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Abstract. Atmospheric inverse modeling describes the pro-
cess of estimating greenhouse gas fluxes or air pollution
emissions at the Earth’s surface using observations of these
gases collected in the atmosphere. The launch of new satel-
lites, the expansion of surface observation networks, and a
desire for more detailed maps of surface fluxes have yielded
numerous computational and statistical challenges for stan-
dard inverse modeling frameworks that were often originally
designed with much smaller data sets in mind. In this arti-
cle, we discuss computationally efficient methods for large-
scale atmospheric inverse modeling and focus on addressing
some of the main computational and practical challenges. We
develop generalized hybrid projection methods, which are
iterative methods for solving large-scale inverse problems,
and specifically we focus on the case of estimating surface
fluxes. These algorithms confer several advantages. They are
efficient, in part because they converge quickly, they exploit
efficient matrix–vector multiplications, and they do not re-
quire inversion of any matrices. These methods are also ro-
bust because they can accurately reconstruct surface fluxes,
they are automatic since regularization or covariance matrix
parameters and stopping criteria can be determined as part of
the iterative algorithm, and they are flexible because they can
be paired with many different types of atmospheric models.
We demonstrate the benefits of generalized hybrid methods
with a case study from NASA’s Orbiting Carbon Observa-
tory 2 (OCO-2) satellite. We then address the more challeng-
ing problem of solving the inverse model when the mean of
the surface fluxes is not known a priori; we do so by refor-

mulating the problem, thereby extending the applicability of
hybrid projection methods to include hierarchical priors. We
further show that by exploiting mathematical relations pro-
vided by the generalized hybrid method, we can efficiently
calculate an approximate posterior variance, thereby provid-
ing uncertainty information.

1 Introduction

Numerous satellites and ground-based sensors observe
greenhouse gas and air pollution mixing ratios in the at-
mosphere. A primary goal of atmospheric inverse modeling
(AIM) is to estimate emissions or fluxes at the Earth’s surface
using these observations (Brasseur and Jacob, 2017; Enting,
2002; Michalak et al., 2004; Tarantola, 2005).

The number of greenhouse gas and air pollution measure-
ments has greatly expanded in the past decade, enabling in-
vestigations of surface fluxes across larger regions, longer
time periods, and/or at finer spatial and temporal detail. Car-
bon dioxide (CO2) offers an illustrative example. The Green-
house Gas Observing Satellite (GOSAT), the first satellite
dedicated to monitoring CO2 from space, launched in 2009
and collects ∼ 1× 103 high-quality observations globally
each day (e.g., Nakajima et al., 2012). NASA’s Orbiting Car-
bon Observatory 2 (OCO-2 satellite) launched in 2014 and
collects ∼ 100 times more high-quality observations (Crisp,
2015; Eldering et al., 2017), and upcoming satellites like the
Geostationary Carbon Observatory (GeoCarb) could collect
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up to ∼ 1× 107 each day (though some of these observa-
tions will likely be unusable due to cloud cover) (Buis, 2018).
These new observations are complemented by an expanding
ground-based network of observations (NOAA Global Moni-
toring Laboratory, 2022) and expanded aircraft observations,
including partnerships with several airlines to measure atmo-
spheric CO2 from regular commercial flights (Machida et al.,
2008; Petzold et al., 2015). In addition, numerous cities are
now monitored by dense urban networks of ground-based
air sensors (e.g., Shusterman et al., 2016; Davis et al., 2017;
Mitchell et al., 2018).

The growing spatial coverage and sheer number of atmo-
spheric GHG observations make it increasingly possible to
estimate GHG fluxes in greater spatial and temporal detail; it
is key to developing inverse models that can represent all of
the information in the observations by estimating emissions
at sufficiently high spatiotemporal resolution. In addition, the
increasing number of observation networks opens the possi-
bility of rapid monitoring of the carbon cycle and monitor-
ing of changes in anthropogenic emissions – from local to
global scales. There is a concomitant need to report realistic
uncertainty bounds on these emissions. Arguably, scientists
require inverse modeling systems that can be used to estimate
emissions and associated uncertainties quickly and at suffi-
cient spatiotemporal resolution to facilitate this broad goal.

However, the computational challenges of achieving these
goals are many. First, large-scale inverse models based on
Bayesian statistics often require formulation of very large
covariance matrices, calculation of matrix–matrix products
with those covariance matrices, and/or solution of linear sys-
tems with those matrices. Second, existing inverse models of-
ten assume a Gaussian prior distribution for use with Bayes’
theorem, where the prior mean vector and covariance matrix
are required. Statistical approaches to estimating these co-
variance matrix parameters (e.g., restricted maximum like-
lihood estimation or Markov chain Monte Carlo methods)
are often difficult to implement for extremely large inverse
problems (Ganesan et al., 2014; Michalak et al., 2005), and
a common approach is to populate the covariance matrices
using expert knowledge. Third, fluxes often need to be esti-
mated using iterative optimization algorithms for very large
problems, and convergence of these algorithms can be slow
(Miller et al., 2020). Fourth, calculating uncertainties in the
estimated fluxes can be computationally prohibitive. The de-
sign of new methods to improve the computational feasibility
of large atmospheric inverse problems has been the focus of
numerous recent publications (see, e.g., Baker et al., 2006;
Bousserez and Henze, 2018; Chatterjee and Michalak, 2013;
Chatterjee et al., 2012; Chen et al., 2021a, b; Gourdji et al.,
2012; Henze et al., 2007; Liu et al., 2021; Meirink et al.,
2008; Miller et al., 2020, 2014; Yadav and Michalak, 2013;
Zammit-Mangion et al., 2021).

Overview of features and contributions

The purpose of this study is to integrate several state-of-the-
art computational and mathematical tools with AIM – tools
that have been developed for and have had considerable suc-
cess in other scientific fields (e.g., passive seismic tomogra-
phy, medical imaging). Specifically, we investigate the use of
generalized hybrid (genHyBR) projection methods for sur-
face flux estimation and extend their use for inverse problems
where the mean of the fluxes is not known a priori (some-
times referred to as geostatistical inverse modeling) (Chung
and Saibaba, 2017; Saibaba et al., 2020). We address these
challenges in our present work.

Building on prior work in Miller et al. (2020), we propose
a unified computational framework for large-scale AIM with
the following features.

1. We describe iterative genHyBR methods that are com-
putationally efficient since they typically converge in a
few iterations, are efficient in terms of storage, and work
for very large satellite-based inverse problems. For ex-
ample, we demonstrate the performance of genHyBR
methods on two case studies previously considered in
Miller et al. (2020). In the larger case study, we solve an
inverse problem with 9× 106 unknown CO2 fluxes and
1× 105 CO2 observations.

2. We extend these methods to handle the case where the
mean of the prior distribution is unknown, making gen-
HyBR applicable to a broader range of inverse modeling
applications that are common in the atmospheric sci-
ence community (e.g., geostatistical inverse modeling).

3. Our approach is flexible in that it can be combined
with any atmospheric transport model (e.g., either La-
grangian, particle-following models or the adjoint of an
Eulerian model), and it can be used with a wide variety
of covariance matrices for the unknown parameters and
the noise.

4. Our framework also allows for efficiently estimating
regularization parameters as part of the reconstruction,
thus making it easier to objectively estimate the hyper-
parameters or covariance matrix parameters as part of
the inverse model. We focus on the discrepancy prin-
ciple (DP), which requires prior knowledge of an esti-
mate of the noise, but provide alternate methods such
as the unbiased predictive risk estimator and the gen-
eralized cross-validation, the latter of which does not
require prior information regarding the noise level.

5. During the solution of the estimates, our solver stores
information about the Krylov subspaces that can be used
to estimate the posterior variance (at minimal compu-
tational cost), which gives insight into the uncertainty
in the reconstructed solution. More precisely, evaluating
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uncertainties does not require additional model evalua-
tions.

An overview of the paper is as follows. In Sect. 2, we
describe the problem setup from a Bayesian perspective. In
Sect. 3, we describe generalized hybrid methods for atmo-
spheric inverse modeling. We show how to efficiently com-
pute the maximum a posteriori (MAP) estimate and uncer-
tainty estimates (e.g., posterior variance). The focus of this
section is on the fixed mean case. We briefly mention an
extension to the unknown mean case but defer most of the
details to Appendix B. Numerical results are provided in
Sect. 4, and conclusions can be found in Sect. 5.

2 Bayesian approach to inverse modeling

AIM will estimate greenhouse gas fluxes or air pollution
emissions that match atmospheric observations, given an at-
mospheric transport model. It can be represented as an in-
verse problem of the form

z=Hs+ ε, (1)

where z ∈ Rm is a vector of atmospheric observations, H ∈
Rm×n represents the forward atmospheric transport model,
s ∈ Rn is a vector of the unknown surface fluxes or emis-
sions, and ε ∈ Rm represents noise or errors, including er-
rors in the atmospheric observations (z) and in the atmo-
spheric transport model (H). Note that s represents a vector
containing spatial or spatiotemporal fluxes. Also, we assume
ε ∼N (0,R), where R ∈ Rm×m is a positive definite matrix
whose inverse and square root are inexpensive (e.g., a diag-
onal matrix with positive diagonal entries). The goal of the
inverse problem is to estimate s given z and H. The inverse
problem may be ill-posed or under-constrained by available
observations. Therefore, it is common to include prior infor-
mation to mitigate the ill-posedness, which is often referred
to as variational regularization (Scherzer et al., 2009; Ben-
ning and Burger, 2018). We describe two different priors:
fixed mean and unknown mean.

2.1 Fixed mean

A common approach in Bayesian inverse modeling is to
model s as a Gaussian random variable with a fixed, known
mean µ ∈ Rn and prior covariance matrix λ−2Qs ∈ Rn×n. In
many cases, this known mean (µ) is an emissions inven-
tory, a bottom-up flux model, or a process-based model of
CO2 fluxes (Brasseur and Jacob, 2017). This approach is also
known in the literature as Bayesian synthesis inversion. Us-
ing this framework, the prior distribution of s is given as fol-
lows:

s ∼N (µ,λ−2Qs). (2)

We assume that matrix Qs is defined by a covariance ker-
nel that describes the spatial and temporal variance and co-

variance in the prior distribution (Rasmussen and Williams,
2006). Furthermore, λ is a scaling parameter that is known
a priori or has to be determined prior to the inversion pro-
cess. The posterior distribution can be obtained by applying
Bayes’ theorem π(s|z)∝ π(z|s)π(s), which takes the form

π(s|z)∝ exp
(
−

1
2
‖Hs− z‖2R−1 −

λ2

2
‖s−µ‖2

Q−1
s

)
, (3)

where ‖x‖2M = x
>Mx for any symmetric positive definite

matrix M and “∝” denotes a proportionality constant. The
MAP estimate corresponding to this posterior distribution
can be obtained by solving the optimization problem

spost := argmins∈Rn
1
2
‖Hs− z‖2R−1 +

λ2

2
‖s−µ‖2

Q−1
s
. (4)

Alternatively, it can be computed by solving the system of
equations

(H>R−1H+ λ2Q−1
s )spost =H>R−1z+ λ2Q−1

s µ.

It is worth mentioning that the resulting posterior distribu-
tion is also Gaussian, with mean spost and covariance Qpost,
denoted as s|z∼N (spost,Qpost).

The reconstruction quality of Eq. (1) depends crucially on
choosing appropriate covariance matrix parameters, or hy-
perparameters, that govern this prior Eq. (2) and the noise
distribution of ε. In Sect. 3.1, we describe genHyBR meth-
ods for AIM where µ is fixed but λ is not known in advance.

In many applications, the prior mean µ may also not be
known in advance and must be estimated as a part of the in-
version process. Some inverse models (commonly referred to
as geostatistical inverse models) directly assimilate environ-
mental data or data on emitting activities directly into the in-
verse model, and the relationships between the surface fluxes
and these data are rarely known a priori. In other cases, an
emissions inventory or bottom-up flux model may be biased
too high or too low. In these cases, Eq. (2) no longer holds, vi-
olating the statistical assumptions of the inverse model. One
workaround is to scale the inventory or flux model as part of
the inverse modeling process, which we now describe.

2.2 Unknown mean

In cases where the prior mean is unknown, we can represent
the prior information in the form of the hierarchical model:

s|β ∼N (Xβ,λ−2Qs), β ∼N (µβ ,λ−2
β Qβ). (5)

Here X ∈ Rn×p is a fixed matrix that includes covariates
(e.g., environmental data or activity data) or a bottom-up in-
ventory/flux model, Qs ∈ Rn×n is the prior covariance ma-
trix, and λ is a scaling parameter. A set of unknown coeffi-
cients β ∈ Rp scales the columns of X and is estimated as
part of the inverse model. These coefficients are assumed to
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follow a Gaussian distribution with a given mean µβ ∈ Rp,
covariance matrix Qβ ∈ Rp×p, and scaling parameter λβ .

Given the assumptions in Eqs. (1) and (5), from Bayes’
theorem the posterior probability density function for the un-
known mean case can be written as

π(s,β|z)∝π(z|s,β)π(s|β)π(β)

∝exp
(
−

1
2
‖Hs− z‖2R−1 −

λ2

2
‖s−Xβ‖2

Q−1
s

−
λ2
β

2
‖β −µβ‖

2
Q−1
β

)
. (6)

The MAP estimate can be written as the solution of the opti-
mization problem

γ post = argminγ=[s>,β>]>
1
2
‖Hs− z‖2R−1

+
λ2

2
‖s−Xβ‖2

Q−1
s
+
λ2
β

2
‖β −µβ‖

2
Q−1
β

. (7)

The posterior distribution in Eq. (6) is Gaussian; therefore,
the mean of the posterior distribution is also the MAP esti-
mate, and the covariance is the inverse of the Hessian matrix
of Eq. (7) and is given by

0post =[
λ2Q−1

s +H>R−1H −λ2Q−1
s X

−λ2X>Q−1
s λ2

βQ−1
β + λ

2X>Q−1
s X

]−1

. (8)

Therefore, the resulting posterior distribution is

γ | z∼N
(
γ post,0post

)
.

Here, λ and λβ are scaling parameters that may not be known
in advance, but we assume that λβ = αλ with a constant α >
0, where α is set in advance. We describe genHyBR methods
for the unknown mean case in Sect. 3.3.

Note that previous works (Miller et al., 2020; Saibaba and
Kitanidis, 2015) assume an improper prior for β (i.e., p(β)∝
1), in which case a solution estimate can be obtained as ŝ =
Xβ̂ +QsH>ξ̂ , where[

HQsH>+R HX
(HX)> 0

][
ξ̂

β̂

]
=

[
z

0

]
. (9)

The system in Eq. (9) is often referred to as the dual-function
form, and there are several equivalent formulations of these
equations (Michalak et al., 2004). The size of the resulting
system of equations is (m+p)× (m+p), where m is the
number of measurements and p is the number of unknown
parameters in β, so forming or inverting the matrix in Eq. (9)
is unfeasible in many applications. The approach taken in
Saibaba and Kitanidis (2012) and Miller et al. (2020) uses
a matrix-free iterative method to solve Eq. (9); however, the
number of required iterations can be very large, especially for

problems with many measurements and even with the use of
a preconditioner to speed convergence.

In this paper, we follow a different approach to handle the
unknown mean case by using iterative hybrid approaches to a
reformulated problem. Since these methods work directly on
the least squares problem Eq. (7), the number of unknown pa-
rameters is n+p. However, the size of the linear system that
defines the MAP estimate is independent of the number of
observations, making it attractive for large data sets. Further-
more, our framework can handle a wide class of prior covari-
ance operators, where the resulting prior covariance matrices
are large and dense, and explicitly forming and factorizing
these matrices is prohibitively expensive. These include, for
example, prior covariance matrices that arise from nonsepa-
rable, spatiotemporal covariance kernels and parameterized
kernels on non-uniform grids. Our approach only relies on
forming matrix–vector products with the covariance matri-
ces and is compatible with acceleration techniques using fast
Fourier transform (FFT) or hierarchical matrix approaches.
See Chung and Saibaba (2017) and Chung et al. (2018) for
a detailed discussion. Thus, as we show in Sect. 4, our ap-
proach can incorporate various prior models and can scale to
very large data sets.

3 Generalized hybrid projection methods for AIM

In this section, we describe generalized hybrid projection
methods, dubbed genHyBR methods, for AIM. Hybrid pro-
jection methods were first developed in the 1980s as a way
to combine iterative projection methods (e.g., Krylov sub-
space methods) and variational regularization methods (e.g.,
Tikhonov regularization) for solving very large inverse prob-
lems. These are iterative methods, where each iteration re-
quires the expansion of the solution subspace, the estimation
of the regularization parameter(s), and the solution of a pro-
jected, regularized problem. We point the interested reader
to survey papers (Chung and Gazzola, 2021; Gazzola and
Sabaté Landman, 2020). In Chung and Saibaba (2017), gen-
HyBR methods were developed for computing Tikhonov-
regularized solutions to problems where explicit computa-
tions of the square root and inverse of the prior covariance
matrix are not feasible. This work enabled hybrid projection
methods for more general regularization terms. The main
benefits of genHyBR methods that make them ideal for large-
scale AIM are efficiency, due to fast convergence to an accu-
rate reconstruction of surface fluxes where efficient matrix–
vector multiplications are exploited at each iteration, auto-
matic estimation of parameters (e.g., hyperparameters and
algorithmic parameters), and flexibility, because they can be
paired with many different atmospheric models.

We describe genHyBR methods for both the fixed mean
case (Sect. 3.1) and the unknown mean case (Sect. 3.3), with
particular emphasis on the associated challenges for large
data sets and subsequent uncertainty quantification (UQ)
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Figure 1. This flowchart provides a general overview of using gen-
HyBR methods for AIM and subsequent UQ. Given input (corre-
sponding to the observations and details of the problem setup), gen-
HyBR is an iterative approach to approximate the MAP estimate.
Each iteration of genHyBR consists of expanding the solution sub-
space (Sect. 3.1.1), projecting the problem, estimating a regulariza-
tion parameter (Sect. 3.1.2), and solving a projected, regularized
problem. After obtaining the MAP estimate, information computed
from genHyBR can be used to efficiently estimate the posterior vari-
ance for UQ (Sect. 3.2).

(Sect. 3.2). We provide a general overview of our approach,
including the main components of genHyBR methods, in the
flowchart in Fig. 1.

3.1 Generalized hybrid methods with a fixed mean

To introduce genHyBR methods, we begin with the fixed
mean case described in Sect. 2. If symmetric decompositions
R−1
= L>RLR and Q−1

s = L>s Ls are available, then optimiza-
tion problem Eq. (4) can be rewritten in the standard least
squares form

spost = argmins∈Rn
1
2

∥∥∥∥[LRH
λLs

]
s−

[
LRz
λLsµ

]∥∥∥∥2

2
.

However, computing Ls can be computationally infeasible
for large n, and λ may not be known a priori. This motivates
us to use the following change in variables,

x←Q−1
s (s−µ), b← z−Hµ, (10)

in which case the solution to problem Eq. (4) is given by
spost = µ+Qsx, where x solves

min
x∈Rn

1
2
‖HQsx− b‖

2
R−1 +

λ2

2
‖x‖2Qs

. (11)

Note that, with this reformulation, we avoid Ls, L−1
s , and

Q−1
s and only require matrix–vector products with Qs. Fur-

thermore, for iterative methods for Eq. (11), the matrix H
does not need to be formed explicitly, as we only need ac-
cess to matrix–vector and matrix–transpose–vector products.

There are two main ingredients in the genHyBR approach:
(1) the generalized Golub–Kahan bidiagonalization approach
for constructing a solution subspace and (2) regularization
parameter estimation methods for computing a suitable reg-
ularization parameter in the projected space.

3.1.1 Generalized Golub–Kahan bidiagonalization

We now describe the generalized Golub–Kahan bidiago-
nalization approach that is the backbone of the genHyBR
method. Given matrices H, R, and Qs and vector b from
Eq. (11), the basic idea is to generate a set of basis vectors
contained in Vk for the Krylov subspace:

Sk ≡R(Vk)=Kk(H>R−1HQs,H>R−1b),

where R(·) denotes the column space and the Krylov sub-
space is Kk(M,f )= Span{f ,Mf , . . .,Mk−1f }. The gener-
ated basis vectors span a low-dimensional subspace that is
rich in information about important directions; thus, solu-
tions to the (smaller) projected problem often provide good
approximations to the solution of the high-dimensional prob-
lem. With initializations δ1 = ‖b‖R−1 , u1 = b/δ1 and γ1v1 =

H>R−1u1, the kth iteration of the generalized Golub–Kahan
bidiagonalization procedure generates vectors uk+1 and vk+1
such that

γk+1uk+1 =HQsvk − γkuk,

δk+1vk+1 =H>R−1uk+1− δk+1vk,

where scalars γk,δk ≥ 0 are computed such that ‖uk‖R−1 =

‖vk‖Qs = 1. At the end of k iterations, we have

Bk ≡



γ1 0 · · · 0

δ2 γ2
. . .

...

0 δ3
. . . 0

...
. . .

. . . γk
0 · · · 0 δk+1


,

Uk+1 ≡
[
u1, . . .,uk+1

]
, and Vk ≡

[
v1, . . .,vk

]
,

where the following relations hold:

HQsVk = Uk+1Bk and

H>R−1Uk+1 = VkB>k + γk+1vk+1e
>

k+1, (12)

where ej is the j th column of an identity matrix with the
appropriate dimensions. Also, matrices Uk+1 and Vk satisfy
the following orthogonality conditions:

U>k+1R−1Uk+1 = Ik+1 and V>k QsVk = Ik, (13)
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with Uk+1δ1e1 = b. Then, for a given λ > 0, the solution to
Eq. (11) is recovered by xk,λ =QsVkyk,λ, where yk,λ is the
solution to the regularized, projected problem

min
y∈Rk

1
2
‖Bky− δ1e1‖

2
2+

λ2

2
‖y‖22. (14)

Note that Eq. (14) is a standard least squares problem with
Tikhonov regularization, and since the coefficient matrix Bk
is of size (k+1)×k, the solution can be computed efficiently
(Björck, 1996). Each iteration of the generalized Golub–
Kahan bidiagonalization process requires one matrix–vector
product with H and its adjoint (suppose we denote its cost
by TH), two matrix–vector products with Qs (similarly, de-
noted TQs ), and additional O(m+n) floating point operations
(flops). To compute the solution of the least squares problem
Eq. (14), the cost is O(k3) flops, and the cost of forming xk,λ
is O(nk) flops. Thus, the overall cost of the algorithm is

TgenGK = 2k(TH+ TQs)+O(k(m+ n))flops.

In practice, the vectors {uk} and {vk} lose orthogonal-
ity in floating point arithmetic, so full or partial re-
orthogonalization (Barlow, 2013) can be used to ensure or-
thogonality. This costs an additional O(k2(m+ n)) flops.
Thus far we have described an iterative method for approx-
imating the MAP estimate, Eq. (4), where the kth iterate is
given by sk,λ = µ+Qsxk,λ for fixed regularization parame-
ter λ.

3.1.2 Regularization parameter estimation methods

In this subsection, we highlight one of the main computa-
tional benefits of hybrid projection methods, which is the
ability to estimate regularization parameters efficiently and
adaptively while still ensuring robustness of the solution.
For genHyBR approaches, we use the generalized Golub–
Kahan bidiagonalization to generate a projection subspace
and solve the projected problem Eq. (14) while simultane-
ously estimating the regularization parameter λ. Note that
the regularization term in the projected system (14) is stan-
dard Tikhonov regularization, and a plethora of parameter
estimation methods exist for Tikhonov regularization (Bard-
sley, 2018; Hansen, 2010). Here we focus on the discrepancy
principle (DP) and point the interested reader to Appendix A
for further details on other parameter estimation methods that
can be incorporated within genHyBR methods for AIM.

The DP is a common approach for estimating a regular-
ization parameter, where the main goal is to determine λ
such that the residual norm for the regularized reconstruction
matches a given estimate of the noise level in the observa-
tions. That is, the DP method selects the largest parameter
value λ for which the reconstructed fluxes sλ satisfy

Dfull(λ)= ‖Hsλ− z‖2R−1 ≤ τm, (15)

where τ ≥ 1 is a user-defined parameter and m is the ex-
pected value of ‖ε‖2R−1 . Typical choices for safety factor τ
are in the range 1≤ τ ≤ 2.

The DP has been used in AIM (Hase et al., 2017) as well as
more generally in inverse problems (Groetsch, 1983; Hansen,
2010). For a given λ, evaluating Dfull(λ) requires computa-
tion of sλ and matrix–vector multiplication by H, which can
get costly if many different values of λ are desired. However,
a major distinction here is that by using an iterative hybrid
formulation, we can exploit relationships in Eq. (12) for more
efficient parameter selection. In particular, the residual norm
can be simplified as

‖Hsk,λ− z‖2R−1 = ‖Bkyk,λ− δ1e1‖
2
2 ≡Dproj(λ). (16)

Thus, we let λk be the regularization parameter estimated
for the projected problem at the kth iteration, such that
Dproj(λk)≤ τm. Then, as the number of iterations k in-
creases, the estimated DP regularization parameter for the
projected problem becomes a better approximation of the DP
parameter for the original problem.

The advantage of this approach is two-fold: the regulariza-
tion parameter is selected adaptively (i.e., each iteration can
have a different regularization parameter), and the cost of pa-
rameter selection is cheap (O(k3) flops) since we work with
small matrices of size (k+1)×k and k is much smaller thanm
and n. Furthermore, there are various theoretical results that
show that selecting the regularization parameter for the pro-
jected problem (i.e., project then regularize) is equivalent to
first estimating the regularization parameter and then using
an iterative projection method (i.e., regularize then project)
(Chung and Gazzola, 2021).

3.2 Approximation to the posterior covariance
matrices

In the Bayesian approach for fixed parameter λ, the posterior
distribution Eq. (3) is Gaussian and, thus, is fully specified by
the mean and covariance matrix. However, neither comput-
ing nor storing the covariance matrix is feasible, making fur-
ther uncertainty estimation challenging. Instead, we follow
the approach described in Chung et al. (2018) and Saibaba
et al. (2020) for the fixed mean case, where an approxima-
tion to the posterior covariance matrix is obtained using the
computed vectors generated during the generalized Golub–
Kahan bidiagonalization process. An advantage of this ap-
proach is that, by storing partial information while comput-
ing the MAP estimate, we can approximately compute the
uncertainty associated with the MAP estimate (e.g., poste-
rior variance) with minimal additional cost and no further
access to the forward and adjoint models. For the fixed mean
case, we refer to this approach as genHyBRs with UQ and
provide a summary in Algorithm 1.

In the following, we provide some details regarding the
estimation of the posterior variance in the known mean case.
This material has previously appeared in Chung et al. (2018,
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Algorithm 1 AIM with fixed mean – genHyBRs with UQ.

Require: Matrices H, R and Q, and vector b.
1: { Compute MAP estimate }
2: initialize u1 = b/‖b‖R−1

3: for j = 1, . . .,k do
4: one iteration of generalized Golub–Kahan bidiagonalization

to obtain Bj ,Uj+1, and Vj
5: estimate regularization parameter λ and compute

xj,λ =QsVjyj,λ where yj,λ solves Eq. (14)
6: end for
7: compute the MAP estimate sk,λ = µ+Qsxk,λ
8: { Compute the approximation to the posterior variance }
9: compute the eigendecomposition B>

k
Bk =Wk2kW>

k
10: compute Zk =QsVkWk and

1k = λ
−2diag( θ1

θ1+λ2 , . . .,
θk

θk+λ
2 )

11: compute dLR =LowRankDiag(Zk1k,Zk) using Algorithm 2
and ds = diagQs

12: estimate diagonal of approximate posterior covariance matrix
dk,λ = λ

−2ds− dLR
13: return MAP estimate sk,λ and variance estimate dk,λ

Sect. 4.1), but we provide a brief description here for com-
pleteness. An alternative expression for the posterior covari-
ance is

Qpost =Qs(λ
2Qs+QsH>R−1HQs)

−1Qs,

which is obtained by factoring out Qs. This expression is not
computationally feasible for large inverse problems but can
be approximated using the outputs of the generalized Golub–
Kahan bidiagonalization (described in Sect. 3.1.1). After k
steps of the generalized Golub–Kahan bidiagonalization ap-
proach, we have matrices Uk+1,Vk , and Bk . Let B>k Bk =
Wk2kW>k be the eigenvalue decomposition with eigenval-
ues θ1, . . .,θk . Next, we compute the matrix Zk =QsVkWk

and the diagonal matrix

1k = λ
−2


θ1

θ1+λ2

. . .
θk

θk+λ
2

 ∈ Rk×k.
Then we can approximate the posterior covariance matrix as

Q̃post =Qs(λ
2Qs+Zk2kZ>k )

−1Qs = λ
−2Qs−Zk1kZ>k ,

providing an efficient representation of the posterior covari-
ance matrix (as a low-rank perturbation of the prior covari-
ance matrix) that can be used for efficient uncertainty quan-
tification. The accuracy of the approximate posterior covari-
ance matrix and of the resulting posterior distribution can be
monitored using the information available from the general-
ized Golub–Kahan bidiagonalization (Saibaba et al., 2020).
Note that in the hybrid approach, we estimate the regular-
ization parameters typically at every iteration; the results
in Saibaba et al. (2020) are to be applied after the iterations

have been terminated and the regularization parameter has
been estimated. The uncertainty estimates therefore depend
on the value of the regularization parameter. In general, the
approximate posterior variance overestimates the uncertainty
and decreases monotonically with the number of iterations k.

To visualize the uncertainty, it is common to compute the
diagonals of the posterior covariance (known as the pos-
terior variance). The diagonals of Qs are typically known
analytically; the diagonals of the low-rank term Zk1kZ>k
can be computed efficiently using Algorithm 2 with input
Y= Zk1k and Z= Zk . An important point worth empha-
sizing is that the approximation to the posterior covariance
need not be computed explicitly. More precisely, in addition
to storing the information required for storing Qs, we only
need to store nk+ k additional entries corresponding to the
matrices Zk and 1k .

In addition, one can also use genHyBRs to compute the
posterior variance of the sum of the fluxes (or analogously
the variance of the mean). To do so, let 1 denote an n× 1
vector of ones and multiply the components of Q̃post as

1>Q̃post1= λ−2(1>Qs1)− (1>Zk)1k(1>Zk)>.

Several existing studies (Yadav and Michalak, 2013; Miller
et al., 2020) describe how to efficiently compute 1>Qs1 us-
ing Kronecker products.

Note that in previous works (Chung et al., 2018; Saibaba
et al., 2020), we found that additional re-orthogonalization
of the generalized Golub–Kahan basis vectors yielded more
accurate results, so we perform them in the numerical exper-
iments.

Algorithm 2 Compute the diagonals of the low-rank term
YZ>. Call as [d] =LowRankDiag(Y,Z).

Require: Matrices Y,Z ∈ Rn×k defining the outer product YZ>
1: for i = 1, . . .,n do
2: di =

∑k
j=1YijZij

3: end for
4: return vector d ∈ Rn containing the diagonals of YZ>

3.3 Hierarchical Gaussian priors: reformulation for
mean estimation

Next we describe genHyBR methods for AIM with unknown
means as described in Sect. 2 with assumptions given in
Eq. (5). First, we reformulate the problem for simultane-
ous estimation of the surface fluxes in s and the covariate
parameters in β. Then, we describe how to use genHyBR
methods for computing the corresponding MAP estimate
Eq. (7) and for subsequent UQ. We refer to this approach as
genHyBRmean with UQ, and since the derivations follow
those in Sect. 3.1 and 3.2, specific details have been rele-
gated to Appendix B. However, we would like to emphasize
that this derivation is new and a contribution of this work.
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Note that optimization problem Eq. (7) can be rewritten in
standard least squares form,

γ post= argmin
γ=[s>,β>]>

1
2

∥∥∥∥∥
[

LRH 0
λLs −λLsX

0 λβLβ

][
s
β

]
−

[ LRz
0

λβLβµβ

]∥∥∥∥∥
2

2

,

if symmetric decompositions R−1
= L>RLR,Q−1

s = L>s Ls,

and Q−1
β = L>β Lβ are available. Since computing Ls can be

computationally unfeasible (e.g., for spatiotemporal covari-
ance matrices where n is large), we propose a similar change
in variables to avoid Ls,

s̃← s−Xµβ , β̃← β −µβ , z̃← z−HXµβ . (17)

We define the concatenated vector γ̃ = [̃s>, β̃
>
]
> and let

K=
[
H 0

]
∈ Rm×(n+p), where 0 ∈ Rm×p is included to

ensure proper matrix multiplication. Then, optimization
problem Eq. (7) can be written as

min
γ̃∈Rn+p

1
2
‖Kγ̃ − z̃‖2R−1 +

λ2

2
‖γ̃ ‖2Q−1 (18)

where

Q=

[
Qs+

1
α2 XQβX> 1

α2 XQβ
1
α2 (XQβ)

> 1
α2 Qβ

]

=

[
Qs 0
0 0

]
+

1
α2

[
X
I

]
Qβ

[
X> I

]
. (19)

Derivations are provided in Appendix B1. Note that, in prac-
tice, neither of the matrices H or K need to be formed ex-
plicitly since we only need access to matrix–vector products
with these matrices and their transposes. Also, we do not ex-
plicitly construct Q but instead provide an efficient way to
form matrix–vector products with Q.

In summary, to handle AIM with an unknown mean, the
genHyBR method can be used to solve Eq. (18) (as de-
scribed in Sect. 3.1 with Q instead of Qs, K instead of H,
and z̃ instead of b) to efficiently obtain the solution γ̃ k,λ =

[̃s>k,λ, β̃
>

k,λ]
>. Then, we recover the MAP estimate for s and

β as

γ post ≈ γ k,λ :=

[̃
sk,λ+Xµβ
β̃k,λ+µβ

]
. (20)

Similarly to the fixed mean case, we can efficiently approxi-
mate the posterior covariance matrix and its diagonals using
elements of the generalized Golub–Kahan bidiagonalization
algorithm, as described in Appendix B3. We note that effi-
cient UQ approaches for the unknown mean case were con-
sidered in Saibaba and Kitanidis (2015), but our approach
differs in that we reuse information contained in the sub-
spaces generated during the iterative method rather than ran-
domization techniques, making these derivations straightfor-
ward and the approaches widely applicable.

4 Numerical results

We evaluate the inverse modeling algorithms described in
this paper using the two case studies described in Sect. 4.1.
For the numerical experiments, we describe the two methods
we test.

– genHyBRs refers to the fixed mean case and involves
solving the optimization problem (4) using the approach
described in Sect. 3.1.1 and 3.1.2.

– genHyBRmean refers to the unknown mean case and
involves solving the optimization problem (18) using
the approach described in Sect. 3.3.

For comparison, we use a direct inversion method, which
solves Eq. (9) using MATLAB’s “backslash” operator. Nu-
merical experiments presented here were obtained using
MATLAB on a compute server with four Intel 15-core
2.8 GHz processors and 1 TB of RAM.

4.1 Overview of the case studies

We explore two case studies on estimating CO2 fluxes across
North America using observations from NASA’s OCO-2
satellite. In the first case study, we estimate CO2 fluxes for
6 weeks (late June through July 2015), an inverse problem
that is small enough to estimate using the direct method.
The second case study using 1 year of observations (Septem-
ber 2014–August 2015) is too large to estimate directly on
many or most computer systems. The goal of these experi-
ments is to demonstrate the performance of the generalized
hybrid methods for solving the inverse problem with auto-
matic parameter selection.

The case studies explored here parallel those in Miller
et al. (2020) and Liu et al. (2021). We provide an overview
of these case studies but refer to Miller et al. (2020) for ad-
ditional detail on the specific setup. Both of the case stud-
ies use synthetic OCO-2 observations that are generated us-
ing CO2 fluxes from the NOAA’s CarbonTracker product
(version 2019b). As a result of this setup, the true CO2
fluxes (s) are known, making it easier to evaluate the accu-
racy of the algorithms tested here. All atmospheric transport
simulations are from the Weather Research and Forecast-
ing (WRF) Stochastic Time-Inverted Lagrangian Transport
Model (STILT) modeling system (Lin et al., 2003; Nehrkorn
et al., 2010). These simulations were generated as part of the
NOAA’s CarbonTracker-Lagrange program (Hu et al., 2019;
Miller et al., 2020). Note that the WRF-STILT outputs can
be used to explicitly construct H, making it straightforward
to calculate the direct solution to the inverse problem in the
6-week case study. By contrast, many inverse modeling stud-
ies use the adjoint of an Eulerian model. These modeling
frameworks rarely produce an explicit H but instead output
the product of H or H> and a vector. Though we use WRF-
STILT for the case studies presented here, the genHyBR al-
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gorithms could also be paired with the adjoint of an Eulerian
model.

The goal is to estimate CO2 fluxes at a 3-hourly temporal
resolution and a 1◦×1◦ latitude–longitude spatial resolution.
Using this modeling framework, synthetic observations were
obtained as in Eq. (1) by adding white Gaussian noise (rep-
resenting measurement and model errors) to the output from
the atmospheric transport model. Note that WRF-STILT
footprints from CarbonTracker-Lagrange are available at 2 s
intervals along the OCO-2 flight track, meaning that there are
fewer footprints available than there are observations in the
original OCO-2 data files. Indeed, many inverse modeling
studies to date have thinned or averaged the OCO-2 observa-
tions before assimilating them within an inverse model (e.g.,
Peiro et al., 2022). We generate the synthetic observations by
multiplying CO2 fluxes from CarbonTracker by these foot-
prints, described in greater detail in Miller et al. (2020) and
Liu et al. (2021). In total, there are m= 1.92× 104 synthetic
observations and n= 1.06× 106 unknown CO2 fluxes in the
6-week case study. By contrast, for the much larger 1-year
case study, there are m= 9.9× 104 synthetic observations
and n= 9.4× 106 unknown CO2 fluxes to be estimated.

The noise covariance matrix is structured as R= σ 2I,
where σ 2 represents the noise variance. In this case, the dis-
crepancy principle formula simplifies to

Dfull(λ)= ‖Hsλ− z‖22 ≤ τmσ
2.

Note that the DP approach requires a priori knowledge or
an estimate of the noise variance σ 2. In Miller et al. (2020),
σ = 2 was used, which leads to a relatively large amount of
noise in the observations. We test different values of σ , cor-
responding to different noise levels (referred to as nlevel),
as shown in Table 1. More specifically, let n be a realization
of the Gaussian process ∼N (0,I); then the amount of noise
added in Eq. (1) is ε = σn, where σ = nlevel · ‖Hs‖2

‖n‖2
. We

note that some of the considered noise levels, although very
high compared to examples in the inverse problems litera-
ture, are lower than typically observed in practice for atmo-
spheric inverse problems. However, recent studies by Miller
et al. (2018), O’Dell et al. (2018), Crowell et al. (2019), and
Miller and Michalak (2020) show that errors in OCO-2 ob-
servations have been gradually decreasing with regular im-
provements in the satellite retrieval algorithms and bias cor-
rections. Some of the values in Table 1 are low, even consid-
ering these recent improvements. With that said, these val-
ues are aspirational and may become more realistic in the
future as observational and atmospheric modeling errors de-
cline. Furthermore, they provide an opportunity to explore
the behavior of the proposed inverse modeling algorithms at
many different error levels.

Next, we describe the prior used in both case studies. The
prior flux estimate is set to a constant value for the case stud-
ies explored here. As a result of this setup, the prior flux es-
timate does not contain any spatiotemporal patterns, and the
patterns in the posterior fluxes solely reflect the information

Table 1. Noise level and corresponding noise standard deviation σ
used in the 6-week case study experiments.

nlevel σ (µmol m−2 s−1)

5 % 0.0565
10 % 0.1134
50 % 0.5648

content of the atmospheric observations. For the cases with
a fixed mean (genHyBRs), we set µ= 0, as has been done
in several existing studies on inverse modeling algorithms
(Rodgers, 2000; Chung and Saibaba, 2017). For the unknown
mean case (genHyBRmean), the columns of X contain ones
and zeros, denoting fluxes in a given time period. Specifi-
cally, for the 6-week case study, X has eight columns, and
each column corresponds to a different 3-hourly time period
of the day. A given column of X contains values of one for
all flux elements that correspond to a given 3-hourly time of
day and zero for all other elements. CO2 fluxes have a large
diurnal cycle, and this setup accounts for the fact that CO2
fluxes at different times of day will have a different mean. In
the 1-year case study, X has 12 columns, and each column
corresponds to fluxes in a different month of the year, a setup
identical to that used in Miller et al. (2020).

For the prior covariance matrix of unknown fluxes, Qs =

Qt⊗Qg , where Qt represents the temporal covariance and
Qg represents the spatial covariance in the fluxes. The sym-
bol⊗ denotes the Kronecker product. We use a spherical co-
variance model for the spatial and temporal covariance. A
spherical model is ideal because it decays to zero at the cor-
relation length or time, and the resulting matrices are usually
sparse:

kt(dt;θt)=

{
1− 3

2

(
dt
θt

)
+

1
2

(
dt
θt

)3
if dt ≤ θt,

0 if dt > θt,
(21)

kg(dg;θg)=

{
1− 3

2

(
dg
θg

)
+

1
2

(
dg
θg

)3
if dg ≤ θg,

0 if dg > θg,
(22)

where dt is the temporal difference, dg is the spherical dis-
tance, and θt,θg represent the decorrelation time, which has
units of d, and decorrelation length, which has units of km,
respectively. For the 6-week case study, we set θt = 9.854 d
and θg = 555.42 km, as in Miller et al. (2020). The sparsity
patterns of these covariance matrices are provided in Fig. 2.
We further set the diagonal elements of Qs equal to one, and
the regularization parameter in the inverse model (λ) will ul-
timately scale Qs (e.g., Eq. 2). For the 1-year study, we use
slightly different parameters, as listed in full detail in Miller
et al. (2020). Notably, the variance is different in each month
to better capture the impact of seasonal changes in the vari-
ability of CO2 fluxes. Note that, for the fixed mean case, the
covariance matrices are sparse and can be efficiently repre-
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Figure 2. Sparsity pattern of the prior covariance matrices Qt and Qg for the 6-week case study.

sented in factored form. However, the hybrid approaches pro-
posed here can handle much more complicated cases (see,
e.g., Chung and Saibaba, 2017; Chung et al., 2018).

For the unknown mean case, the covariance matrix Qβ is
set to be the identity matrix, and α = 10 is used in the numer-
ical experiments. We experimented with various choices for
α and observed consistently good results with α = 10. In all
of the numerical experiments, we use the DP approach to se-
lect the regularization parameter within genHyBR methods
with τ = 1.

In subsequent discussion of the case study results, we pro-
vide relative reconstruction error norms computed as ||sk,λ−
s||2/||s||2, where s denotes the true fluxes and sk,λ contains
the reconstructed spatiotemporal fluxes at the kth iteration.

4.2 Results of the case studies

Both the genHyBRs and genHyBRmeanmethods converge
quickly and yield accurate estimates of the CO2 fluxes rela-
tive to other inverse modeling methods. For the 6-week case
study, Fig. 3 shows the relative reconstruction error norms
for both genHyBRs and genHyBRmean for three different
noise levels and for different options for selecting the regu-
larization parameter. DP corresponds to the discrepancy prin-
ciple and is an automatic approach that depends on the data
and noise level. The optimal regularization parameter, which
corresponds to selecting the regularization parameter at each
iteration that minimizes the reconstruction error, is provided
for comparison, although it is not obtainable in practice. All
of the plots with “none” correspond to λ= 0 and show semi-
convergent behavior, which is revealed in the “U” shape of
the relative error plot. That is, the relative reconstruction er-
ror norms decrease in early iterations but increase in later
iterations due to noise contamination in the reconstructions.

We observe that, for all noise levels, genHyBR methods
with regularization parameter estimation (genHyBRs-opt
and genHyBRs-dp) result in reconstruction error norms
that decrease and flatten, thereby overcoming the semi-

convergent behavior of genHyBR methods with no reg-
ularization (genHyBRs-none). For reference, we mark
with a horizontal line the relative reconstruction error
norm for a direct reconstruction. Recall that the di-
rect method and the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) method typically require λ to
be fixed in advance, and a poor choice of λ can yield poor
reconstructions of the CO2 fluxes. Using the optimal regu-
larization parameter computed from genHyBRmean (these
values are provided in Table 2), we show that a good recon-
struction can be obtained with the direct method if a good
regularization parameter is available, but obtaining this re-
sult may require careful and expensive tuning.

We also find that the algorithm that simultaneously esti-
mates the mean (genHyBRmean) yields lower errors than
the algorithm with a fixed mean (genHyBRs). Notably,
the difference in performance between these two algorithms
grows as the noise level increases. In other words, the
comparative advantage of genHyBRmean is even larger at
higher noise levels. This result implies that mean estimation
becomes critical for problems with large noise levels.

For comparison, we show the convergence behavior of the
L-BFGS algorithm that is commonly used in AIM (Fig. 3).
One line (with diamond symbols) shows results using L-
BFGS to minimize the inverse model with an unknown mean
(with λ= 1), and another line (shown with plus symbols)
shows a variant of L-BFGS with a data transformation to
speed convergence (also with λ= 1). The specific approach
used here is described in detail in Miller et al. (2020). Both
algorithms converge more slowly than the genHyBR algo-
rithms. This result is significant because the main computa-
tional cost per iteration (i.e., one matrix–vector multiplica-
tion by H and its adjoint) is the same among the algorithms
in Fig. 3. In addition, the relative errors increase for L-BFGS
at later iterations, though the inverse modeling optimization
function continues to decrease at these iterations; the inverse
model minimizes the errors with respect to the observations

Geosci. Model Dev., 15, 5547–5565, 2022 https://doi.org/10.5194/gmd-15-5547-2022



T. Cho et al.: Large-scale atmospheric inverse modeling 5557

Figure 3. Six-week case study: relative reconstruction error norms per iteration of genHyBRs and genHyBRmean with 5 %, 10 %, and
50 % noise levels. We compare results for the optimal regularization parameter, the automatically selected DP parameter, λ= 0, and the
L-BFGS with a fixed regularization parameter (λ= 1). The filled circle indicates the stopping iteration for the genHyBR methods with DP.
In addition, the horizontal line denotes to the relative error for the reconstruction obtained using the direct method.

Table 2. Six-week case study: for various noise levels, we provide comparisons of genHyBRs and genHyBRmean (with a DP-selected
regularization parameter) to standard direct and iterative methods (with a fixed regularization parameter). We provide the number of iterations,
the CPU timing in seconds, and the relative reconstruction error norms for the computed spatiotemporal fluxes denoted by 1s. Note that,
when computing the reconstructions and approximating the posterior variance, additional reorthogonalization is performed, which explains
the slight difference in the number of iterations and run times.

Noise Recons Recons + uncert
Level Methods Selection of λ Iter. Time (s) 1s Iter. Time (s) 1s

5 %
Direct 0.15 – 8714 0.661 – – –
genHyBRs-dp 0.24 99 4450 0.662 83 10 114 0.661
genHyBRmean-dp 0.18 102 3836 0.652 75 8025 0.651

10 %
Direct 0.14 – 8268 0.689 – – –
genHyBRs-dp 0.16 67 3125 0.703 53 4667 0.703
genHyBRmean-dp 0.27 60 2334 0.677 61 5572 0.677

50 %
Direct 0.11 – 8765 0.7934 – – –
genHyBRs-dp 0.13 20 922 0.853 20 1200 0.853
genHyBRmean-dp 0.15 19 773 0.755 18 981 0.755

(z) but is not guaranteed to minimize errors with respect to
the true fluxes (s).

The estimated fluxes using genHyBR also exhibit spatial
patterns that mirror fluxes estimated using a direct (e.g., an-
alytical) approach. Maps of CO2 fluxes, averaged over 6
weeks and corresponding to a 50 % noise level, are shown
in Fig. 4. We provide the true average flux, the genHyBRs
and genHyBRmean reconstructions for various parameter
choices, and the direct method reconstruction using the op-
timal regularization parameter from genHyBRmean. Note
that these relative reconstruction error values are different
than those provided in Fig. 3 because they represent error

norms computed on the average image rather than on the
native 3 h resolution of the estimated fluxes. Also, to better
highlight broad spatial patterns, the color map has been con-
strained so that average flux estimates above 2 are set to 2
and estimates below −5 are set to −5.

Perhaps surprisingly, the genHyBR algorithms require less
computing time than other algorithms tested, including the
direct or analytical method. Table 2 displays the measured
turnaround time for each case, along with the number of iter-
ations and the relative reconstruction error norms for each
method. Compared to the direct method with fixed λ, hy-
brid methods require less time to compute the estimated CO2
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Figure 4. Six-week case study: reconstructed fluxes, averaged over 6 weeks, are provided for genHyBRs and genHyBRmean for the
automatically selected DP parameter and for λ= 0. The true average fluxes and the reconstruction using a direct method with the optimal
regularization parameter computed from genHyBRmean are provided for comparison. These results correspond to the 50 % noise level, and
relative error norms of average fluxes over 6 weeks are provided in the titles.

Figure 5. Estimated uncertainties for the total CO2 flux from the
continental US over the 6-week case study (50 % noise levels). The
figure compares posterior uncertainties calculated using the direct
approach, using GenHyBR and using the low-rank approach de-
scribed in Miller et al. (2020). Solid lines show uncertainties es-
timated for simulations with a fixed mean and dashed lines simu-
lations with an unknown mean. In addition, we use the same reg-
ularization parameter (λ) for the estimates shown here to make the
convergence behavior of the different approaches easier to compare
(λ= 0.13 for the fixed mean and λ= 0.15 for the unknown mean, as
in Table 2). GenHyBR reaches uncertainty estimates that are close
to the direct estimate more quickly than the low-rank approach, par-
ticularly for the unknown mean case. In addition, GenHyBR uses
forward and adjoint model runs previously generated as part of
the best estimate calculations, yielding large computational savings
over the low-rank approach, which requires new model runs.

Figure 6. One-year case study: for 50 % noise level, we provide
relative reconstruction error norms per iteration of genHyBRs and
genHyBRmean and compare results for the optimal regularization
parameter, the automatically selected DP parameter, and λ= 0.

fluxes. Moreover, since the regularization parameter can be
selected automatically, genHyBR methods can obtain results
with smaller reconstruction errors.

Finally, we demonstrate the ability to perform UQ for
AIM. In the last columns of Table 2, we provide the times
needed to compute uncertainties. We remark that the addi-
tional time and the difference in the number of iterations can
be attributed to the need to perform reorthogonalization of
the Krylov basis vectors, which is not as critical for obtaining
the MAP estimate. Furthermore, uncertainty estimation for
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Figure 7. One-year case study: reconstructed fluxes, averaged over 1 year, are provided for genHyBRs and genHyBRmean for various
parameter choices. These results correspond to the 50 % noise level, and relative error norms of average fluxes over 1 year are provided in
the titles.

genHyBR does not require any additional forward or adjoint
model runs beyond what is required to estimate the fluxes
(s). Hence, the additional computing time is modest, given
the size of the problem and the ability to obtain solution vari-
ance estimates. The estimated posterior variance is also sim-
ilar across both methods (genHyBRs and genHyBRmean).

GenHyBR also requires relatively few iterations (i.e.,
Krylov basis vectors) to converge on a reasonable uncer-
tainty estimate. Figure 5 shows the posterior uncertainty in
the total continental US CO2 flux by iteration for each al-
gorithm. This figure compares the direct approach to un-
certainty estimation, GenHyBR, and the low-rank approach
described in Saibaba and Kitanidis (2015) and Miller et al.
(2020). In this figure, we use the same regularization pa-
rameter (λ) across all algorithms to make the results from
different algorithms more easily comparable to one another.
The low-rank approach described in Saibaba and Kitanidis
(2015) and Miller et al. (2020) starts at very high values and
converges more slowly than the uncertainties estimated us-
ing GenHyBR. Furthermore, the low-rank approach requires
new forward and adjoint runs for the uncertainty calculations,
while GenHyBR uses forward and adjoint runs already gen-
erated when calculating the best estimate of the fluxes.

We conclude this section with results for the 1-year case
study. Since this case study has approximately 9 times the
number of unknown CO2 fluxes and 5 times the number
of observations compared to the 6-week case study, itera-
tive methods are computationally more appealing than di-
rect methods for obtaining reconstructions. The previous
case study already explored the behavior of the algorithms
at different noise levels, so here we only consider the 50 %

noise level, which corresponds to σ = 0.4076. Figure 6 pro-
vides relative reconstruction error norms for genHyBRs and
genHyBRmean. With the regularization parameter automat-
ically selected using DP, both methods result in reconstruc-
tions with relative errors smaller than 0.85. Since it is diffi-
cult to show spatiotemporal flux reconstructions over the en-
tire year, we provide the annual average of the reconstructed
CO2 fluxes in Fig. 7. Compared to the reconstructions in
Fig. 4, these average maps are much smoother. This inabil-
ity to resolve fine details can be attributed to the significantly
fewer observations compared to the number of unknowns in
this case study. Nevertheless, these results show that the al-
gorithms described in this study can be scaled to very large
inverse problems – problems where the direct method is ei-
ther computationally prohibitive or time-consuming.

5 Conclusions

This article describes a mathematically advanced iterative
method for AIM with large data sets. Specifically, we dis-
cuss generalized hybrid methods for inverse models with a
fixed prior mean (e.g., Bayesian synthesis inverse modeling)
and an unknown prior mean (e.g., geostatistical inverse mod-
eling). We also describe a means of obtaining posterior vari-
ance estimates at very little additional computational cost.
Compared to standard inverse modeling procedures (e.g., di-
rect and iterative methods), genHyBR methods are computa-
tionally cheaper and exhibit faster convergence. One of the
main advantages of genHyBR methods is the ability to ef-
ficiently and adaptively estimate the regularization parame-
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ter during the inversion process, and we described various
regularization parameter estimation methods for Tikhonov
regularization. Numerical experiments for case studies for
6 weeks and 1 year demonstrate that genHyBR methods pro-
vide an efficient, flexible, robust, and automatic approach
for AIM with very large spatiotemporal fluxes. Furthermore,
since these methods only require forward and adjoint model
evaluations, these methods can be paired with different types
of atmospheric transport models.

Appendix A: Regularization parameter estimation
methods for genHyBR

One of the main advantages of hybrid projection methods
is the ability to adaptively and automatically estimate the
regularization parameter during the iterative process. We de-
scribed the discrepancy principle (DP), but other common
parameter estimation techniques in the context of hybrid
projection methods include the generalized cross-validation
(GCV) method and the weighted GCV (WGCV) method
(Chung et al., 2008; Renaut et al., 2017). A summary of
methods with respective functions used to compute the pa-
rameters based on the original problem and the projected
problem are summarized in Table A1, where for simplicity
we have assumed that R= σ 2I. We have used the notation
B†
k,λ = (B

>

k Bk + λ2I)−1B>k for given λ > 0, and yk,λ is the
solution to the projected problem (14).

More specifically, DP selects the largest parameter value
λ for which Dfull(λ)≤ τmσ

2, where τ ≥ 1 is a user-defined
parameter. Note that mσ 2 is the expected value of ‖ε‖2R−1 .
For the projected problem, we choose the largest λ such that
Dproj(λ)≤ τmσ

2. The WGCV method selects λ by minimiz-
ing the objective function Gfull(λ;ω). Note that, if ω = 1,
then WGCV becomes GCV. In the projected problem, we
minimize Gproj(λ;ω) at each iteration. The parameter ω can
be chosen automatically, as described in Chung et al. (2008)
and Renaut et al. (2017). Note that the DP approach requires
a priori knowledge of the noise variance σ 2, whereas GCV
approaches do not require prior knowledge about the noise
level.

Appendix B: Extension to the unknown mean:
hierarchical Bayes

In this section, we provide details for the derivation of gen-
HyBR methods for AIM with an unknown mean. We begin
in Appendix B1 with the problem reformulation to simulta-
neously estimate the unknown fluxes and the covariate pa-
rameters. Then in Sect. B2 we provide the details of the gen-
HyBR approach for the unknown mean case, which closely
follows the derivation in Sect. 3.1.1. Finally, in Appendix B3
we show how to approximate the posterior variance using the
generalized Golub–Kahan bidiagonalization.

B1 Reformulation for simultaneous estimation

In order to apply genHyBR methods to the unknown mean
estimation problem, we first reformulate the MAP estimate
from Eqs. (7) to (18) as follows. For the data fit term, con-
sider

1
2
‖Hs− z‖2R−1 =

1
2

∥∥∥∥[H 0
][s
β

]
− z

∥∥∥∥2

R−1

=
1
2

∥∥∥∥K
[̃
s+Xµβ
β̃ +µβ

]
− z

∥∥∥∥2

R−1

=
1
2

∥∥∥∥K
[
s̃

β̃

]
+HXµβ − z

∥∥∥∥2

R−1

=
1
2

∥∥∥∥K
[
s̃

β̃

]
− z̃

∥∥∥∥2

R−1
,

and for the regularization terms in Eq. (7), we have

λ2

2
‖s−Xβ‖2

Q−1
s
+
λ2
β

2
‖β −µβ‖

2
Q−1
β

=
λ2

2
‖̃s−Xβ̃‖2

Q−1
s
+
λ2
β

2
‖β̃‖2

Q−1
β

=
1
2
(λ2̃s>Q−1

s s̃− 2λ2̃s>Q−1
s Xβ̃

+ β̃
>
(λ2X>Q−1

s X+ λ2
βQ−1

β )β̃)

=
1
2
(λ2̃s>Q−1

s s̃− 2λ2̃s>Q−1
s Xβ̃

+ β̃
>
(λ2X>Q−1

s X+ (αλ)2Q−1
β )β̃)

=
1
2

[̃
s> β̃

>
]

[
λ2Q−1

s −λ2Q−1
s X

−λ2X>Q−1
s λ2X>Q−1

s X+ (αλ)2Q−1
β

][
s̃

β̃

]
=
λ2

2

[̃
s> β̃

>
]

[
Q−1

s −Q−1
s X

−X>Q−1
s X>Q−1

s X+α2Q−1
β

]
︸ ︷︷ ︸

=Q−1

[
s̃

β̃

]

=
λ2

2
‖γ̃ ‖2Q−1 .

We identify γ̃ = [̃s>, β̃
>
]
>, and this completes the deriva-

tion of Eq. (18).
Next we provide the derivation of the augmented prior co-

variance matrix Eq. (19). Since we need Q and not Q−1 in
genHyBR, we use the formula for the inverse of a 2×2 block
matrix:[

AB
C D

]−1

=
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Table A1. Regularization parameter selection methods for use within genHyBR methods.

Methods Original problem (11) Projected problem (14)

DP Dfull(λ)= ‖Hsλ− z‖2R−1 Dproj(λ)= ‖Bkyk,λ− δ1e1‖
2
2

GCV Gfull(λ;ω)=
m‖Hxλ− b‖2R−1

(tr(I−ωHH†
λ))

2
Gproj(λ;ω)=

k‖Bkyk,λ− δ1e1‖
2
2

(tr(I−ωBkB†
k,λ
))2

[
(A−BD−1C)−1

−(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1C(A−BD−1C)−1BD−1
+D−1,

]
which is defined if D and A−BD−1C are invertible. Using
the above formula, we get

Q=
[

Q−1
s −Q−1

s X
−X>Q−1

s X>Q−1
s X+α2Q−1

β

]−1

=

[
Qs+

1
α2 XQβX> 1

α2 XQβ
1
α2 QβX> 1

α2 Qβ

]
.

This simplifies to

Q=
[

Qs 0
0 0

]
+

1
α2

[
X
I

]
Qβ

[
X> I

]
,

which completes the derivation of Eq. (19).

B2 genHyBR approach for AIM with an unknown
mean

In this subsection, we derive the genHyBR approach for the
unknown mean case. We initialize δK1 = ‖̃z‖R−1 , uK1 = z̃/δ

K
1

and γK1 v
K
1 =K>R−1uK1 ; then, the kth iteration of the gener-

alized Golub–Kahan bidiagonalization procedure generates
vectors uKk+1 and vKk+1 such that

γKk+1u
K
k+1 =KQvKk − γ

K
k u

K
k ,

δKk+1v
K
k+1 =K>R−1uKk+1− δ

K
k+1v

K
k ,

where scalars γKk ,δ
K
k ≥ 0 are computed such that

‖uKk ‖R−1 = ‖vKk ‖Q = 1. At the end of k iterations, we
have

BKk ≡



γK1
δK2 γK2

δK3
. . .

. . . γKk
δKk+1

 ,

UKk+1 ≡
[
uK1 , . . .,u

K
k+1

]
, and VKk ≡

[
vK1 , . . .,v

K
k

]
.

The above matrices satisfy the following relations:

UKk+1δ
K
1 e1 = z̃,

KQVKk = UKk+1BKk ,

K>R−1UKk+1 = VKk (B
K
k )
>
+ γKk+1v

K
k+1e

>

k+1. (B1)

Also, matrices UKk+1 and VKk satisfy the following orthogo-
nality conditions:

(UKk+1)
>R−1UKk+1 = Ik+1 and (VKk )

>QVKk = Ik. (B2)

The columns of the matrix VKk form a basis for the Krylov
subspace Kk(K>R−1KQ,K>R−1̃z), which we use to search
for approximate solutions.

To obtain the approximate solution, we solve the least
squares problem

min
y∈Rk
‖BKk y− δ

K
1 e1‖

2
2+ λ

2
‖y‖22 (B3)

to obtain the optimizer yKk,λ and to compute the approxi-
mate solution γ k,λ =QVKk y

K
k,λ. We can extract the approx-

imations s̃k,λ and β̃k,λ as γ k,λ =
[
s̃k,λ
β̃k,λ

]
. To estimate the

regularization parameter, we can adapt the techniques in
Sect. 3.1.2; for example, using the discrepancy principle, we
pick a regularization parameter λ such that

DK
proj(λ)= ‖B

K
k y

K
k,λ− δ

K
1 e1‖

2
2 ≤ τm,

where τ ≥ 1 is a user-defined parameter and m is the ex-
pected value of ‖ε‖2R−1 . Other parameter selection techniques
such as GCV and WGCV can also be adapted to the unknown
mean case with similar expressions to Table A1, but we omit
the details.

B3 Approximation to the posterior variance

We propose an approximation to the posterior covariance
matrix 0post corresponding to the posterior distribution
π(s,β|z) in Eq. (6). First note that, from Eqs. (19) and (8),
we get the following expression of the posterior covariance
matrix:

0post =
(
λ2Q−1

+K>R−1K
)−1

=Q
(
λ2Q+Q(K>R−1K)Q

)−1
Q, (B4)

where the last expression is obtained by factoring out Q. As-
sume that k iterations of the generalized Golub–Kahan bidi-
agonalization have been performed to solve Eq. (18). Let
(BKk )

>BKk =WK
k 2

K
k (W

K
k )
> be an eigenvalue decomposi-

tion with eigenvalues θK1 , . . .,θ
K
k and let ZKk =QVKk WK

k .
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Then consider the following low-rank approximation:

Q(K>R−1K)Q≈Q(VKk (B
K
k )
>BKk V>k )Q

= ZKk 2
K
k (Z

K
k )
>. (B5)

Using Eq. (B5) in Eq. (B4), we can define an approximate
covariance matrix as

0̃post =Q(λ2Q+ZKk 2
K
k (Z

K
k )
>)−1Q

= λ−2Q−ZKk 1
K
k (Z

K
k )
>, (B6)

where 1Kk is a diagonal matrix,

1Kk ≡ λ
−2


θK1

θK1 +λ
2

. . .

θKk
θKk +λ

2

 ∈ Rk×k.
The last expression was obtained using the Woodbury for-
mula.

Therefore, we have an efficient representation of the ap-
proximate posterior covariance matrix as a low-rank per-
turbation of the prior covariance matrix Q. It is important
to note that, as with the prior covariance matrix Q, we do
not need to store 0̃post explicitly. More precisely, in addi-
tion to storing the information required for storing Q, we
only need to store nk+ k additional entries corresponding to
the matrices ZKk and 1Kk . Furthermore, the error in the low-
rank approximation can be analyzed using similar techniques
to Saibaba et al. (2020). Similar to the approach described
in Sect. 3.2, the posterior variance, which corresponds to
the diagonal entries of 0post, can be approximated using the
diagonal entries of Eq. (B6). First, note that the diagonals
of Q are obtained from the diagonals of the block matrices
Qs+α

−2XQβX> and α−2Qβ . The diagonals of Qs and Qβ

are typically known analytically. The diagonals of XQsX>
and ZKk 1

K
k (Z

K
k )
> are easy to compute in O((n+p)k2) flops

since they are low-rank matrices. Therefore, given the ap-
proximate representation of the covariance matrix (B6), we
can estimate the posterior variance (i.e., the diagonals of the
posterior covariance). A complete description of the method
is given in Algorithm B1.

Algorithm B1 AIM with unknown mean – genHyBRmean
with UQ.

Require: Matrices K, R and Q, and vector z̃.
1: {/∗ Compute MAP estimate ∗/}
2: initialize uK1 = z̃/‖̃z‖R−1

3: for j = 1, . . .,k do
4: one iteration of generalized Golub–Kahan bidiagonalization

to obtain BK
j
,UK
j+1, and VK

j

5: estimate regularization parameter λ and compute yK
j,λ

by
solving Eq. (B3)

6: end for

7: compute
s̃k,λ
β̃k,λ

=QVK
k
yK
k,λ

and γ k,λ =
[̃
sk,λ+Xµβ
β̃k,λ+µβ

]
8: {/∗ Compute the approximation to the posterior variance ∗/}
9: compute the eigendecomposition
(BK
k
)>BK

k
=WK

k
2K
k
(WK

k
)>

10: compute ZK
k
=QVK

k
WK
k

and

1K
k
= diag(

θK1
θK1 +λ

2 , . . .,
θKk

θKk +λ
2 )

11: compute dLR =LowRankDiag(ZK
k
1K
k
,ZK
k
) using Algo-

rithm 2
12: compute [dβ ]=LowRankDiag(XQβ ,X),

dQ = [diagQs+α
−2dβ ;α

−2diagQβ ]
13: estimate posterior variance dk,λ = λ−2dQ− dLR
14: return MAP estimate γ k,λ and variance estimate dk,λ
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