Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5757-2022
https://doi.org/10.5194/gmd-15-5757-2022
Development and technical paper
 | 
25 Jul 2022
Development and technical paper |  | 25 Jul 2022

Assessing the robustness and scalability of the accelerated pseudo-transient method

Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov

Related authors

Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024,https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs)
Ludovic Räss, Aleksandar Licul, Frédéric Herman, Yury Y. Podladchikov, and Jenny Suckale
Geosci. Model Dev., 13, 955–976, https://doi.org/10.5194/gmd-13-955-2020,https://doi.org/10.5194/gmd-13-955-2020, 2020
Short summary

Related subject area

Numerical methods
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive a common age model for several paleoclimatic sites using absolute and relative dating constraints
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024,https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Enhancing Single-Precision with Quasi Double-Precision: Achieving Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986,https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary

Cited articles

Alamatian, J.: A new formulation for fictitious mass of the Dynamic Relaxation method with kinetic damping, Comput. Struct., 90–91, 42–54, https://doi.org/10.1016/j.compstruc.2011.10.010, 2012. a
Alkhimenkov, Y., Khakimova, L., and Podladchikov, Y.: Stability of discrete schemes of Biot's poroelastic equations, Geophys. J. Int., 225, 354–377, https://doi.org/10.1093/gji/ggaa584, 2021a. a, b
Alkhimenkov, Y., Räss, L., Khakimova, L., Quintal, B., and Podladchikov, Y.: Resolving Wave Propagation in Anisotropic Poroelastic Media Using Graphical Processing Units (GPUs), J. Geophys. Res.-Sol. Ea., 126, 7, https://doi.org/10.1029/2020JB021175, 2021b. a
Bakhvalov, N. S.: On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comp. Math. Math.+, 6, 101–135, https://doi.org/10.1016/0041-5553(66)90118-2, 1966. a
Barnes, M. R.: Form Finding and Analysis of Tension Structures by Dynamic Relaxation, International Journal of Space Structures, 14, 89–104, https://doi.org/10.1260/0266351991494722, 1999. a
Download
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.