TS−1

a (x− xa)

+ γ (y−Kx)TS−1
o (y−Kx), (2)

https://doi.org/10.5194/gmd-15-5787-2022 Geosci. Model Dev., 15, 5787–5805, 2022
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Figure 2. Simulation of TROPOMI column-average dry-air mixing ratio (XCH4 ) observations in the GEOS-Chem 3-D model atmosphere.
(a) The operator first identifies which GEOS-Chem grid cells overlap with the TROPOMI observation pixel. (b) The operator remaps
conservatively the GEOS-Chem vertical profile of methane dry sub-column mixing ratios cG from the GEOS-Chem pressure grid pG to the
TROPOMI pressure grid pT to produce a vertical profile of methane sub-column mixing ratios cT on the TROPOMI pressure grid. (c) The
TROPOMI averaging kernel vector η (Eq. 1) is applied to the remapped GEOS-Chem profile on the TROPOMI pressure grid to produce a
virtual XCH4 observation of the GEOS-Chem atmosphere. If multiple GEOS-Chem grid cells overlap with the TROPOMI observation, the
corresponding XCH4 values are area-weighted to the TROPOMI pixel.

where K= ∂y/∂x is the Jacobian matrix, Sa is the prior error
covariance matrix, So is the observational error covariance
matrix including contributions from instrument and forward
model errors, and γ is an additional regularization parame-
ter. K describes the sensitivity of observations y to the state
vector x as described by the forward model F (x ). It is com-
puted column by column from an ensemble of perturbation
simulations in the forward model, each perturbing a single
element of the state vector from the reference simulation. Be-
cause the model is strictly linear, K defines GEOS-Chem for
the purpose of the inversion.

The default Sa is constructed in the IMI by assuming 50 %
error standard deviation on emissions, with no error corre-
lations (diagonal matrix). The default So assumes a uniform
observational error standard deviation of 15 ppb, based on
previous estimates of 13–15 ppb for TROPOMI by the resid-
ual error method (Qu et al., 2021; Shen et al., 2021), again
with no error correlation. These default values are adjustable
by the user through the configuration file. The assumption of
uncorrelated prior errors may lead to underestimation of the
aggregated error in total regional emissions.

The regularization parameter γ is used to prevent overfit-
ting and underfitting that would result from inexact specifi-
cations of Sa and So and because the observations are not
perfectly independent and identically distributed (IID condi-
tion). The best value for γ can be selected on the basis of
the L curve (Hansen, 1999) or the expected Chi-square dis-
tribution of the cost function’s prior terms (Lu et al., 2021).
These two methods yield consistent results (Qu et al., 2021).
Shen et al. (2021) used the L curve to select γ = 0.25 for

a regional inversion of TROPOMI observations over eastern
Mexico at 0.25◦× 0.3125◦ resolution. We adopt that value in
the IMI as default, but it can be adjusted in configuration.

The posterior state vector x̂ minimizing J (x) is obtained
by an analytical solution of dJ/dx = 0 as

x̂ = xa+
(
γKTS−1

o K+S−1
a

)−1
γKTS−1

o (y−Kxa), (3)

with posterior error covariance matrix (characterizing uncer-
tainty in x̂) given by

Ŝ=
(
γKTS−1

o K+S−1
a

)−1
. (4)

Ŝ provides full closed-form characterization of the error
in x̂ assuming that the inverse problem has been well posed
through the formulation of the cost function. Errors in the
formulation of the cost function can be evaluated through an
inversion ensemble varying inversion parameters (e.g., γ ),
prior emission estimates, and satellite observation sampling.
The averaging kernel matrix

A= In− ŜS−1
a (5)

describes the sensitivity of x̂ to the truth (i.e., A= ∂x̂/∂x).
The trace of A, referred to as the degrees of freedom for sig-
nal (DOFS; Rodgers, 2000), measures the information con-
tent of the observations towards optimizing the state vector.
It represents the number of independent pieces of informa-
tion on the state vector that the observations can quantify.
The diagonal entries of A are referred to as averaging kernel
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sensitivities, and they give an estimate of how much the pos-
terior solution for a given state vector element is informed by
the observations as opposed to the prior estimates (Cui et al.,
2014; Brasseur and Jacob, 2017). An emission element with
averaging kernel sensitivity 0 is not quantified by the obser-
vations at all, and the inversion results for that grid cell return
the prior value. An emission element with averaging kernel
sensitivity 1 is fully quantified by the observations, and the
inversion results for that grid cell are independent of the prior
estimate. We use sparse matrix algebra for the matrix opera-
tions in Eqs. (3)–(5) so that the computational cost of the op-
timization procedure is small relative to the cost of construct-
ing the Jacobian. Sample performance statistics are given in
Sect. 3.7.

2.7 IMI preview: assessing information content before
performing an inversion

The IMI includes a preview feature designed to help users
avoid spending resources on inversions with insufficient in-
formation content. Lack of information could come from low
TROPOMI data density (e.g., from cloud cover) and/or from
seriously biased prior emission estimates for the region and
period of interest. The preview can be run after configur-
ing the IMI and before initiating the inversion, and it per-
forms several tasks. First, it maps the TROPOMI data and
prior emission estimates for the selected region and period
of interest, so the user can assess spatial correspondence be-
tween the two datasets. Second, it maps observation density
and counts the total number of observations available for the
selected region and period. Third, it maps the SWIR albedo
retrieved by TROPOMI to help users identify potential arti-
facts if the SWIR albedo and methane retrievals show similar
features (Barré et al., 2021). Fourth, it estimates the USD fi-
nancial cost of performing the inversion by scaling the cost
of our illustrative Permian Basin inversion (Sect. 4.3) accord-
ing to the number of state variables, grid resolution, and in-
version period length. Finally, it makes a rough estimate of
the expected DOFS for the user’s inversion using the proce-
dure outlined below. A detailed example of the IMI preview
feature is presented in Sect. 4.2.

The rough estimate of the expected DOFS is done as fol-
lows. Ignoring error correlations, assuming uniform obser-
vational errors, and further assuming uniform transport, the
calculation of the averaging kernel matrix reduces to a scalar
problem (Brasseur and Jacob, 2017). The averaging kernel
sensitivity A for a given emission element in the state vector
is computed as

A=
σ 2

a

σ 2
a +

(σo/k)2

m

, (6)

where σa (kgm−2 s−1) is the prior error standard deviation
of the emission element, σo (molmol−1) is the observational
error standard deviation, m is the number of satellite obser-
vations relevant to that emission element, and the transport

model is defined by the parameter k (m2 skg−1) as a sum-
mary representation of the Jacobian. With default 50 % prior
error standard deviation, we have σa = 0.5Qa/(nL

2), where
Qa (kgs−1) is the total prior emission for the region of in-
terest, n is the number of emission elements in that region of
interest, and L (m) is the grid cell side length (25 km in the
GEOS-FP default). For our guiding Permian Basin example
using the default IMI emission inventories, Qa= 1.1 Tga−1,
and n= 235, which yields σa= 1.2× 10−10 kgm−2 s−1. The
mean number of observations m per emission element is the
total number of observations for the region and period of in-
terest, divided by n; for the May 2018 Permian example we
obtainm= 86 from 19 978 observations (see Sect. 4.2). σo is
by default 15× 10−9 molmol−1.

To estimate k we use the approximation proposed by
Nesser et al. (2021) for simple mass balance ventilation of
local emissions in the grid cell by a constant wind:

k = α
Mair

MCH4

Lg

Up
, (7)

where Mair is the molar mass of dry air, MCH4 is the molar
mass of methane, g is gravitational acceleration, U is a uni-
form wind speed ventilating the emission element (assumed
5 kmh−1), and p is the surface pressure (assumed 1010 hPa).
The parameter α serves as a simple representation of turbu-
lent diffusion, and here we take α = 0.4 following Nesser
et al. (2021) so that k= 1.26 m2 skg−1. After computing A
in this way, the expected information content for the inver-
sion can be obtained as

DOFS= nA=
nσ 2

a

σ 2
a +

(σo/k)2

m

. (8)

Equation (8) gives a quick estimate of the information con-
tent to be expected from the inversion without actually per-
forming the inversion. Although very rough, it is based on
the same principles as the actual inversion, and we find that
it gives a good approximation of the actual DOFS as demon-
strated in Sect. 4.2. It further has the advantage of being
transparent in that n and m are defined by the user choice
of region and period of interest, σa and σo are set by default
in the IMI but are configurable by the user, and k has direct
physical meaning. In fact, k can be used for a very rough
estimate of emissions corresponding to a local column en-
hancement (Jacob et al., 2016).

The user may decide on the basis of the DOFS esti-
mated from Eq. (8) whether or not to carry out the inversion.
DOFS ∼ 1 would be a minimum requirement to achieve any
solid information on emissions in the region of interest, and
more may be desirable if multiple pieces of information are
desired on the emission fields within the region. Shen et al.
(2022) required DOFS > 2 to reliably estimate basin-wide
emissions from oil and gas basins in North America. If the
user deems the DOFS to be insufficient, a cure is to increase
the number of observations by lengthening the observation
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Figure 3. Integrated Methane Inversion (IMI) preview and workflow on the Amazon Web Services (AWS) cloud to infer methane emissions
from TROPOMI data. The IMI is accessed as a custom Amazon Machine Image (AMI) on the AWS EC2 computing service. It accesses
the operational TROPOMI methane data, GEOS meteorological data, default bottom-up emission inventories, and IMI boundary conditions
(smoothed TROPOMI data) from AWS S3 data storage buckets for the desired period. All of these data are resident on the cloud. Users
specify their region or period of interest through a configuration file that also allows modification of IMI defaults. They can provide alternative
bottom-up emission inventories (instead of the GEOS-Chem defaults) to serve as prior estimates for the inversion. The IMI preview provides
visualization of the TROPOMI data and prior emission inventories and a rough estimate of the information content of the inversion (degrees
of freedom for signal, or DOFS). Based on this information the user can decide to carry out the inversion through the IMI workflow (Fig. 4)
or modify the configuration (see Sects. 2.7 and 4.2 for details).

period. The user may also revisit the information on the prior
emission estimate and whether a larger value of σa may be
appropriate, which will increase the DOFS.

Beyond inspection of the DOFS, the user should inspect
the preview plots to guard against large artifacts in the obser-
vations or large bias in the spatial distribution of prior esti-
mates. Artifacts in the observations can be diagnosed by sim-
ilarity of patterns betweenXCH4 and SWIR albedo, implying
that spectral dependence of the albedo is propagating into
the XCH4 retrieval. If so the observations should not be used.
Large bias in the spatial distribution of prior estimates can
be diagnosed by comparison to the TROPOMI observations
and would be problematic in the inversion by misallocating
the corrections (Yu et al., 2021); this can be addressed by in-
creasing the error in the prior estimate (including very large
values to mimic a non-informative uniform prior) or switch-
ing to a different prior emission inventory, as is illustrated in
Sect. 4 in the context of the Permian example.

3 Implementation of the IMI on the cloud

Figure 3 outlines the architecture of the IMI on the AWS
cloud including the preview and the inversion workflow. The
IMI draws on two AWS facilities: the Elastic Compute Cloud
(EC2) for computation and the Simple Storage Service (S3)
for data storage. The computing environment for the work-
flow is contained in an Amazon Machine Image (AMI) ac-
cessible from the EC2 service. The TROPOMI operational
data are archived independently in their own S3 bucket
by MEEO. Meteorological data from the NASA GEOS-FP
product are archived in another S3 bucket by the GEOS-
Chem support team to support the general use of GEOS-
Chem on the cloud (Zhuang et al., 2019). That bucket also
contains the bottom-up methane emission inventories that
serve as default prior estimates for the inversions (Table 1).
Smoothed TROPOMI data serving as boundary conditions
for the inversions are continuously updated by us to stay cur-
rent with the TROPOMI operational data and have their own
S3 bucket. All of these datasets are accessed by the preview
and the workflow as needed, by automated transfer from S3
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to the Elastic Block Store (EBS) volume on the user’s EC2
instance.

Workflow users begin by opening an EC2 instance and se-
lecting the workflow AMI. The AMI contains the GEOS-
Chem and IMI source codes, a configuration file, and all
required software dependencies. They then specify a region
and time period of interest in the configuration file. The con-
figuration file also contains options to modify the IMI de-
fault settings (Table 2). Detailed instructions for configuring
the IMI are provided in the online technical documentation
(https://imi.seas.harvard.edu, last access: 8 June 2022). Users
can use as prior estimates the default bottom-up emission in-
ventories provided with the workflow (Table 1), or they can
substitute their own. They can run the IMI preview (Fig. 3) to
collect and visualize the TROPOMI and prior emission data
for their selected region and time period and to get a rough
estimate of information content and cost (Sect. 2.7). The pre-
view incurs no significant computational cost. If the informa-
tion content is deemed sufficient, the user can go on to run
the IMI, including construction of the Jacobian matrix. This
is the main computational cost but is very reasonable for typi-
cal inversion domains and periods (see Sect. 4.3 and Table 3).
Once the Jacobian matrix has been constructed to define the
forward model transport, it can be re-used to populate an in-
version ensemble at no significant added computational cost
by varying inversion parameters and/or bottom-up emission
inventories (the latter requires rescaling the matrix). It can
also be archived for later use.

The current IMI version 1.0 can be applied to any region
of interest but has enhanced performance for regions within
North America (10–70◦ N, 40–140◦W), Europe (33–61◦ N,
30◦W–70◦ E), and Asia (11◦ S–55◦ N, 60–150◦ E), where
pre-cut continental subsets of the GEOS meteorological data
(GEOS-FP and MERRA-2) are available to reduce computa-
tional cost. These subsets correspond to the default windows
used in GEOS-Chem nested simulations (Kim et al., 2015;
Zhang et al., 2015). The meteorological data for these three
windows are uploaded to AWS by the GEOS-Chem support
team with a latency of a few weeks. Users may apply the
IMI to other regions using the full global GEOS meteoro-
logical data or after cropping the global data to a suitable
nesting domain, following instructions and tools available
on the IMI website (https://imi.seas.harvard.edu, last access:
11 July 2022). Future IMI versions will expand the pre-cut
windows to other continents.

Figure 4 charts the IMI computational workflow as de-
scribed in Sect. 2 and contained in the AMI. The workflow
receives instructions from the configuration file and then has
three basic steps: (i) perform an ensemble of GEOS-Chem
simulations to define the transport features for individual
emission state vector elements, (ii) use those simulations to
construct the Jacobian matrix, and (iii) solve the analytical
inversion using Eqs. (3)–(5). When the user configures and
runs the IMI, these steps are executed automatically to gen-
erate posterior methane emission estimates for the inversion

domain along with error statistics. The user can then inspect
the inversion results using a visualization notebook provided
with the IMI. The notebook contains sample code to plot the
state vector, prior emissions, posterior emissions, scale fac-
tors (posterior and prior ratios), averaging kernel sensitivi-
ties, and TROPOMI data for the inversion domain and pe-
riod.

The IMI workflow begins by constructing the emission
state vector (length n) from the user specifications. After an
initial spin-up simulation to generate initial conditions for
the period of interest, it then performs n+ 1 GEOS-Chem
simulations. These include a reference simulation driven by
the prior bottom-up emission inventories and n perturbation
simulations perturbing one emission element at a time. All of
these simulations access S3 data for prior emissions, meteo-
rology, and boundary conditions (Fig. 3). The perturbation
simulations determine the sensitivities of the satellite obser-
vations to the state variables and are used to construct the
Jacobian matrix K as described in Sect. 2.6. For our 1-month
Permian Basin example (n= 243), a total of 244 simula-
tions are performed in this way. The reference and perturba-
tion simulations are embarrassingly parallel and can be per-
formed simultaneously once the spin-up simulation is com-
plete if n+ 1 CPUs are available on the user’s EC2 instance;
with fewer CPUs the workflow runs the simulations in paral-
lel batches.

After computing K from the reference and perturbation
simulations, the IMI solves Eqs. (3)–(5) for the optimized
emission estimates x̂, posterior errors Ŝ, and averaging ker-
nel matrix A and saves these quantities as output. The ele-
ments of x̂ and the diagonal entries of A (averaging kernel
sensitivities) and Ŝ are then mapped to the grid cells of the
inversion domain and saved as a separate output to facili-
tate inspection of the results, but archiving of the full ma-
trices allows users to further inspect error correlations and
smoothing. The final step of the workflow is to conduct a
GEOS-Chem simulation using the posterior emissions x̂ for
comparison to the TROPOMI observations and to a GEOS-
Chem simulation using prior emissions (reference simula-
tion) to verify the quality of the inversion results in better fit-
ting the TROPOMI observations. This comparison could be
performed more quickly by applying a correction K(x̂− xa)

to the prior forward model results, but running the full pos-
terior simulation has the advantage of allowing validation
against independent (e.g., ground-based) observations. Pos-
terior simulation results are provided as part of the IMI out-
put.

4 Illustrative application to the Permian Basin

4.1 Setup

We perform a 1-month inversion for the Permian Basin (cur-
rently the most prolific US oil-producing basin) as an illus-
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Figure 4. Flowchart for the Integrated Methane Inversion (IMI 1.0) on the AWS cloud. Here x is the emission state vector of length n, y is
the vector of TROPOMI observations, C is the time-evolving 3-D GEOS-Chem methane concentration field over the inversion period, G is
the GEOS-Chem operator, T is the TROPOMI operator, K is the Jacobian matrix, Ŝ is the posterior error covariance matrix, and A is the
averaging kernel matrix. See Sect. 2 for equations and further description of the algorithm. The workflow has the option of skipping the
calculation of the Jacobian matrix K if it has already been computed; this allows generation of a solution ensemble by varying inversion
parameters (see text for details).
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Table 2. Default IMI version 1.0 settings and configuration options.

Setting Default Configuration options

State vector Rectangular regiona Irregular regionb

Spatial resolution and meteorological data 0.25◦× 0.3125◦ (GEOS-FP) 0.5◦× 0.625◦ (MERRA-2)
Observational error standard deviation 15 ppb Any uniform value
Prior error standard deviation 50 % Any uniform value
Regularization parameter γ 0.25 Any value
Buffer zone widthc 5◦ Any value
Number of buffer elements in state vector 8 Any numberd

Spin-up time 1 month Any length
Minimum land cover fractione 0.25 Any value ∈ [0, 1]

a Defined automatically from user-selected latitude and longitude bounds for the region of interest. b Either specified with a shapefile or
defined by a pre-generated custom state vector file. c Extension of the inversion domain beyond the region of interest to absorb errors in
boundary conditions. d Buffer elements are specified with a k-means algorithm. e Minimum land cover fraction for inclusion of a
GEOS-Chem emission element in the state vector (see Sect. 2.3). Land cover information is from GEOS-FP or MERRA-2.

trative application of the IMI. We choose 1–31 May 2018
as the period of interest for the inversion. The region of in-
terest is defined from a shapefile for the Permian Basin and
comprises 235 state vector elements to describe emissions
within the region at 0.25◦× 0.3125◦ resolution, plus 8 buffer
elements to pad out the inversion domain, for a total of 243
state vector elements (Fig. 1).

We perform the inversion using the default IMI settings
laid out in Tables 1 and 2 but with the custom state vector
of Fig. 1. The steps prior to initiating the inversion are as
follows:

1. Create an AWS instance with the IMI workflow AMI.

2. Connect to the instance, upload the custom state vector
file of Fig. 1, and open the configuration file.

3. Set the start date to 1 May 2018 and the end date to
1 June 2018.

4. Turn off the option to automatically generate the state
vector from the latitude and longitude bounds of a rect-
angular region of interest.

5. Enter the path to the custom state vector file and close
the configuration file.

6. Run the IMI preview to display the TROPOMI data and
prior emissions, and estimate the information content to
be achieved in the inversion.

4.2 Analysis of results

Figure 5 shows the IMI preview results including the mean
TROPOMI XCH4 data for the selected region and period,
the observation density, the TROPOMI SWIR albedo, and
the default prior emission estimates (here the EPA GHGI).
The TROPOMI XCH4 data (Fig. 5a) include N = 19 978 in-
dividual observations for the region of interest, and these

are used for the DOFS estimate in the preview. There are
more than 100 000 additional observations in the inversion
domain outside the region of interest and covering the buffer
grid cells (Fig. 1). The two methane hotspots at the center of
Fig. 5a correspond to the Permian’s Delaware and Midland
sub-basins. TROPOMI provides relatively uniform sampling
across the region of interest (Fig. 5c), and visual comparison
of Fig. 5a and d shows no indication of albedo-related re-
gional XCH4 biases. However, we see that the gridded GHGI
inventory (Fig. 5b) severely misrepresents the spatial distri-
bution of emissions in the Permian by failing to capture the
sub-basin structure apparent in Fig. 5a. Furthermore, the in-
version preview indicates an expected DOFS value of 2.0,
which is marginal for quantifying emissions on that regional
scale (Shen et al., 2021b).

At this point it would be sensible to reconfigure the IMI
before performing the inversion, and we explain how to do so
in what follows. If we proceed and conduct the inversion with
these default settings, we find a DOFS of 1.9 (close to the
preview). The posterior emission integrated over the region
of interest is 1.8 Tga−1, much higher than the default GHGI
prior emission of 1.1 Tga−1, and with scale factors (poste-
rior over prior ratios) ranging from 1.0 to 3.3. These results
are consistent with independent observations that the GHGI
emissions for the Permian Basin are far too low (Omara et al.,
2018; Robertson et al., 2020; Y. Chen et al., 2022; Cusworth
et al., 2021b; Irakulis-Loitxate et al., 2021; Lyon et al., 2021),
but the low DOFS and biased spatial distribution in the prior
emissions do not inspire confidence in the results.

One can increase the DOFS simply by increasing the
length of the inversion period, thus accumulating more ob-
servations, but the incorrect spatial distribution of the prior
estimate will make it harder for the inversion to converge
to the correct solution (Yu et al., 2021). An alternative is to
increase the magnitude of the prior error estimate, but this
may result in unphysical solutions if the problem is under-
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Figure 5. Output of the IMI preview (Sect. 2.7) applied to the Permian Basin example with the default EPA gridded GHGI inventory
(Maasakkers et al., 2016) as prior estimate of emissions. (a) Mean TROPOMI column-average dry-air methane mixing ratio (XCH4 ) data
for the user-selected region (thick black contour) and period of interest (1–31 May 2018), resampled to a 0.1◦× 0.1◦ grid and cropped to
28–35.5◦ N, 98.5–107◦W for visibility. The color bar is saturated to highlight methane hotspots over the Delaware and Midland sub-basins.
Inset gives the total number of observations and degrees of freedom for signal (DOFS) for the region of interest. (b) Gridded GHGI (default)
prior emissions. (c) Number of observations per 0.1◦× 0.1◦ grid cell for the period of interest. (d) Mean SWIR albedo for the period of
interest on the 0.1◦× 0.1◦ grid. Here the preview shows poor agreement in the spatial distribution of emissions between the observations and
prior emission estimates, suggesting that the prior estimate should be replaced by a better one (as is done in our application) or that the prior
error estimate should be increased.

constrained in part of the domain. The user can judge from
the output if these issues are severe.

A better alternative is to investigate whether an improved
bottom-up inventory would enable a more accurate inver-
sion. In the case of the Permian Basin, an alternative grid-
ded bottom-up inventory is available from the Environmen-
tal Defense Fund (EDF) with more accurate accounting of oil
and gas infrastructure and larger total emissions of 2.7 Tga−1

(Zhang et al., 2020). IMI results using the EDF inventory
as a custom bottom-up prior estimate are shown in Fig. 6.
Starting with the IMI preview, we find that the spatial distri-
bution of prior emissions is much more consistent with the
TROPOMI data (Fig. 6a, compare to Fig. 5b), with a much
higher expected DOFS value of 11.7 that reflects the higher
prior emissions (and hence the larger absolute prior error
standard deviations). Proceeding to run the IMI workflow,
we find that the posterior emissions now total 3.9 Tga−1, up

45 % from the prior estimate of 2.7 Tga−1 and with clear de-
marcation of the two sub-basins. The new scale factors range
from 0.68 to 2.55, reflecting a need for both increased and
decreased emissions in different parts of the basin to bet-
ter match the satellite data. The averaging kernel sensitiv-
ities yield a DOFS value of 10.8 (consistent with the IMI
preview), which gives us confidence in the inversion results
both on the basin scale and in the spatial allocation within
the basin. In particular, we see the need for more systematic
increase in emissions in the Midland than the Delaware sub-
basin.

Figure 7 shows the GEOS-Chem simulations for the in-
version period with the prior and posterior emissions. The
posterior simulation produces much higher methane con-
centrations over the Midland sub-basin, better matching the
TROPOMI observations of Fig. 5. The mean GEOS-Chem-
TROPOMI bias across the region of interest improves from
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Figure 6. Results of a 1-month (1–31 May 2018) application of the IMI to the Permian Basin using the EDF emission inventory (Zhang
et al., 2020) as prior estimate of emissions. (a) Prior emissions. (b) Posterior emissions. (c) Scale factors applied to the prior emissions to
obtain the posterior emissions. (d) Averaging kernel sensitivities with associated degrees of freedom for signal (DOFS) inset.

Figure 7. GEOS-Chem simulations of TROPOMI XCH4 observations for May 2018 with (a) prior emissions and (b) posterior emissions.
Panel (c) shows the difference between the two. The contour line shows the Permian Basin selected as the region of interest for the inversion.
The insets give the mean bias and RMSE for the region of interest in comparison to the TROPOMI observations in Fig. 5a.

−9.6 ppb in the reference simulation to −2.1 ppb in the pos-
terior simulation, and the root mean square error (RMSE)
improves from 14.1 to 11.2 ppb. A longer inversion would
further decrease the bias and improve the RMSE.

4.3 Cost

We conducted the illustrative inversion presented here on an
AWS EC2 c5.9xlarge instance with 36 CPUs and 500 GB of
EBS storage. Table 3 shows the runtime for different com-
ponents of the IMI workflow. Compute wall time was 10.7 h,
with> 85 % of that time spent constructing the Jacobian ma-
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Table 3. Breakdown of IMI runtime by task for a 1-month Permian Basin inversion (May 2018)a.

IMI taskb Wall time (s) Percentage of total (%)

Setupc 764 2.0
Preview 133 0.3
Spin-up simulationd 900 2.3
Reference and perturbation simulationse 32 921 85.6
Optimal estimate of emissionsf 2240 5.8
Posterior simulationg 1523 4.0

Total 38 481 (≈ 10.7 h) 100

a Using an AWS EC2 c5.9xlarge instance with 36 CPUs and 500 GB of EBS storage. b See Sect. 3 for a detailed
description of the tasks. c Includes compiling GEOS-Chem, preparing all GEOS-Chem run directories, and fetching
input data from S3 (see Fig. 3). d Shared-memory parallelism (36 CPUs) for spin-up and posterior simulations grants
∼ 5–6× speed-up, limited by input and output. e Run in parallel batches with 1 CPU per simulation. f Solution to
Eqs. (3)–(5). g Includes sampling of the GEOS-Chem atmosphere with the TROPOMI operator (see Fig. 2).

trix K. Our cost was USD 17 for an “on-demand” instance, in
which the requested resources are made available almost im-
mediately. A 1-year inversion would cost roughly USD 300
(12×USD 17=USD 204, plus the cost of additional EBS
storage to accommodate the longer inversion period), and
wall time could be reduced by requesting more CPUs at
no additional cost since the charge is per CPU hour. Costs
scale linearly with the area of the inversion domain and (for
a fixed domain size) the number of state vector elements,
again subject to changes in EBS storage needs. Performing
additional inversions with different parameters and prior in-
ventories (Table 2, Sect. 4.2) adds little cost because there
is no need to reconstruct K. Data download and transfer be-
tween AWS services may incur some cost, but this is also
minimal. A cheaper alternative to on-demand instances are
“spot instances”, which tap unused EC2 capacity and can re-
duce costs by a factor of 3–4 or more (Zhuang et al., 2019).
Spot instances can be reclaimed by AWS at any time, which
would cause the IMI to crash, but in practice this is rare, and
users can generally expect to retain a spot instance for up to
a month of wall time (Pary, 2018).

5 Conclusions and future developments

There is a growing demand for tools to infer regional
methane emissions with high resolution from satellite data.
Our Integrated Methane Inversion (IMI) workflow ad-
dresses this demand by enabling researchers and stakehold-
ers to estimate methane emissions for regions of interest at
0.25◦× 0.3125◦ (≈ 25 km× 25 km) resolution by Bayesian
inversion of TROPOMI satellite observations on the AWS
cloud, using cutting-edge inversion methodology and with-
out requiring massive data download or advanced techni-
cal expertise. The workflow interfaces with TROPOMI op-
erational data and the GEOS-Chem model already resi-
dent on AWS. It makes use of bottom-up emission inven-
tories, GEOS-FP meteorological data, and boundary condi-

tions (smoothed 3-D TROPOMI fields) that are also stored
on AWS. There is no need for large TROPOMI data down-
load. By automatically accessing all the needed resources on
the cloud, the IMI embodies the new paradigm of “bringing
compute to data” when working with very large datasets.

We outlined how users can configure and run the workflow
to optimize methane emissions for a selected region and pe-
riod of interest. The configuration can be as simple as defin-
ing the region (latitude–longitude bounds) and time period
(start and end dates) or more complex for users wishing to
customize different aspects of the inversion such as the state
vector, the prior and observational errors, or the emission in-
ventories used as prior estimates. The TROPOMI and GEOS-
FP data are operationally uploaded to the AWS cloud with a
latency of a few days so that continued access to current con-
ditions is available.

The inversion uses an advanced research-grade algorithm
to derive the best posterior estimates of emissions on the
0.25◦× 0.3125◦ grid by analytical solution to a Bayesian
cost function. The analytical solution provides closed-form
error statistics on the posterior estimates and metrics on the
information content from the observations including averag-
ing kernel sensitivities and the degrees of freedom for sig-
nal (DOFS). It enables no-cost error analysis by producing
an ensemble of solutions to explore the sensitivity to inver-
sion parameters. The algorithm is fully documented in the
literature (Turner et al., 2015; Maasakkers et al., 2019, 2021;
Zhang et al., 2021; Lu et al., 2022), including applications
to TROPOMI data (Zhang et al., 2020; Qu et al., 2021; Shen
et al., 2021, 2022; Z. Chen et al., 2022). It is described in
detail in the present paper, which can serve as a reference.

An IMI preview feature allows users to inspect the
TROPOMI data and the anticipated quality of the inversion
results for the region and period of interest before commit-
ting to the actual inversion. The IMI preview inspects the
TROPOMI data for artifacts correlated with SWIR albedo,
determines the observation density across the region of in-
terest, gives a rough estimate of the DOFS to be expected

Geosci. Model Dev., 15, 5787–5805, 2022 https://doi.org/10.5194/gmd-15-5787-2022
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from the inversion, and compares the spatial distribution of
the prior estimates to the TROPOMI data. Large differences
in spatial distributions may require adjustments to the prior
estimates for a successful inversion.

We presented an illustrative application of the IMI work-
flow to a 1-month inversion of TROPOMI observations over
the US Permian Basin. We showed how the DOFS and spatial
distribution of prior emissions generated by the IMI preview
allowed us to identify the limitations of the initially intended
first inversion, which we fixed by swapping in an improved
prior emission inventory. The subsequent inversion was per-
formed at a cost less than USD 20 using an AWS c5.9xlarge
“on-demand” instance with 36 CPUs, and could have been a
factor of 3–4 cheaper using a “spot” instance.

This initial version of the IMI (version 1.0) has some
limitations in functionality and does not include some of
the newer capabilities recently developed within the analyt-
ical inversion framework. Priority developments for future
IMI versions include (1) extension of pre-cut GEOS win-
dows to continental domains outside of North America, Eu-
rope, and Asia; (2) the option to use lognormal rather than
normal error pdf’s for prior emissions to resolve the long
tail of the emission distribution (Maasakkers et al., 2019;
Z. Chen et al., 2022); (3) the option to use non-uniform
prior and observational error covariance matrices, includ-
ing off-diagonal terms; (4) upgrade of the global GEOS-
Chem simulation used to generate boundary conditions from
4◦× 5◦ to 2◦× 2.5◦ resolution; (5) more optimal selection of
state vector elements with a Gaussian mixture model (Turner
and Jacob, 2015); (6) use of Kalman filter techniques for
continuous emission monitoring with user-specified update
frequency (Varon et al., 2022b); (7) incorporation of data
from future globally surveying satellite instruments includ-
ing GeoCarb (Moore et al., 2018), CO2M (Sierk et al., 2019),
MethaneSAT (Wofsy and Hamburg, 2019), and GOSAT-GW
(Kasahara et al., 2020); and (8) application to inversions
for CO and CO2 emissions. This together with continued
improvements to the operational TROPOMI methane prod-
uct will make the IMI an increasingly powerful tool for re-
searchers and stakeholders to monitor methane emissions
worldwide at high resolution using satellite data.

Code availability. Source code and documentation for the IMI are
available at https://imi.seas.harvard.edu (last access: 18 July 2022;
Varon et al., 2022a). The code used in this paper is permanently
archived at https://doi.org/10.5281/zenodo.6578547 (Varon et al.,
2022c).

Data availability. The TROPOMI methane data are available on
the Amazon Web Services (AWS) cloud at https://registry.opendata.
aws/sentinel5p (last access: 8 June 2022; AWS, 2022). The GEOS-
FP emission fields, boundary condition fields, and meteorologi-

cal fields are available on AWS at https://registry.opendata.aws/
geoschem-input-data (AWS, 8 June 2022).
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