Articles | Volume 15, issue 11
https://doi.org/10.5194/gmd-15-4469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transient climate simulations of the Holocene (version 1) – experimental design and boundary conditions
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Dabang Jiang
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
Ran Zhang
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Baohuang Su
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, China Meteorological Administration, Beijing 100081, China
Related authors
No articles found.
Louise C. Sime, Rachel Diamond, Christian Stepanek, Chris Brierley, David Schroeder, Masa Kageyama, Irene Malmierca-Vallet, Ed Blockley, Alex West, Danny Feltham, Jeff Ridley, Pascale Braconnot, Charles J. R. Williams, Xiaoxu Shi, Bette L. Otto-Bliesner, Sophia I. Macarewich, Silvana Ramos Buarque, Qiong Zhang, Allegra LeGrande, Weipeng Zheng, Dabang Jiang, Polina Morozova, Chuncheng Guo, Zhongshi Zhang, Nicholas Yeung, Laurie Menviel, Sandeep Narayanasetti, Olivia Reeves, Matthew Pollock, and Anni Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3531, https://doi.org/10.5194/egusphere-2025-3531, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Arctic may have lost its summer sea ice 127,000 years ago during a naturally warm period in Earth’s past. Climate models can be tested by recreating those conditions, with similar sunlight and greenhouse gas levels. Analysing the large sea ice changes in these simulations helps us understand how the Arctic might respond in the near future and improves how we test and trust our climate models.
Xiaofang Huang, Shiling Yang, Alan Haywood, Julia Tindall, Dabang Jiang, Yongda Wang, Minmin Sun, and Shihao Zhang
Clim. Past, 19, 731–745, https://doi.org/10.5194/cp-19-731-2023, https://doi.org/10.5194/cp-19-731-2023, 2023
Short summary
Short summary
The sensitivity of climate to the height changes of the East Antarctic ice sheet (EAIS) during the mid-Pliocene has been assessed using the HadCM3 model. The results show that the height reduction of the EAIS leads to a warmer and wetter East Antarctica. However, unintuitively, both the surface air temperature and the sea surface temperature decrease over the rest of the globe. These findings could provide insights into future changes caused by warming-induced decay of the Antarctic ice sheet.
Zhaochen Liu, Xianmei Lang, and Dabang Jiang
Atmos. Chem. Phys., 22, 7667–7680, https://doi.org/10.5194/acp-22-7667-2022, https://doi.org/10.5194/acp-22-7667-2022, 2022
Short summary
Short summary
Stratospheric aerosol intervention geoengineering is considered a potential means to counteract global warming. Here the impact of stratospheric aerosol intervention geoengineering on surface air temperature over China and related physical processes are investigated. Results show that the increased stratospheric aerosols cause surface cooling over China. The temperature responses vary with models, regions, and seasons and are largely related to net surface shortwave radiation changes.
Cited articles
An, Z., Porter, S. C., Kutzbach, J. E., Wu, X., Wang, S., Liu, X., Li, X.,
and Zhou, W.: Asynchronous Holocene optimum of the East Asian monsoon,
Quaternary Sci. Rev., 19, 743–762, https://doi.org/10.1016/S0277-3791(99)00031-1, 2000.
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica
component of postglacial rebound model ICE-6G_C (VM5a) based
on GPS positioning, exposure age dating of ice thicknesses, and relative sea
level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140,
2014.
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T.,
Schmidt, H., Toohey, M., Wu, C.-J., and Claussen, M.: Global temperature
modes shed light on the Holocene temperature conundrum, Nat. Commun., 11,
4726, https://doi.org/10.1038/s41467-020-18478-6, 2020.
Baker, J. L., Lachniet, M. S., Chervyatsova, O., Asmerom, Y., and Polyak, V.
J.: Holocene warming in western continental Eurasia driven by glacial
retreat and greenhouse forcing. Nat. Geosci., 10, 430–435,
https://doi.org/10.1038/ngeo2953, 2017.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.
F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res.
Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Berger, A.: Long-term variations of daily insolation and Quaternary climatic
changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2,
1978.
Birks, H. H.: South to north: Contrasting late-glacial and early-Holocene
climate changes and vegetation responses between south and north Norway,
Holocene, 25, 37–52, https://doi.org/10.1177/0959683614556375, 2015.
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin
for the Holocene and last interglacial thermal maximum, Nature, 589,
548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Braconnot, P., Crétat, J., Marti, O., Balkanski, Y., Caubel, A., Cozic,
A., Foujols, M.-A., and Sanogo, S.: Impact of multiscale variability on last
6,000 years Indian and West African monsoon rain, Geophys. Res. Lett., 46,
14021–14029, https://doi.org/10.1029/2019GL084797, 2019a.
Braconnot, P., Zhu, D., Marti, O., and Servonnat, J.: Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation, Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, 2019b.
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020.
Brooks, S. J., Matthews, I. P., Birks, H. H., and Birks, H. J. B.: High
resolution Lateglacial and early-Holocene summer air temperature records
from Scotland inferred from chironomid assemblages, Quaternary Sci. Rev.,
41, 67–82, https://doi.org/10.1016/j.quascirev.2012.03.007, 2012.
Carré, M., Braconnot, P., Elliot, M., d'Agostino, R., Schurer, A., Shi,
X., Marti, O., Lohmann, G., Jungclaus, J., Cheddadi, R., di Carlo, I. A.,
Cardich, J., Ochoa, D., Gismondi, R. S., Pérez, A., Romero, P. E.,
Turcq, B., Corrège, T., and Harrison, S. P.: High-resolution marine data
and transient simulations support orbital forcing of ENSO amplitude since
the mid-Holocene, Quaternary Sci. Rev., 268, 107125,
https://doi.org/10.1016/j.quascirev.2021.107125, 2021.
CCSM4 Climate Modeling Group: CCSM4 input data, Subversion [data set], https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/ccsm4_init/b40.1850.track1.2deg.003/0501-01-01/ (last access: 5 May 2022), 2011.
CESM Climate Modeling Group: CESM1.2.1 release code, Subversion [code], https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_2_1 (last access: 20 February 2022), 2013.
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., Huang, X.,
Zhao, Y., Sato, T., Birks, H. J. B., Boomer, I., Chen, J., An, C., and
Wünnemann, B.: Holocene moisture evolution in arid central Asia and its
out-of-phase relationship with Asian monsoon history, Quaternary Sci. Rev.,
27, 351–364, https://doi.org/10.1016/j.quascirev.2007.10.017, 2008.
Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J., Zhang,
X., An, C., Zhang, J., Zhao, Y., Yu, Z., Zhang, R., Liu, J., Zhou, A., and
Feng, S.: Westerlies Asia and monsoonal Asia: spatiotemporal differences in
climate change and possible mechanisms on decadal to sub-orbital timescales,
Earth-Sci. Rev., 192, 337–354, https://doi.org/10.1016/j.earscirev.2019.03.005, 2019.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for
earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform.
C., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Crétat, J., Braconnot, P., Terray, P., Marti, O., and Falasca, F.:
Mid-Holocene to present-day evolution of the Indian monsoon in transient
global simulations, Clim. Dyn., 55, 2761–2784,
https://doi.org/10.1007/s00382-020-05418-9, 2020.
Dallmeyer, A., Claussen, M., Lorenz, S. J., and Shanahan, T.: The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years, Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, 2020.
Dallmeyer, A., Claussen, M., Lorenz, S. J., Sigl, M., Toohey, M., and Herzschuh, U.: Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2, Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, 2021.
Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M.,
Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 ocean component, J.
Clim., 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1, 2012.
Deevey, E. S. and Flint, R. F.: Postglacial hypsithermal interval, Science,
125, 182–184, https://doi.org/10.1126/science.125.3240.182, 1957.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, in: Quaternary Glaciations-Extent and
Chronology – Part II: North America, vol. 2, Part 2, 371–406, Elsevier,
https://www.lakeheadu.ca/sites/default/files/uploads/53/outlines/2014-15/NECU5311/Dyke_2004_DeglaciationOutline.pdf (last access: 20 November 2021),
2004.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Gasse, F.: Hydrological changes in Africa, Science, 292, 2259–2260,
https://doi.org/10.1126/science.1061940, 2001.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System
Model version 4, J. Clim., 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Goldner, A., Herold, N., and Huber, M.: The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1, Clim. Past, 10, 523–536, https://doi.org/10.5194/cp-10-523-2014, 2014.
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E. J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann, A., and Weber, S. L.: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T.
C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice
extents and ocean heat transports in a version of the Hadley Centre coupled
model without flux adjustments, Clim. Dyn., 16, 147–168,
https://doi.org/10.1007/s003820050010, 2000.
Gupta, A. K., Anderson, D. M., and Overpeck, J. T.: Abrupt changes in the
Asian southwest monsoon during the Holocene and their links to the North
Atlantic Ocean, Nature, 421, 354–357, https://doi.org/10.1038/nature01340, 2003.
Gyllencreutz, R., Mangerud, J., Svendsen, J.-I., and Lohne, Ø.: DATED –
a GIS-based reconstruction and dating database of the Eurasian deglaciation,
Appl. Quaternary Res. Cent. Part Glaciat. Terrain Geol. Surv. Finl. Spec.
Pap., 46, 113–120, 2007.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D.,
Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and
Telford, R. J.: Variations in temperature and extent of Atlantic Water in
the northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26,
3423–3440, https://doi.org/10.1016/j.quascirev.2007.10.005, 2007.
Harrison, S., Bartlein, P., Izumi, K., Li, G., Annan, J., Hargreaves, J.,
Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to
improve climate projections, Nat. Clim. Change, 5, 735–743,
https://doi.org/10.1038/nclimate2649, 2015.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl,
U.: Southward migration of the Intertropical Convergence Zone through the
Holocene, Science, 293, 1304–1308, https://doi.org/10.1126/science.1059725, 2001.
He, F.: Simulating transient climate evolution of the last deglaciation with
CCSM3, PhD thesis, University of Wisconsin-Madison, 161 pp., 2011.
Hoelzmann, P., Gasse, F., Dupont, L. M., Salzmann, U., Staubwasser, M.,
Leuschner, D. C., and Sirocko, F.: Palaeoenvironmental changes in the arid
and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present,
in: Past Climate Variability through Europe and Africa, edited by: Battarbee, R. W., Gasse, F., and Stickley, C. E., Springer, Dordrecht,
219–256, https://doi.org/10.1007/978-1-4020-2121-3_12, 2004.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model,
Documentation and Software, version 4.0, Los Alamos National Laboratory,
Tech. Rep. LA-CC-06-012, 76 pp., https://www.cesm.ucar.edu/models/cesm1.2/cice/ (last access: 5 June 2022), 2008.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl1,
J., and Marshall, S.: The Community Earth System Model: A framework for
collaborative research, Bull. Amer. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, USA, https://www.ipcc.ch/report/ar6/wg1/ (last access: 5 June 2022), in press, 2022.
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J. C., Joos, F.,
Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R.,
Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba,
R., and Zhang, D.: Palaeoclimate, in: Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor M., and Miller, H. L., Cambridge
University Press, USA, 435–497, https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter6-1.pdf (last access: 5 June 2022), 2007.
Jin, L., Schneider, B., Park, W., Latif, M., Khon, V., and Zhang, X.: The
spatial–temporal patterns of Asian summer monsoon precipitation in response
to Holocene insolation change: a model-data synthesis, Quaternary Sci. Rev.,
85, 47–62, https://doi.org/10.1016/j.quascirev.2013.11.004, 2014.
Joussaume, S. and Taylor, K. E.: Status of the Paleoclimate Modeling
Intercomparison Project (PMIP), in: Proceedings of the First International AMIP
Scientific Conference, WCRP report, 425–430, 1995.
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018.
Kapsch, M.-L., Mikolajewicz, U., Ziemen, F., and Schannwell, C.: Ocean
response in transient simulations of the last deglaciation dominated by
underlying ice-sheet reconstruction and method of meltwater distribution,
Geophys. Res. Lett., 49, e2021GL096767, https://doi.org/10.1029/2021GL096767, 2020.
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P.
S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a
multi-method reconstruction approach, Sci. Data, 7, 201,
https://doi.org/10.1038/s41597-020-0530-7, 2020a.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J.
T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall,
M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K.,
Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M.
W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W.
W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P.,
Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western
Arctic (0–180∘ W), Quaternary Sci. Rev., 23, 529–560,
https://doi.org/10.1016/j.quascirev.2003.09.007, 2004.
Koerner, R. M. and Fisher, D. A.: A record of Holocene summer climate from a
Canadian High Arctic ice core, Nature, 343, 630–631, https://doi.org/10.1038/343630a0,
1990.
Kutzbach, J. E., Liu, X., Liu, Z., and Chen, G.: Simulation of the
evolutionary response of global summer monsoons to orbital forcing over the
past 280 000 years, Clim. Dyn., 30, 567–579, https://doi.org/10.1007/s00382-007-0308-z,
2008.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan,
G. B., and Slater, A. G.: Parameterization improvements and functional and
structural advances in version 4 of the Community Land Model, J. Adv. Model.
Earth Sy., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011.
Liu, S., Lang, X., and Jiang, D: Time-varying responses of dryland aridity
to external forcings over the last 21 ka, Quaternary Sci. Rev., 262, 106989,
https://doi.org/10.1016/j.quascirev.2021.106989, 2021.
Liu, Y., Zhang, M., Liu, Z., Xia, Y., Huang, Y., Peng, Y., and Zhu, J.: A
possible role of dust in resolving the Holocene temperature conundrum, Sci.
Rep., 8, 4434, https://doi.org/10.1038/s41598-018-22841-5, 2018.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L.,
Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The
Holocene temperature conundrum, P. Natl. Acad. Sci., 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014.
Ljungqvist, F. C.: The spatio-temporal pattern of the mid-Holocene thermal
maximum, Geografie, 116, 91–110, https://doi.org/10.37040/geografie2011116020091, 2011.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz,
J.: Orbital and millennial-scale features of atmospheric CH4 over the
past 800 000 years, Nature, 453, 383–386, https://doi.org/10.1038/nature06950, 2008.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4
and N2O ice core records extended to 2000 years BP, Geophys. Res.
Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006.
Magny, M., Vannière, B., de Beaulieu, J.-L., Bégeot, C., Heiri, O.,
Millet, L., Peyron, O., and Walter-Simonnet, A.-V.: Early-Holocene climatic
oscillations recorded by lake-level fluctuations in west-central Europe and
in central Italy, Quaternary Sci. Rev., 26, 1951–1964,
https://doi.org/10.1016/j.quascirev.2006.04.013, 2007.
Mamajek, E. E., Prsa, A., Torres, G., Harmanec, P., Asplund, M., Bennett, P.
D., Capitaine, N., Christensen-Dalsgaard, J., Depagne, E., Folkner, W. M.,
Haberreiter, M., Hekker, S., Hilton, J. L., Kostov, V., Kurtz, D. W.,
Laskar, J., Mason, B. D., Milone, E. F., Montgomery, M. M., Richards, M. T.,
Schou, J., and Stewart, S. G.: IAU 2015 Resolution B3 on Recommended Nominal
Conversion Constants for Selected Solar and Planetary Properties,
ArXiv151007674 Astro-Ph, http://arxiv.org/abs/1510.07674 (last
access: 15 November 2021), 2015.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A
reconstruction of regional and global temperature for the past 11 300 years,
Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L.,
Cuffey, K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L.,
McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E.
J.: Centennial-scale changes in the global carbon cycle during the last
deglaciation, Nature, 514, 616–619, https://doi.org/10.1038/nature13799, 2014.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trend and millennial variations in Holocene
temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
Maslin, M. A. and Burns, S. J.: Reconstruction of the Amazon Basin effective
moisture availability over the past 14 000 years, Science, 290, 2285–2287,
https://doi.org/10.1126/science.290.5500.2285, 2000.
Matero, I. S. O., Gregoire, L. J., and Ivanovic, R. F.: Simulating the Early Holocene demise of the Laurentide Ice Sheet with BISICLES (public trunk revision 3298), Geosci. Model Dev., 13, 4555–4577, https://doi.org/10.5194/gmd-13-4555-2020, 2020.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K.
A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren,
K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.
R., and Steig, E. J.: Holocene climate variability, Quaternary Res., 62,
243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B.,
Stocker, T. F., Raynaud, D., and Barnola, J. M.: Atmospheric CO2
concentrations over the last glacial termination, Science, 291, 112–114,
https://doi.org/10.1126/science.291.5501.112, 2001.
Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J.,
Stauffer, B., Stocker, T. F., Morse, D. L., Barnola, J.-M., Bellier, B.,
Raynaud, D., and Fischer, H.: Evidence for substantial accumulation rate
variability in Antarctica during the Holocene, through synchronization of
CO2 in the Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci.
Lett., 224, 45–54, https://doi.org/10.1016/j.epsl.2004.05.007, 2004.
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H.,
Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M.
A., Collins, W. D., Zhang, M., and Lin, S.: Description of the NCAR
Community Atmosphere Model (CAM 4.0), National
Center for Atmospheric Research, Boulder, CO, Tech. Rep. NCAR/TN-485+STR, 194 pp., https://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf (last access: 5 June 2022), 2010.
Nesje, A. and Dahl, S. O.: Lateglacial and Holocene glacier fluctuations and
climate variations in western Norway: a review, Quaternary Sci. Rev., 12,
255–261, https://doi.org/10.1016/0277-3791(93)90081-V, 1993.
Núñez, L., Grosjean, M., and Cartajena, I.: Human occupations and
climate change in the Puna de Atacama, Chile, Science, 298, 821–824,
https://doi.org/10.1126/science.1076449, 2002.
Osman, M. B., Tierney, J. E., Zhu, J., Tardif, R., Hakim, G. J., King, J.,
and Poulsen, C. J.: Globally resolved surface temperatures since the Last
Glacial Maximum, Nature, 599, 239–244, https://doi.org/10.1038/s41586-021-03984-4,
2021.
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017.
Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W., and Seo, K.-H.:
Mid-Holocene Northern Hemisphere warming driven by Arctic amplification,
Sci. Adv., 5, eaax8203, https://doi.org/10.1126/sciadv.aax8203, 2019.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model,
J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
PMIP Last Deglaciation Working Group: PMIP4 Last Deglaciation Experiment
Design Wiki, PMIP4 [data set],
https://pmip4.lsce.ipsl.fr/doku.php/exp_design:degla (last
access: 11 November 2021), 2016.
PMIP PI Working Group: PMIP3 Pre-Industrial Control Run Experiment Design,
https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:design:pi:index
(last access: 16 November 2021), 2010.
Renssen, H., Braconnot, P., Tett, S. F. B., von Storch, H., and Weber, S.
L.: Recent developments in Holocene climate modelling, in: Past Climate
Variability through Europe and Africa, edited by: Battarbee, R. W., Gasse, F., and Stickley, C. E., Springer, Dordrecht, 495–514, https://doi.org/10.1007/978-1-4020-2121-3_23, 2004.
Renssen, H., Seppä, H., Crosta, X., Goosse, H., Roche, D. M.: Global
characterization of the Holocene thermal maximum, Quaternary Sci. Rev., 48,
7–19, https://doi.org/10.1016/j.quascirev.2012.05.022, 2012.
Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M.
O., Langenfelds, R. L., Steele, L. P., Curran, M., Bender, M., White, J. W.
C., Jenk, T. M., Blunier, T., and Francey, R. J.: A revised 1000 year
atmospheric δ13C-CO2 record from Law Dome and South Pole,
Antarctica, J. Geophys. Res.-Atmos., 118, 8482–8499,
https://doi.org/10.1002/jgrd.50668, 2013.
Schilt, A., Baumgartner, M., Schwander, J., Buiron, D., Capron, E.,
Chappellaz, J., Loulergue, L., Schüpbach, S., Spahni, R., Fischer, H.,
and Stocker, T. F.: Atmospheric nitrous oxide during the last 140 000 years,
Earth Planet. Sci. Lett., 300, 33–43, https://doi.org/10.1016/j.epsl.2010.09.027, 2010.
Seltzer, G., Rodbell, D., and Burns, S.: Isotopic evidence for late
Quaternary climatic change in tropical South America, Geology, 28, 35–38,
https://doi.org/10.1130/0091-7613(2000)28<35:IEFLQC>2.0.CO;2, 2000.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–54, https://doi.org/10.1038/nature10915, 2012.
Shevenell, A. E., Ingalls, A. E., Domack, E. W., and Kelly, C.: Holocene
Southern Ocean surface temperature variability west of the Antarctic
Peninsula, Nature, 470, 250–254, https://doi.org/10.1038/nature09751, 2011.
Shi, X., Werner, M., Krug, C., Brierley, C. M., Zhao, A., Igbinosa, E., Braconnot, P., Brady, E., Cao, J., D'Agostino, R., Jungclaus, J., Liu, X., Otto-Bliesner, B., Sidorenko, D., Tomas, R., Volodin, E. M., Yang, H., Zhang, Q., Zheng, W., and Lohmann, G.: Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY, Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, 2022.
Shi, Y., Kong, Z., Wang, S., Tang, L., Wang, F., Yao, T., Zhao, X., Zhang,
P., and Shi, S.: Mid-Holocene climates and environments in China, Global Planet. Change, 7, 219–233, https://doi.org/10.1016/0921-8181(93)90052-P, 1993.
Sidorenko, D., Goessling, H. F., Koldunov, N. V., Scholz, P., Danilov, S.,
Barbi, D., Cabos, W., Gurses, O., Harig, S., Hinrichs, C., Juricke, S.,
Lohmann, G., Losch, M., Mu, L., Rackow, T., Rakowsky, N., Sein, D., Semmler,
T., Shi, X., Stepanek, C., Streffing, J., Wang, Q., Wekerle, C., Yang, H.,
and Jung, T.: Evaluation of FESOM2.0 coupled to ECHAM6.3: preindustrial and
HighResMIP simulations, J. Adv. Model. Earth Syst., 11, 3794–3815,
https://doi.org/10.1029/2019MS001696, 2019.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) reference
manual, ocean component of the Community Climate System Model (CCSM) and
Community Earth System Model (CESM), Los Alamos National Laboratory, Tech.
Rep. LAUR-10-01853, 141 pp., https://www.cesm.ucar.edu/models/cesm1.2/pop2/doc/sci/POPRefManual.pdf (last access: 5 June 2022), 2010.
Smith, R. S. and Gregory, J.: The last glacial cycle: transient simulations
with an AOGCM, Clim. Dyn., 38, 1545–1559, https://doi.org/10.1007/s00382-011-1283-y,
2012.
Smith, R. S., Gregory, J. M., and Osprey, A.: A description of the FAMOUS (version XDBUA) climate model and control run, Geosci. Model Dev., 1, 53–68, https://doi.org/10.5194/gmd-1-53-2008, 2008.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuation, Quaternary Sci. Rev., 111,
9–34, https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Song, X. and Zhang, G. J.: The roles of convection parameterization in the
formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric
processes, J. Adv. Model. Earth Sy., 10, 842–866, https://doi.org/10.1002/2017MS001191,
2018.
Song, X. and Zhang, G. J.: Culprit of the eastern Pacific double ITCZ bias
in the NCAR CESM1.2, J. Clim., 32, 6349–6364, https://doi.org/10.1175/JCLI-D-18-0580.1,
2019.
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G.,
Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D.,
Masson-Delmotte, V., and Jouzel, J.: Atmospheric methane and nitrous oxide
of the late Pleistocene from Antarctic ice cores, Science, 310, 1317–1321,
https://doi.org/10.1126/science.1120132, 2005.
Staubwasser, M.: An overview of Holocene South Asian monsoon records-monsoon
domains and regional contrasts, J. Geolog. Soc. India, 68, 433–446, 2006.
Sun, W., Liu, J., Wan, L., Ning, L., and Yan, M.: Simulation of Northern
Hemisphere mid-latitude precipitation response to different external
forcings during the Holocene (in Chinese), Quaternary Sci., 40, 1588–1596,
https://doi.org/10.11928/j.issn.1001-7410.2020.06.18, 2020.
Taylor, K. E., Stouffer, R. J., and Meehl G. A.: An overview of CMIP5 and
the experiment design, Bull. Amer. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tian, Z., Jiang, D., Zhang, R., and Su, B.: HT-11.5 ka transient simulation data of GMST, Zenodo [data set], https://doi.org/10.5281/zenodo.6269566, 2022.
Timm, O. and Timmermann, A.: Simulation of the last 21 000 years using
accelerated transient boundary conditions, J. Clim., 20, 4377–4401,
https://doi.org/10.1175/JCLI4237.1, 2007.
Timmermann, A., Friedrich, T., Timm, O. E., Chikamoto, M. O., Abe-Ouchi, A.,
and Ganopolski, A.: Modeling obliquity and CO2 effects on Southern
Hemisphere climate during the past 408 ka, J. Clim., 27, 1863–1875,
https://doi.org/10.1175/JCLI-D-13-00311.1, 2014.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vinther, B. M., Clausen, H. B., Fisher, D. A., Koerner, R. M., Johnsen, S.
J., Andersen, K. K., Dahl-Jensen, D., Rasmussen, S. O., Steffensen, J. P.,
and Svensson, A. M.: Synchronizing ice cores from the Renland and Agassiz
ice caps to the Greenland Ice Core Chronology, J. Geophys. Res., 113,
D08115, https://doi.org/10.1029/2007jd009143, 2008.
Walker, M. J. C., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher,
D. A., Long, A. J., Lowe, J. J., Newnham, R. M., Rasmussen, S. O., and
Weiss, H.: Formal subdivision of the Holocene Series/Epoch: a Discussion
Paper by a Working Group of INTIMATE (Integration of ice-core, marine and
terrestrial records) and the Subcommission on Quaternary Stratigraphy
(International Commission on Stratigraphy), J. Quaternary Sci., 27,
649–659, https://doi.org/10.1002/jqs.2565, 2012.
Wan, L., Liu, J., Gao, C., Sun, W., Ning, L., and Yan, M.: Study about
influence of the Holocene volcanic eruptions on temperature variation trend
by simulation (in Chinese), Quaternary Sci., 40, 1597–1610,
https://doi.org/10.11928/j.issn.1001-7410.2020.06.19, 2020.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J.,
Kelly, M. J., Dykoski, C., and Li, X.: The Holocene Asian monsoon: links to
solar changes and North Atlantic climate, Science, 308, 854–857,
https://doi.org/10.1126/science.1106296, 2005.
Wanner, H.: Late-Holocene: Cooler or warmer?, Holocene, 31, 1501–1506,
https://doi.org/10.1177/09596836211019106, 2021.
Wanner, H. and Ritz, S.: A web-based Holocene Climate Atlas (HOCLAT),
https://www.oeschger.unibe.ch/research/projects_and_databases/web_based_holocene_climate_atlas_hoclat
(last access: 31 December 2021), 2011.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene
climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828,
https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.:
Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30,
3109–3123, https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Wu, B., Lang, X., and Jiang, D.: Migration of the northern boundary of the
East Asian summer monsoon over the last 21 000 years, J. Geophys.
Res.-Atmos., 126, e2021JD035078, https://doi.org/10.1029/2021JD035078, 2021.
Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang,
M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J. A., An, Z., and Cai, Y.:
Timing, duration, and transitions of the last interglacial Asian monsoon,
Science, 304, 575–578, https://doi.org/10.1126/science.1091220, 2004.
Zhang, J., Chen, F., Holmes, J. A., Li, H., Guo, X., Wang, J., Li, S.,
Lü, Y., Zhao, Y., and Qiang, M.: Holocene monsoon climate documented by
oxygen and carbon isotopes from lake sediments and peat bogs in China: a
review and synthesis, Quaternary Sci. Rev., 30, 1973–1987,
https://doi.org/10.1016/j.quascirev.2011.04.023, 2011.
Zhang, W., Wu, H., Geng, J., and Cheng, J.: Model-data divergence in global
seasonal temperature response to astronomical insolation during the
Holocene, Sci. Bull., 67, 25–28, https://doi.org/10.1016/j.scib.2021.09.004, 2022.
Zhang, Y., Renssen, H., and Seppä, H.: Effects of melting ice sheets and orbital forcing on the early Holocene warming in the extratropical Northern Hemisphere, Clim. Past, 12, 1119–1135, https://doi.org/10.5194/cp-12-1119-2016, 2016.
Zhang, Y., Renssen, H., Seppä, H., and Valdes, P. J.: Holocene
temperature trends in the extratropical Northern Hemisphere based on
inter-model comparisons, J. Quaternary Sci., 33, 464–476,
https://doi.org/10.1002/jqs.3027, 2018.
Zhang, Y., Renssen, H., Seppä, H., Valdes, P. J., and Li, J.: Spatial
contrasts of the Holocene hydroclimate trend between North and East Asia,
Quaternary Sci. Rev., 227, 106036, https://doi.org/10.1016/j.quascirev.2019.106036,
2020.
Short summary
We present an experimental design for a new set of transient experiments for the Holocene from 11.5 ka to the preindustrial period (1850) with a relatively high-resolution Earth system model. Model boundary conditions include time-varying full and single forcing of orbital parameters, greenhouse gases, and ice sheets. The simulations will help to study the mean climate trend and abrupt climate changes through the Holocene in response to both full and single external forcings.
We present an experimental design for a new set of transient experiments for the Holocene from...