Articles | Volume 15, issue 14
Development and technical paper
25 Jul 2022
Development and technical paper |  | 25 Jul 2022

Assessing the robustness and scalability of the accelerated pseudo-transient method

Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov

Related authors

Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909,,, 2024
Short summary
Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs)
Ludovic Räss, Aleksandar Licul, Frédéric Herman, Yury Y. Podladchikov, and Jenny Suckale
Geosci. Model Dev., 13, 955–976,,, 2020
Short summary

Related subject area

Numerical methods
P3D-BRNS v1.0.0: a three-dimensional, multiphase, multicomponent, pore-scale reactive transport modelling package for simulating biogeochemical processes in subsurface environments
Amir Golparvar, Matthias Kästner, and Martin Thullner
Geosci. Model Dev., 17, 881–898,,, 2024
Short summary
MinVoellmy v1: a lightweight model for simulating rapid mass movements based on a modified Voellmy rheology
Stefan Hergarten
Geosci. Model Dev., 17, 781–794,,, 2024
Short summary
Scalable Feature Extraction and Tracking (SCAFET): a general framework for feature extraction from large climate data sets
Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu
Geosci. Model Dev., 17, 301–320,,, 2024
Short summary
Sweep interpolation: a cost-effective semi-Lagrangian scheme in the Global Environmental Multiscale model
Mohammad Mortezazadeh, Jean-François Cossette, Ashu Dastoor, Jean de Grandpré, Irena Ivanova, and Abdessamad Qaddouri
Geosci. Model Dev., 17, 335–346,,, 2024
Short summary
CHONK 1.0: landscape evolution framework: cellular automata meets graph theory
Boris Gailleton, Luca C. Malatesta, Guillaume Cordonnier, and Jean Braun
Geosci. Model Dev., 17, 71–90,,, 2024
Short summary

Cited articles

Alamatian, J.: A new formulation for fictitious mass of the Dynamic Relaxation method with kinetic damping, Comput. Struct., 90–91, 42–54,, 2012. a
Alkhimenkov, Y., Khakimova, L., and Podladchikov, Y.: Stability of discrete schemes of Biot's poroelastic equations, Geophys. J. Int., 225, 354–377,, 2021a. a, b
Alkhimenkov, Y., Räss, L., Khakimova, L., Quintal, B., and Podladchikov, Y.: Resolving Wave Propagation in Anisotropic Poroelastic Media Using Graphical Processing Units (GPUs), J. Geophys. Res.-Sol. Ea., 126, 7,, 2021b. a
Bakhvalov, N. S.: On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comp. Math. Math.+, 6, 101–135,, 1966. a
Barnes, M. R.: Form Finding and Analysis of Tension Structures by Dynamic Relaxation, International Journal of Space Structures, 14, 89–104,, 1999. a
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.