Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5787-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5787-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations
Daniel J. Varon
CORRESPONDING AUTHOR
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Daniel J. Jacob
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Melissa Sulprizio
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Lucas A. Estrada
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
William B. Downs
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Lu Shen
Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
Sarah E. Hancock
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Hannah Nesser
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Elise Penn
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
Zichong Chen
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China
Alba Lorente
SRON Netherlands Institute for Space Research, Leiden, the Netherlands
Ashutosh Tewari
ExxonMobil Technology and Engineering Company, Annandale, New Jersey, USA
Cynthia A. Randles
ExxonMobil Technology and Engineering Company, Annandale, New Jersey, USA
Model code and software
Integrated Methane Inversion (IMI) beta-2 release - Source code Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles https://doi.org/10.5281/zenodo.6578547
Short summary
Reducing atmospheric methane emissions is critical to slow near-term climate change. Globally surveying satellite instruments like the TROPOspheric Monitoring Instrument (TROPOMI) have unique capabilities for monitoring atmospheric methane around the world. Here we present a user-friendly cloud-computing tool that enables researchers and stakeholders to quantify methane emissions across user-selected regions of interest using TROPOMI satellite observations.
Reducing atmospheric methane emissions is critical to slow near-term climate change. Globally...