Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5757-2022
https://doi.org/10.5194/gmd-15-5757-2022
Development and technical paper
 | 
25 Jul 2022
Development and technical paper |  | 25 Jul 2022

Assessing the robustness and scalability of the accelerated pseudo-transient method

Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov

Related authors

Overcoming the numerical challenges owing to rapid ductile localization
Arne Spang, Marcel Thielmann, Casper Pranger, Albert de Montserrat, and Ludovic Räss
EGUsphere, https://doi.org/10.5194/egusphere-2025-2417,https://doi.org/10.5194/egusphere-2025-2417, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024,https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary

Cited articles

Alamatian, J.: A new formulation for fictitious mass of the Dynamic Relaxation method with kinetic damping, Comput. Struct., 90–91, 42–54, https://doi.org/10.1016/j.compstruc.2011.10.010, 2012. a
Alkhimenkov, Y., Khakimova, L., and Podladchikov, Y.: Stability of discrete schemes of Biot's poroelastic equations, Geophys. J. Int., 225, 354–377, https://doi.org/10.1093/gji/ggaa584, 2021a. a, b
Alkhimenkov, Y., Räss, L., Khakimova, L., Quintal, B., and Podladchikov, Y.: Resolving Wave Propagation in Anisotropic Poroelastic Media Using Graphical Processing Units (GPUs), J. Geophys. Res.-Sol. Ea., 126, 7, https://doi.org/10.1029/2020JB021175, 2021b. a
Bakhvalov, N. S.: On the convergence of a relaxation method with natural constraints on the elliptic operator, USSR Comp. Math. Math.+, 6, 101–135, https://doi.org/10.1016/0041-5553(66)90118-2, 1966. a
Barnes, M. R.: Form Finding and Analysis of Tension Structures by Dynamic Relaxation, International Journal of Space Structures, 14, 89–104, https://doi.org/10.1260/0266351991494722, 1999. a
Download
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Share