Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5547-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5547-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Computationally efficient methods for large-scale atmospheric inverse modeling
Taewon Cho
Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
Department of Mathematics and Computational Modeling and Data Analytics Division, Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA
Scot M. Miller
Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
Arvind K. Saibaba
Department of Mathematics, North Carolina State University, Raleigh, NC, USA
Related authors
No articles found.
Hanyu Liu, Felix R. Vogel, Misa Ishizawa, Zhen Zhang, Benjamin Poulter, Doug E. J. Worthy, Leyang Feng, Anna L. Gagné-Landmann, Ao Chen, Ziting Huang, Dylan C. Gaeta, Joe R. Melton, Douglas Chan, Vineet Yadav, Deborah Huntzinger, and Scot M. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-2150, https://doi.org/10.5194/egusphere-2025-2150, 2025
Short summary
Short summary
We find that the state-of-the-art process-based methane flux models have both lower flux magnitude and reduced inter-model uncertainty compared to a previous model inter-comparison from over a decade ago. Despite these improvements, methane flux estimates from process-based models are still likely too high compared to atmospheric observations. We also find that models with simpler parameterizations often result in better agreement with atmospheric observations in high-latitude North America.
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024, https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Short summary
Making an informed decision about what prior information to incorporate or discard in an inverse model is important yet very challenging, as it is often not straightforward to distinguish between informative and non-informative variables. In this study, we develop a new approach for incorporating prior information in an inverse model using predictor variables, while simultaneously selecting the relevant predictor variables for the estimation of the unknown quantity of interest.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Xiaoling Liu, August L. Weinbren, He Chang, Jovan M. Tadić, Marikate E. Mountain, Michael E. Trudeau, Arlyn E. Andrews, Zichong Chen, and Scot M. Miller
Geosci. Model Dev., 14, 4683–4696, https://doi.org/10.5194/gmd-14-4683-2021, https://doi.org/10.5194/gmd-14-4683-2021, 2021
Short summary
Short summary
Observations of greenhouse gases have become far more numerous in recent years due to new satellite observations. The sheer size of these datasets makes it challenging to incorporate these data into statistical models and use these data to estimate greenhouse gas sources and sinks. In this paper, we develop an approach to reduce the size of these datasets while preserving the most information possible. We subsequently test this approach using satellite observations of carbon dioxide.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Cited articles
Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation
for atmospheric CO2, Tellus B, 58,
359–365, https://doi.org/10.1111/j.1600-0889.2006.00218.x, 2006. a
Bardsley, J.: Computational Uncertainty Quantification for Inverse Problems,
Computer Science and Engineering, SIAM,
ISBN 978-1-611975-37-6,
2018. a
Barlow, J. L.: Reorthogonalization for the Golub–Kahan–Lanczos
bidiagonal reduction, Numer. Math., 124, 237–278, 2013. a
Benning, M. and Burger, M.: Modern regularization methods for inverse problems,
Acta Numer., 27, 1–111, 2018. a
Björck, Å.: Numerical Methods for Least Squares Problems, SIAM, Philadelphia, https://doi.org/10.1137/1.9781611971484, 1996. a
Bousserez, N. and Henze, D. K.: Optimal and scalable methods to approximate the
solutions of large-scale Bayesian problems: theory and application to
atmospheric inversion and data assimilation, Q. J. Roy.
Meteor. Soc., 144, 365–390, https://doi.org/10.1002/qj.3209, 2018. a
Brasseur, G. and Jacob, D.: Modeling of Atmospheric Chemistry, Cambridge
University Press,
https://doi.org/10.1017/9781316544754, 2017. a, b
Buis, A.: GeoCarb: A New View of Carbon Over the Americas, ExploreEarth,
https://www.nasa.gov/feature/jpl/geocarb-a-new-view-of-carbon-over-the-americas (last access: 13 July 2022),
2018. a
Chatterjee, A. and Michalak, A. M.: Technical Note: Comparison of ensemble Kalman filter and variational approaches for CO2 data assimilation, Atmos. Chem. Phys., 13, 11643–11660, https://doi.org/10.5194/acp-13-11643-2013, 2013. a
Chatterjee, A., Michalak, A. M., Anderson, J. L., Mueller, K. L., and Yadav,
V.: Toward reliable ensemble Kalman filter estimates of CO2 fluxes,
J. Geophys. Res.-Atmos., 117, D22306,
https://doi.org/10.1029/2012JD018176, 2012. a
Chen, Z., Liu, J., Henze, D. K., Huntzinger, D. N., Wells, K. C., Sitch, S., Friedlingstein, P., Joetzjer, E., Bastrikov, V., Goll, D. S., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D. L., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Poulter, B., Tian, H., Wiltshire, A. J., Zaehle, S., and Miller, S. M.: Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Carbon Observatory 2 satellite and terrestrial biospheric models, Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, 2021a. a
Chen, Z., Huntzinger, D. N., Liu, J., Piao, S., Wang, X., Sitch, S.,
Friedlingstein, P., Anthoni, P., Arneth, A., Bastrikov, V., Goll, D. S.,
Haverd, V., Jain, A. K., Joetzjer, E., Kato, E., Lienert, S., Lombardozzi,
D. L., McGuire, P. C., Melton, J. R., Nabel, J. E. M. S., Pongratz, J.,
Poulter, B., Tian, H., Wiltshire, A. J., Zaehle, S., and Miller, S. M.: Five
years of variability in the global carbon cycle: comparing an estimate from
the Orbiting Carbon Observatory-2 and process-based models, Environ.
Res. Lett., 16, 054041, https://doi.org/10.1088/1748-9326/abfac1, 2021b. a
Cho, T., Chung, J., Miller, S. M., and Saibaba, A. K.: Inverse-Modeling/genHyBRmean: Efficient methods for large-scale atmospheric inverse modeling (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5772660, 2021. a
Chung, J. and Gazzola, S.: Computational methods for large-scale inverse
problems: a survey on hybrid projection methods, arXiv [preprint], arXiv:2105.07221, 2021. a, b
Crisp, D.: Measuring atmospheric carbon dioxide from space with the Orbiting
Carbon Observatory-2 (OCO-2), in: Earth Observing Systems XX, edited by:
Butler, J. J., Xiong, X. J., and Gu, X., International
Society for Optics and Photonics, SPIE, vol. 9607, 1–7, https://doi.org/10.1117/12.2187291, 2015. a
Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller, J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O'Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and Jones, D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019. a
Davis, K. J., Deng, A., Lauvaux, T., Miles, N. L., Richardson, S. J.,
Sarmiento, D. P., Gurney, K. R., Hardesty, R. M., Bonin, T. A., Brewer,
W. A., Lamb, B. K., Shepson, P. B., Harvey, R. M., Cambaliza, M. O., Sweeney,
C., Turnbull, J. C., Whetstone, J., and Karion, A.: The Indianapolis Flux
Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission
measurements, Elementa, 5, 21,
https://doi.org/10.1525/elementa.188, 2017. a
Eldering, A., Wennberg, P. O., Crisp, D., Schimel, D. S., Gunson, M. R.,
Chatterjee, A., Liu, J., Schwandner, F. M., Sun, Y., O'Dell,
C. W., Frankenberg, C., Taylor, T., Fisher, B., Osterman, G. B., Wunch, D.,
Hakkarainen, J., Tamminen, J., and Weir, B.: The Orbiting Carbon
Observatory-2 early science investigations of regional carbon dioxide
fluxes, Science, 358, 6360, https://doi.org/10.1126/science.aam5745, 2017. a
Enting, I.: Inverse Problems in Atmospheric Constituent Transport, Cambridge
Atmospheric and Space Science Series, Cambridge University Press,
ISBN-13 978-0521018081, ISBN-10 0521018080, 2002. a
Ganesan, A. L., Rigby, M., Zammit-Mangion, A., Manning, A. J., Prinn, R. G., Fraser, P. J., Harth, C. M., Kim, K.-R., Krummel, P. B., Li, S., Mühle, J., O'Doherty, S. J., Park, S., Salameh, P. K., Steele, L. P., and Weiss, R. F.: Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods, Atmos. Chem. Phys., 14, 3855–3864, https://doi.org/10.5194/acp-14-3855-2014, 2014. a
Gazzola, S. and Sabaté Landman, M.: Krylov methods for inverse problems:
Surveying classical, and introducing new, algorithmic approaches,
GAMM-Mitteilungen, 43, e202000017, https://doi.org/10.1002/gamm.202000017, 2020. a
Gourdji, S. M., Mueller, K. L., Yadav, V., Huntzinger, D. N., Andrews, A. E., Trudeau, M., Petron, G., Nehrkorn, T., Eluszkiewicz, J., Henderson, J., Wen, D., Lin, J., Fischer, M., Sweeney, C., and Michalak, A. M.: North American CO2 exchange: inter-comparison of modeled estimates with results from a fine-scale atmospheric inversion, Biogeosciences, 9, 457–475, https://doi.org/10.5194/bg-9-457-2012, 2012. a
Groetsch, C.: Comments on Morozov’s discrepancy principle, in: Improperly
posed problems and their numerical treatment, Springer, 97–104, https://doi.org/10.1007/978-3-0348-5460-3_7, 1983. a
Hansen, P. C.: Discrete Inverse Problems: Insight and Algorithms, SIAM,
Philadelphia, https://doi.org/10.1137/1.9780898718836, 2010. a, b
Hase, N., Miller, S. M., Maaß, P., Notholt, J., Palm, M., and Warneke, T.: Atmospheric inverse modeling via sparse reconstruction, Geosci. Model Dev., 10, 3695–3713, https://doi.org/10.5194/gmd-10-3695-2017, 2017. a
Henze, D. K., Hakami, A., and Seinfeld, J. H.: Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7, 2413–2433, https://doi.org/10.5194/acp-7-2413-2007, 2007. a
Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak,
A. M., Dlugokencky, E., Tans, P. P., Shiga, Y. P., Mountain, M., Nehrkorn,
T., Montzka, S. A., McKain, K., Kofler, J., Trudeau, M., Michel, S. E.,
Biraud, S. C., Fischer, M. L., Worthy, D. E. J., Vaughn, B. H., White, J.
W. C., Yadav, V., Basu, S., and van der Velde, I. R.: Enhanced North
American carbon uptake associated with El Niño, Sci. Adv.,
5, 6, https://doi.org/10.1126/sciadv.aaw0076, 2019. a
Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis,
K. J., and Grainger, C. A.: A near-field tool for simulating the upstream
influence of atmospheric observations: The Stochastic Time-Inverted
Lagrangian Transport (STILT) model, J. Geophys. Res.-Atmos., 108, 4493, https://doi.org/10.1029/2002JD003161, 2003. a
Liu, X., Weinbren, A. L., Chang, H., Tadić, J. M., Mountain, M. E., Trudeau, M. E., Andrews, A. E., Chen, Z., and Miller, S. M.: Data reduction for inverse modeling: an adaptive approach v1.0, Geosci. Model Dev., 14, 4683–4696, https://doi.org/10.5194/gmd-14-4683-2021, 2021. a, b, c
Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N.,
Goto, K., Nakazawa, T., Ishikawa, K., and Ogawa, T.: Worldwide Measurements
of Atmospheric CO2 and Other Trace Gas Species Using Commercial
Airlines, J. Atmos. Ocean. Tech., 25, 1744–1754,
https://doi.org/10.1175/2008JTECHA1082.1, 2008. a
Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion, Atmos. Chem. Phys., 8, 6341–6353, https://doi.org/10.5194/acp-8-6341-2008, 2008. a
Michalak, A. M., Bruhwiler, L., and Tans, P. P.: A geostatistical approach to
surface flux estimation of atmospheric trace gases, J. Geophys.
Res.-Atmos., 109, D14109, https://doi.org/10.1029/2003JD004422, 2004. a, b
Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R., Peters, W., and
Tans, P. P.: Maximum likelihood estimation of covariance parameters for
Bayesian atmospheric trace gas surface flux inversions, J.
Geophys. Res.-Atmos., 110, D24107, https://doi.org/10.1029/2005JD005970, 2005. a
Miller, S. M. and Michalak, A. M.: The impact of improved satellite retrievals on estimates of biospheric carbon balance, Atmos. Chem. Phys., 20, 323–331, https://doi.org/10.5194/acp-20-323-2020, 2020. a
Miller, S. M., Michalak, A. M., and Levi, P. J.: Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions, Geosci. Model Dev., 7, 303–315, https://doi.org/10.5194/gmd-7-303-2014, 2014. a
Miller, S. M., Michalak, A. M., Yadav, V., and Tadić, J. M.: Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite, Atmos. Chem. Phys., 18, 6785–6799, https://doi.org/10.5194/acp-18-6785-2018, 2018. a
Miller, S. M., Saibaba, A. K., Trudeau, M. E., Mountain, M. E., and Andrews, A. E.: Geostatistical inverse modeling with large atmo- spheric data: data files for a case study from OCO-2 (Version 1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.3241466, 2019. a
Miller, S. M., Saibaba, A. K., Trudeau, M. E., Mountain, M. E., and Andrews, A. E.: Geostatistical inverse modeling with very large datasets: an example from the Orbiting Carbon Observatory 2 (OCO-2) satellite, Geosci. Model Dev., 13, 1771–1785, https://doi.org/10.5194/gmd-13-1771-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Mitchell, L. E., Crosman, E. T., Jacques, A. A., Fasoli, B., Leclair-Marzolf,
L., Horel, J., Bowling, D. R., Ehleringer, J. R., and Lin, J. C.: Monitoring
of greenhouse gases and pollutants across an urban area using a light-rail
public transit platform, Atmos. Environ., 187, 9–23,
https://doi.org/10.1016/j.atmosenv.2018.05.044, 2018. a
Nakajima, M., Kuze, A., and Suto, H.: The current status of GOSAT and the
concept of GOSAT-2, in: Sensors, Systems, and Next-Generation Satellites
XVI, edited by: Meynart, R., Neeck, S. P., and Shimoda, H., International Society for Optics and Photonics, SPIE, vol. 8533, 21–30,
https://doi.org/10.1117/12.974954, 2012. a
Nehrkorn, T., Eluszkiewicz, J., Wofsy, S., Lin, J., Gerbig, C., Longo, M., and
Freitas, S.: Coupled weather research and forecasting–stochastic
time-inverted Lagrangian transport (WRF–STILT) model, Meteorol. Atmos.
Phys., 107, 51–64, https://doi.org/10.1007/s00703-010-0068-x, 2010. a
NOAA Global Monitoring Laboratory: Observation sites,
https://gml.noaa.gov/dv/site/, last access: 13 July 2022. a
O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Velazco, V. A.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, 2018. a
Peiro, H., Crowell, S., Schuh, A., Baker, D. F., O'Dell, C., Jacobson, A. R., Chevallier, F., Liu, J., Eldering, A., Crisp, D., Deng, F., Weir, B., Basu, S., Johnson, M. S., Philip, S., and Baker, I.: Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) version 9 and in situ data and comparison to OCO-2 version 7, Atmos. Chem. Phys., 22, 1097–1130, https://doi.org/10.5194/acp-22-1097-2022, 2022. a
Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A. M.,
Gallagher, M., Hermann, M., Pontaud, M., Ziereis, H., Boulanger, D.,
Marshall, J., Nèdèlec, P., Smit, H. G. J., Friess, U., Flaud, J.-M.,
Wahner, A., Cammas, J.-P., Volz-Thomas, A., and TEAM, I.: Global-scale
atmosphere monitoring by in-service aircraft – current achievements and
future prospects of the European Research Infrastructure IAGOS, Tellus B, 67, 28452,
https://doi.org/10.3402/tellusb.v67.28452, 2015. a
Rasmussen, C. E. and Williams, C.: Gaussian Processes for Machine Learning, the
MIT Press, 2, https://doi.org/10.7551/mitpress/3206.001.0001, 2006. a
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice,
vol. 2, World scientific, https://doi.org/10.1142/3171, 2000. a
Saibaba, A. K. and Kitanidis, P. K.: Efficient methods for large-scale linear
inversion using a geostatistical approach, Water Resour. Res., 48, W05522, https://doi.org/10.1029/2011WR011778,
2012. a
Saibaba, A. K. and Kitanidis, P. K.: Fast computation of uncertainty
quantification measures in the geostatistical approach to solve inverse
problems, Adv. Water Resour., 82, 124–138,
https://doi.org/10.1016/j.advwatres.2015.04.012, 2015. a, b, c, d
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., and Lenzen, F.:
Variational methods in imaging, https://doi.org/10.1007/978-0-387-69277-7_8, 2009. a
Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation Network: initial evaluation, Atmos. Chem. Phys., 16, 13449–13463, https://doi.org/10.5194/acp-16-13449-2016, 2016. a
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter
Estimation, Other Titles in Applied Mathematics, SIAM, https://doi.org/10.1137/1.9780898717921, 2005. a
Yadav, V. and Michalak, A. M.: Improving computational efficiency in large linear inverse problems: an example from carbon dioxide flux estimation, Geosci. Model Dev., 6, 583–590, https://doi.org/10.5194/gmd-6-583-2013, 2013. a, b
Zammit-Mangion, A., Bertolacci, M., Fisher, J., Stavert, A., Rigby, M. L., Cao,
Y., and Cressie, N.: WOMBAT: A fully Bayesian global flux-inversion
framework, arXiv [preprint], arXiv:2102.04004, 2021. a
Short summary
Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges. This article describes computationally efficient methods for large-scale atmospheric inverse modeling.
Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air...