Articles | Volume 15, issue 11
https://doi.org/10.5194/gmd-15-4469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transient climate simulations of the Holocene (version 1) – experimental design and boundary conditions
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Dabang Jiang
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
Ran Zhang
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Baohuang Su
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, China Meteorological Administration, Beijing 100081, China
Related authors
Jule Xiao, Shengrui Zhang, Jiawei Fan, Ruilin Wen, Dayou Zhai, Zhiping Tian, and Dabang Jiang
Clim. Past, 14, 1417–1425, https://doi.org/10.5194/cp-14-1417-2018, https://doi.org/10.5194/cp-14-1417-2018, 2018
Short summary
Short summary
Multiple proxies of a sediment core at Hulun Lake in the northern margin of the EASM reveal a prominent dry event at the interval of 4210–3840 cal. yr BP that could be the regional manifestation of the 4.2 ka BP event. Future studies should be focused on the investigation of high-quality, high-resolution proxy records from climatically sensitive and geographically representative regions in order to explore the spatiotemporal pattern of the 4.2 ka BP event and the associated dynamic mechanism.
Z. Tian and D. Jiang
Clim. Past, 9, 2153–2171, https://doi.org/10.5194/cp-9-2153-2013, https://doi.org/10.5194/cp-9-2153-2013, 2013
Xiaofang Huang, Shiling Yang, Alan Haywood, Julia Tindall, Dabang Jiang, Yongda Wang, Minmin Sun, and Shihao Zhang
Clim. Past, 19, 731–745, https://doi.org/10.5194/cp-19-731-2023, https://doi.org/10.5194/cp-19-731-2023, 2023
Short summary
Short summary
The sensitivity of climate to the height changes of the East Antarctic ice sheet (EAIS) during the mid-Pliocene has been assessed using the HadCM3 model. The results show that the height reduction of the EAIS leads to a warmer and wetter East Antarctica. However, unintuitively, both the surface air temperature and the sea surface temperature decrease over the rest of the globe. These findings could provide insights into future changes caused by warming-induced decay of the Antarctic ice sheet.
Zhaochen Liu, Xianmei Lang, and Dabang Jiang
Atmos. Chem. Phys., 22, 7667–7680, https://doi.org/10.5194/acp-22-7667-2022, https://doi.org/10.5194/acp-22-7667-2022, 2022
Short summary
Short summary
Stratospheric aerosol intervention geoengineering is considered a potential means to counteract global warming. Here the impact of stratospheric aerosol intervention geoengineering on surface air temperature over China and related physical processes are investigated. Results show that the increased stratospheric aerosols cause surface cooling over China. The temperature responses vary with models, regions, and seasons and are largely related to net surface shortwave radiation changes.
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020, https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary
Short summary
Reliable models are required to estimate global wetland CH4 emissions, which are the largest and most uncertain source of atmospheric CH4. This paper evaluated CH4MODwetland and TEM models against CH4 measurements from different continents and wetland types. Based on best-model performance, we estimated 117–125 Tg yr−1 of global CH4 emissions from wetlands for the period 2000–2010. Efforts should be made to reduce estimate uncertainties for different wetland types and regions.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Xiangyu Li, Chuncheng Guo, Zhongshi Zhang, Odd Helge Otterå, and Ran Zhang
Clim. Past, 16, 183–197, https://doi.org/10.5194/cp-16-183-2020, https://doi.org/10.5194/cp-16-183-2020, 2020
Short summary
Short summary
Here we report the PlioMIP2 simulations by two versions of the Norwegian Earth System Model (NorESM) with updated boundary conditions derived from Pliocene Research, Interpretation and Synoptic Mapping version 4. The two NorESM versions both produce warmer and wetter Pliocene climate with deeper and stronger Atlantic meridional overturning circulation. Compared to PlioMIP1, PlioMIP2 simulates lower Pliocene warming with NorESM-L, likely due to the closure of seaways at northern high latitudes.
Yating Lin, Gilles Ramstein, Haibin Wu, Raj Rani, Pascale Braconnot, Masa Kageyama, Qin Li, Yunli Luo, Ran Zhang, and Zhengtang Guo
Clim. Past, 15, 1223–1249, https://doi.org/10.5194/cp-15-1223-2019, https://doi.org/10.5194/cp-15-1223-2019, 2019
Short summary
Short summary
The mid-Holocene has been an excellent target for comparing models and data. This work shows that, over China, all the ocean–atmosphere general circulation models involved in PMIP3 show a very large discrepancy with pollen data reconstruction when comparing annual and seasonal temperature. It demonstrates that to reconcile models and data and to capture the signature of seasonal thermal response, it is necessary to integrate non-linear processes, particularly those related to vegetation changes.
Jule Xiao, Shengrui Zhang, Jiawei Fan, Ruilin Wen, Dayou Zhai, Zhiping Tian, and Dabang Jiang
Clim. Past, 14, 1417–1425, https://doi.org/10.5194/cp-14-1417-2018, https://doi.org/10.5194/cp-14-1417-2018, 2018
Short summary
Short summary
Multiple proxies of a sediment core at Hulun Lake in the northern margin of the EASM reveal a prominent dry event at the interval of 4210–3840 cal. yr BP that could be the regional manifestation of the 4.2 ka BP event. Future studies should be focused on the investigation of high-quality, high-resolution proxy records from climatically sensitive and geographically representative regions in order to explore the spatiotemporal pattern of the 4.2 ka BP event and the associated dynamic mechanism.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Baohuang Su, Dabang Jiang, Ran Zhang, Pierre Sepulchre, and Gilles Ramstein
Clim. Past, 14, 751–762, https://doi.org/10.5194/cp-14-751-2018, https://doi.org/10.5194/cp-14-751-2018, 2018
Short summary
Short summary
The present numerical experiments undertaken by a coupled atmosphere–ocean model indicate that the uplift of the Tibetan Plateau alone could have been a potential driver for the reorganization of Pacific and Atlantic meridional overturning circulations between the late Eocene and early Oligocene. In other words, the Tibetan Plateau could play an important role in maintaining the current large-scale overturning circulation in the Atlantic and Pacific.
Z. Tian and D. Jiang
Clim. Past, 9, 2153–2171, https://doi.org/10.5194/cp-9-2153-2013, https://doi.org/10.5194/cp-9-2153-2013, 2013
Related subject area
Climate and Earth system modeling
Importance of ice nucleation and precipitation on climate with the Parameterization of Unified Microphysics Across Scales version 1 (PUMASv1)
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
CMIP6 simulations with the compact Earth system model OSCAR v3.1
Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1
The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Evaluation of native Earth system model output with ESMValTool v2.6.0
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Accelerated photosynthesis routine in LPJmL4
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Temperature forecasting by deep learning methods
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Climate change projections of wet and dry extreme events in the Upper Jhelum Basin using a multivariate drought index: Evaluation of bias correction
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: a case study over the coastal regions of North China
Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States
SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics
Impacts of the ice-particle size distribution shape parameter on climate simulations with the Community Atmosphere Model Version 6 (CAM6)
A modeling framework to understand historical and projected ocean climate change in large coupled ensembles
TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
The Moist Quasi-Geostrophic Coupled Model: MQ-GCM 2.0
Predicting the climate impact of aviation for en-route emissions: The algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Pace v0.1: A Python-based Performance-Portable Implementation of the FV3 Dynamical Core
Transport parameterization of the Polar SWIFT model (version 2)
Effects of complex terrain on the shortwave radiative balance: A sub–grid scale parameterization for the GFDL Land Model version 4.2
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
Geosci. Model Dev., 16, 1735–1754, https://doi.org/10.5194/gmd-16-1735-2023, https://doi.org/10.5194/gmd-16-1735-2023, 2023
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth system models. These updates include the ability to run the scheme on graphics processing units (GPUs), changes to the numerical description of precipitation, and a correction to the ice number. There are big improvements in the computational performance that can be achieved with GPU acceleration.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023, https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023, https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
Short summary
The traditional tropospheric zenith hydrostatic delay (ZHD) model's bias is usually thought negligible, yet it still reaches 10 mm sometimes and would lead to millimeter-level position errors for space geodetic observations. Therefore, we analyzed the bias’ characteristics and present a grid model to correct the traditional ZHD formula. When verifying the efficiency based on data from the ECMWF (European Centre for Medium-Range Weather Forecasts), ZHD biases were rectified by ~50 %.
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023, https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary
Short summary
The model OSCAR is a simple climate model, meaning its representation of the Earth system is simplified but calibrated on models of higher complexity. Here, we diagnose its latest version using a total of 99 experiments in a probabilistic framework and under observational constraints. OSCAR v3.1 shows good agreement with observations, complex Earth system models and emerging properties. Some points for improvements are identified, such as the ocean carbon cycle.
Sandra L. LeGrand, Theodore W. Letcher, Gregory S. Okin, Nicholas P. Webb, Alex R. Gallagher, Saroj Dhital, Taylor S. Hodgdon, Nancy P. Ziegler, and Michelle L. Michaels
Geosci. Model Dev., 16, 1009–1038, https://doi.org/10.5194/gmd-16-1009-2023, https://doi.org/10.5194/gmd-16-1009-2023, 2023
Short summary
Short summary
Ground cover affects dust emissions by reducing wind flow over the immediate soil surface. This study reviews a method for estimating ground cover effects on wind erosion from satellite-detected terrain shadows. We conducted a case study for a US dust event using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Adding the shadow-based method for ground cover effects markedly improved simulated results and may lead to better dust modeling outcomes in vegetated drylands.
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023, https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023, https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Short summary
Models that are used to simulate and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper, we develop a novel framework that increases the horizontal and vertical resolutions only for areas of the globe that contain stratocumulus, hence reducing the model runtime while providing better results.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Magnus Hieronymus
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-295, https://doi.org/10.5194/gmd-2022-295, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantifications and in decision and adaptation problems.
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023, https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023, https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868, https://doi.org/10.5194/gmd-15-8831-2022, https://doi.org/10.5194/gmd-15-8831-2022, 2022
Short summary
Short summary
We developed a new simple climate model designed to fill a perceived gap within the existing simple climate models by fulfilling three key requirements: calibration using Bayesian inference, the possibility of coupling with integrated assessment models, and the capacity to explore climate scenarios compatible with limiting climate impacts. Here, we describe the model and its calibration using the latest data from complex CMIP6 models and the IPCC AR6, and we assess its performance.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-237, https://doi.org/10.5194/gmd-2022-237, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Bias correction has become indispensable to climate model output as a post-processing step to render climate model output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX and CORDEX-CORE) for a multivariate drought index (i.e., Standardized Precipitation Evapotranspiration Index).
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
Laura Claire Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-277, https://doi.org/10.5194/gmd-2022-277, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult, however it is unclear whether TP exist in global climate models. Here we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic hosing model intercomparison project (NAHosMIP).
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Adama Sylla, Emilia Sanchez Gomez, Juliette Mignot, and Jorge López-Parages
Geosci. Model Dev., 15, 8245–8267, https://doi.org/10.5194/gmd-15-8245-2022, https://doi.org/10.5194/gmd-15-8245-2022, 2022
Short summary
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
Jadwiga H. Richter, Daniele Visioni, Douglas G. MacMartin, David A. Bailey, Nan Rosenbloom, Brian Dobbins, Walker R. Lee, Mari Tye, and Jean-Francois Lamarque
Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, https://doi.org/10.5194/gmd-15-8221-2022, 2022
Short summary
Short summary
Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI).
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Entao Yu, Rui Bai, Xia Chen, and Lifang Shao
Geosci. Model Dev., 15, 8111–8134, https://doi.org/10.5194/gmd-15-8111-2022, https://doi.org/10.5194/gmd-15-8111-2022, 2022
Short summary
Short summary
A large number of simulations are conducted to investigate how different physical parameterization schemes impact surface wind simulations under stable weather conditions over the coastal regions of North China using the Weather Research and Forecasting model with a horizontal grid spacing of 0.5 km. Results indicate that the simulated wind speed is most sensitive to the planetary boundary layer schemes, followed by short-wave/long-wave radiation schemes and microphysics schemes.
Xingying Huang, Andrew Gettelman, William C. Skamarock, Peter Hjort Lauritzen, Miles Curry, Adam Herrington, John T. Truesdale, and Michael Duda
Geosci. Model Dev., 15, 8135–8151, https://doi.org/10.5194/gmd-15-8135-2022, https://doi.org/10.5194/gmd-15-8135-2022, 2022
Short summary
Short summary
We focus on the recent development of a state-of-the-art storm-resolving global climate model and investigate how this next-generation model performs for precipitation prediction over the western USA. Results show realistic representations of precipitation with significantly enhanced snowpack over complex terrains. The model evaluation advances the unified modeling of large-scale forcing constraints and realistic fine-scale features to advance multi-scale climate predictions and changes.
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Wentao Zhang, Xiangjun Shi, and Chunsong Lu
Geosci. Model Dev., 15, 7751–7766, https://doi.org/10.5194/gmd-15-7751-2022, https://doi.org/10.5194/gmd-15-7751-2022, 2022
Short summary
Short summary
The two-moment bulk cloud microphysics scheme used in CAM6 was modified to consider the impacts of the ice-crystal size distribution shape parameter (μi). After that, how the μi impacts cloud microphysical processes and then climate simulations is clearly illustrated by offline tests and CAM6 model experiments. Our results and findings are useful for the further development of μi-related parameterizations.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf
Geosci. Model Dev., 15, 7489–7504, https://doi.org/10.5194/gmd-15-7489-2022, https://doi.org/10.5194/gmd-15-7489-2022, 2022
Short summary
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-220, https://doi.org/10.5194/gmd-2022-220, 2022
Short summary
Short summary
This paper describes a newly developed submodel ACCF V1.0 based on the MESSy 2.53.0 infrastructure. The ACCF V1.0 is based on the prototype algorithmic climate change functions (aCCFs) v1.0 to enable climate-optimized flight trajectories. One highlight of this paper is that we, for the first time, describe a consistent set of aCCFs formulas w.r.t. fuel scenario and metrics. We demonstrate the usage of ACCF submodel using AirTraf V2.0 to optimize trajectories for cost and climate impact.
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
EGUsphere, https://doi.org/10.5194/egusphere-2022-943, https://doi.org/10.5194/egusphere-2022-943, 2022
Short summary
Short summary
It is hard for scientists to write efficient code which runs fast on all kinds of supercomputers. They like writing Python because it is easier to read and use. We re-wrote a Fortran code that simulates weather and climate into Python. The Python code re-writes itself to a much faster language to run on either normal processors or graphics cards. On one big computer system, our code is 3.5–4x faster on its graphics cards than the original code is on its processors.
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022, https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2022-770, https://doi.org/10.5194/egusphere-2022-770, 2022
Short summary
Short summary
In this paper we develop a methodology to model the spatial distribution of solar radiation received by land over mountainous terrain. The approach is designed to be used in Earth System Models, where coarse grid cells hinder the description of fine scale land-atmosphere interactions. We adopt a clustering algorithm to partiton land domain in a set of homogeneous sub-grid “tiles”, and for each evaluate solar radiation receive by land based on terrain properties.
Cited articles
An, Z., Porter, S. C., Kutzbach, J. E., Wu, X., Wang, S., Liu, X., Li, X.,
and Zhou, W.: Asynchronous Holocene optimum of the East Asian monsoon,
Quaternary Sci. Rev., 19, 743–762, https://doi.org/10.1016/S0277-3791(99)00031-1, 2000.
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica
component of postglacial rebound model ICE-6G_C (VM5a) based
on GPS positioning, exposure age dating of ice thicknesses, and relative sea
level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140,
2014.
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T.,
Schmidt, H., Toohey, M., Wu, C.-J., and Claussen, M.: Global temperature
modes shed light on the Holocene temperature conundrum, Nat. Commun., 11,
4726, https://doi.org/10.1038/s41467-020-18478-6, 2020.
Baker, J. L., Lachniet, M. S., Chervyatsova, O., Asmerom, Y., and Polyak, V.
J.: Holocene warming in western continental Eurasia driven by glacial
retreat and greenhouse forcing. Nat. Geosci., 10, 430–435,
https://doi.org/10.1038/ngeo2953, 2017.
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.
F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA
Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res.
Lett., 42, 542–549, https://doi.org/10.1002/2014GL061957, 2015.
Berger, A.: Long-term variations of daily insolation and Quaternary climatic
changes, J. Atmos. Sci., 35, 2362–2367,
https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2,
1978.
Birks, H. H.: South to north: Contrasting late-glacial and early-Holocene
climate changes and vegetation responses between south and north Norway,
Holocene, 25, 37–52, https://doi.org/10.1177/0959683614556375, 2015.
Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P., and Yan, M.: Seasonal origin
for the Holocene and last interglacial thermal maximum, Nature, 589,
548–553, https://doi.org/10.1038/s41586-020-03155-x, 2021.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, https://doi.org/10.5194/cp-3-261-2007, 2007.
Braconnot, P., Crétat, J., Marti, O., Balkanski, Y., Caubel, A., Cozic,
A., Foujols, M.-A., and Sanogo, S.: Impact of multiscale variability on last
6,000 years Indian and West African monsoon rain, Geophys. Res. Lett., 46,
14021–14029, https://doi.org/10.1029/2019GL084797, 2019a.
Braconnot, P., Zhu, D., Marti, O., and Servonnat, J.: Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation, Clim. Past, 15, 997–1024, https://doi.org/10.5194/cp-15-997-2019, 2019b.
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020.
Brooks, S. J., Matthews, I. P., Birks, H. H., and Birks, H. J. B.: High
resolution Lateglacial and early-Holocene summer air temperature records
from Scotland inferred from chironomid assemblages, Quaternary Sci. Rev.,
41, 67–82, https://doi.org/10.1016/j.quascirev.2012.03.007, 2012.
Carré, M., Braconnot, P., Elliot, M., d'Agostino, R., Schurer, A., Shi,
X., Marti, O., Lohmann, G., Jungclaus, J., Cheddadi, R., di Carlo, I. A.,
Cardich, J., Ochoa, D., Gismondi, R. S., Pérez, A., Romero, P. E.,
Turcq, B., Corrège, T., and Harrison, S. P.: High-resolution marine data
and transient simulations support orbital forcing of ENSO amplitude since
the mid-Holocene, Quaternary Sci. Rev., 268, 107125,
https://doi.org/10.1016/j.quascirev.2021.107125, 2021.
CCSM4 Climate Modeling Group: CCSM4 input data, Subversion [data set], https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/ccsm4_init/b40.1850.track1.2deg.003/0501-01-01/ (last access: 5 May 2022), 2011.
CESM Climate Modeling Group: CESM1.2.1 release code, Subversion [code], https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_2_1 (last access: 20 February 2022), 2013.
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., Huang, X.,
Zhao, Y., Sato, T., Birks, H. J. B., Boomer, I., Chen, J., An, C., and
Wünnemann, B.: Holocene moisture evolution in arid central Asia and its
out-of-phase relationship with Asian monsoon history, Quaternary Sci. Rev.,
27, 351–364, https://doi.org/10.1016/j.quascirev.2007.10.017, 2008.
Chen, F., Chen, J., Huang, W., Chen, S., Huang, X., Jin, L., Jia, J., Zhang,
X., An, C., Zhang, J., Zhao, Y., Yu, Z., Zhang, R., Liu, J., Zhou, A., and
Feng, S.: Westerlies Asia and monsoonal Asia: spatiotemporal differences in
climate change and possible mechanisms on decadal to sub-orbital timescales,
Earth-Sci. Rev., 192, 337–354, https://doi.org/10.1016/j.earscirev.2019.03.005, 2019.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for
earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform.
C., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Crétat, J., Braconnot, P., Terray, P., Marti, O., and Falasca, F.:
Mid-Holocene to present-day evolution of the Indian monsoon in transient
global simulations, Clim. Dyn., 55, 2761–2784,
https://doi.org/10.1007/s00382-020-05418-9, 2020.
Dallmeyer, A., Claussen, M., Lorenz, S. J., and Shanahan, T.: The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years, Clim. Past, 16, 117–140, https://doi.org/10.5194/cp-16-117-2020, 2020.
Dallmeyer, A., Claussen, M., Lorenz, S. J., Sigl, M., Toohey, M., and Herzschuh, U.: Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2, Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, 2021.
Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M.,
Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 ocean component, J.
Clim., 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1, 2012.
Deevey, E. S. and Flint, R. F.: Postglacial hypsithermal interval, Science,
125, 182–184, https://doi.org/10.1126/science.125.3240.182, 1957.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, in: Quaternary Glaciations-Extent and
Chronology – Part II: North America, vol. 2, Part 2, 371–406, Elsevier,
https://www.lakeheadu.ca/sites/default/files/uploads/53/outlines/2014-15/NECU5311/Dyke_2004_DeglaciationOutline.pdf (last access: 20 November 2021),
2004.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Gasse, F.: Hydrological changes in Africa, Science, 292, 2259–2260,
https://doi.org/10.1126/science.1061940, 2001.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System
Model version 4, J. Clim., 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Goldner, A., Herold, N., and Huber, M.: The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1, Clim. Past, 10, 523–536, https://doi.org/10.5194/cp-10-523-2014, 2014.
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E. J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann, A., and Weber, S. L.: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T.
C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice
extents and ocean heat transports in a version of the Hadley Centre coupled
model without flux adjustments, Clim. Dyn., 16, 147–168,
https://doi.org/10.1007/s003820050010, 2000.
Gupta, A. K., Anderson, D. M., and Overpeck, J. T.: Abrupt changes in the
Asian southwest monsoon during the Holocene and their links to the North
Atlantic Ocean, Nature, 421, 354–357, https://doi.org/10.1038/nature01340, 2003.
Gyllencreutz, R., Mangerud, J., Svendsen, J.-I., and Lohne, Ø.: DATED –
a GIS-based reconstruction and dating database of the Eurasian deglaciation,
Appl. Quaternary Res. Cent. Part Glaciat. Terrain Geol. Surv. Finl. Spec.
Pap., 46, 113–120, 2007.
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D.,
Risebrobakken, B., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., and
Telford, R. J.: Variations in temperature and extent of Atlantic Water in
the northern North Atlantic during the Holocene, Quaternary Sci. Rev., 26,
3423–3440, https://doi.org/10.1016/j.quascirev.2007.10.005, 2007.
Harrison, S., Bartlein, P., Izumi, K., Li, G., Annan, J., Hargreaves, J.,
Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to
improve climate projections, Nat. Clim. Change, 5, 735–743,
https://doi.org/10.1038/nclimate2649, 2015.
Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl,
U.: Southward migration of the Intertropical Convergence Zone through the
Holocene, Science, 293, 1304–1308, https://doi.org/10.1126/science.1059725, 2001.
He, F.: Simulating transient climate evolution of the last deglaciation with
CCSM3, PhD thesis, University of Wisconsin-Madison, 161 pp., 2011.
Hoelzmann, P., Gasse, F., Dupont, L. M., Salzmann, U., Staubwasser, M.,
Leuschner, D. C., and Sirocko, F.: Palaeoenvironmental changes in the arid
and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present,
in: Past Climate Variability through Europe and Africa, edited by: Battarbee, R. W., Gasse, F., and Stickley, C. E., Springer, Dordrecht,
219–256, https://doi.org/10.1007/978-1-4020-2121-3_12, 2004.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model,
Documentation and Software, version 4.0, Los Alamos National Laboratory,
Tech. Rep. LA-CC-06-012, 76 pp., https://www.cesm.ucar.edu/models/cesm1.2/cice/ (last access: 5 June 2022), 2008.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl1,
J., and Marshall, S.: The Community Earth System Model: A framework for
collaborative research, Bull. Amer. Meteorol. Soc., 94, 1339–1360,
https://doi.org/10.1175/BAMS-D-12-00121.1, 2013.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, USA, https://www.ipcc.ch/report/ar6/wg1/ (last access: 5 June 2022), in press, 2022.
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016.
Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J. C., Joos, F.,
Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R.,
Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba,
R., and Zhang, D.: Palaeoclimate, in: Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor M., and Miller, H. L., Cambridge
University Press, USA, 435–497, https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter6-1.pdf (last access: 5 June 2022), 2007.
Jin, L., Schneider, B., Park, W., Latif, M., Khon, V., and Zhang, X.: The
spatial–temporal patterns of Asian summer monsoon precipitation in response
to Holocene insolation change: a model-data synthesis, Quaternary Sci. Rev.,
85, 47–62, https://doi.org/10.1016/j.quascirev.2013.11.004, 2014.
Joussaume, S. and Taylor, K. E.: Status of the Paleoclimate Modeling
Intercomparison Project (PMIP), in: Proceedings of the First International AMIP
Scientific Conference, WCRP report, 425–430, 1995.
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018.
Kapsch, M.-L., Mikolajewicz, U., Ziemen, F., and Schannwell, C.: Ocean
response in transient simulations of the last deglaciation dominated by
underlying ice-sheet reconstruction and method of meltwater distribution,
Geophys. Res. Lett., 49, e2021GL096767, https://doi.org/10.1029/2021GL096767, 2020.
Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P.
S., Heiri, O., and Davis, B.: Holocene global mean surface temperature, a
multi-method reconstruction approach, Sci. Data, 7, 201,
https://doi.org/10.1038/s41597-020-0530-7, 2020a.
Kaufman, D. S., Ager, T. A., Anderson, N. J., Anderson, P. M., Andrews, J.
T., Bartlein, P. J., Brubaker, L. B., Coats, L. L., Cwynar, L. C., Duvall,
M. L., Dyke, A. S., Edwards, M. E., Eisner, W. R., Gajewski, K.,
Geirsdóttir, A., Hu, F. S., Jennings, A. E., Kaplan, M. R., Kerwin, M.
W., Lozhkin, A. V., MacDonald, G. M., Miller, G. H., Mock, C. J., Oswald, W.
W., Otto-Bliesner, B. L., Porinchu, D. F., Rühland, K., Smol, J. P.,
Steig, E. J., and Wolfe, B. B.: Holocene thermal maximum in the western
Arctic (0–180∘ W), Quaternary Sci. Rev., 23, 529–560,
https://doi.org/10.1016/j.quascirev.2003.09.007, 2004.
Koerner, R. M. and Fisher, D. A.: A record of Holocene summer climate from a
Canadian High Arctic ice core, Nature, 343, 630–631, https://doi.org/10.1038/343630a0,
1990.
Kutzbach, J. E., Liu, X., Liu, Z., and Chen, G.: Simulation of the
evolutionary response of global summer monsoons to orbital forcing over the
past 280 000 years, Clim. Dyn., 30, 567–579, https://doi.org/10.1007/s00382-007-0308-z,
2008.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan,
G. B., and Slater, A. G.: Parameterization improvements and functional and
structural advances in version 4 of the Community Land Model, J. Adv. Model.
Earth Sy., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011.
Liu, S., Lang, X., and Jiang, D: Time-varying responses of dryland aridity
to external forcings over the last 21 ka, Quaternary Sci. Rev., 262, 106989,
https://doi.org/10.1016/j.quascirev.2021.106989, 2021.
Liu, Y., Zhang, M., Liu, Z., Xia, Y., Huang, Y., Peng, Y., and Zhu, J.: A
possible role of dust in resolving the Holocene temperature conundrum, Sci.
Rep., 8, 4434, https://doi.org/10.1038/s41598-018-22841-5, 2018.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L.,
Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Timm, O. E.: The
Holocene temperature conundrum, P. Natl. Acad. Sci., 111, E3501–E3505,
https://doi.org/10.1073/pnas.1407229111, 2014.
Ljungqvist, F. C.: The spatio-temporal pattern of the mid-Holocene thermal
maximum, Geografie, 116, 91–110, https://doi.org/10.37040/geografie2011116020091, 2011.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz,
J.: Orbital and millennial-scale features of atmospheric CH4 over the
past 800 000 years, Nature, 453, 383–386, https://doi.org/10.1038/nature06950, 2008.
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds,
R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4
and N2O ice core records extended to 2000 years BP, Geophys. Res.
Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006.
Magny, M., Vannière, B., de Beaulieu, J.-L., Bégeot, C., Heiri, O.,
Millet, L., Peyron, O., and Walter-Simonnet, A.-V.: Early-Holocene climatic
oscillations recorded by lake-level fluctuations in west-central Europe and
in central Italy, Quaternary Sci. Rev., 26, 1951–1964,
https://doi.org/10.1016/j.quascirev.2006.04.013, 2007.
Mamajek, E. E., Prsa, A., Torres, G., Harmanec, P., Asplund, M., Bennett, P.
D., Capitaine, N., Christensen-Dalsgaard, J., Depagne, E., Folkner, W. M.,
Haberreiter, M., Hekker, S., Hilton, J. L., Kostov, V., Kurtz, D. W.,
Laskar, J., Mason, B. D., Milone, E. F., Montgomery, M. M., Richards, M. T.,
Schou, J., and Stewart, S. G.: IAU 2015 Resolution B3 on Recommended Nominal
Conversion Constants for Selected Solar and Planetary Properties,
ArXiv151007674 Astro-Ph, http://arxiv.org/abs/1510.07674 (last
access: 15 November 2021), 2015.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A
reconstruction of regional and global temperature for the past 11 300 years,
Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L.,
Cuffey, K. M., Fudge, T. J., Severinghaus, J. P., Ahn, J., Kalk, M. L.,
McConnell, J. R., Sowers, T., Taylor, K. C., White, J. W. C., and Brook, E.
J.: Centennial-scale changes in the global carbon cycle during the last
deglaciation, Nature, 514, 616–619, https://doi.org/10.1038/nature13799, 2014.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.:
Reconciling divergent trend and millennial variations in Holocene
temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
Maslin, M. A. and Burns, S. J.: Reconstruction of the Amazon Basin effective
moisture availability over the past 14 000 years, Science, 290, 2285–2287,
https://doi.org/10.1126/science.290.5500.2285, 2000.
Matero, I. S. O., Gregoire, L. J., and Ivanovic, R. F.: Simulating the Early Holocene demise of the Laurentide Ice Sheet with BISICLES (public trunk revision 3298), Geosci. Model Dev., 13, 4555–4577, https://doi.org/10.5194/gmd-13-4555-2020, 2020.
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017.
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K.
A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren,
K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.
R., and Steig, E. J.: Holocene climate variability, Quaternary Res., 62,
243–255, https://doi.org/10.1016/j.yqres.2004.07.001, 2004.
Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B.,
Stocker, T. F., Raynaud, D., and Barnola, J. M.: Atmospheric CO2
concentrations over the last glacial termination, Science, 291, 112–114,
https://doi.org/10.1126/science.291.5501.112, 2001.
Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J.,
Stauffer, B., Stocker, T. F., Morse, D. L., Barnola, J.-M., Bellier, B.,
Raynaud, D., and Fischer, H.: Evidence for substantial accumulation rate
variability in Antarctica during the Holocene, through synchronization of
CO2 in the Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci.
Lett., 224, 45–54, https://doi.org/10.1016/j.epsl.2004.05.007, 2004.
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H.,
Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M.
A., Collins, W. D., Zhang, M., and Lin, S.: Description of the NCAR
Community Atmosphere Model (CAM 4.0), National
Center for Atmospheric Research, Boulder, CO, Tech. Rep. NCAR/TN-485+STR, 194 pp., https://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf (last access: 5 June 2022), 2010.
Nesje, A. and Dahl, S. O.: Lateglacial and Holocene glacier fluctuations and
climate variations in western Norway: a review, Quaternary Sci. Rev., 12,
255–261, https://doi.org/10.1016/0277-3791(93)90081-V, 1993.
Núñez, L., Grosjean, M., and Cartajena, I.: Human occupations and
climate change in the Puna de Atacama, Chile, Science, 298, 821–824,
https://doi.org/10.1126/science.1076449, 2002.
Osman, M. B., Tierney, J. E., Zhu, J., Tardif, R., Hakim, G. J., King, J.,
and Poulsen, C. J.: Globally resolved surface temperatures since the Last
Glacial Maximum, Nature, 599, 239–244, https://doi.org/10.1038/s41586-021-03984-4,
2021.
Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations, Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017.
Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W., and Seo, K.-H.:
Mid-Holocene Northern Hemisphere warming driven by Arctic amplification,
Sci. Adv., 5, eaax8203, https://doi.org/10.1126/sciadv.aax8203, 2019.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model,
J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
PMIP Last Deglaciation Working Group: PMIP4 Last Deglaciation Experiment
Design Wiki, PMIP4 [data set],
https://pmip4.lsce.ipsl.fr/doku.php/exp_design:degla (last
access: 11 November 2021), 2016.
PMIP PI Working Group: PMIP3 Pre-Industrial Control Run Experiment Design,
https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:design:pi:index
(last access: 16 November 2021), 2010.
Renssen, H., Braconnot, P., Tett, S. F. B., von Storch, H., and Weber, S.
L.: Recent developments in Holocene climate modelling, in: Past Climate
Variability through Europe and Africa, edited by: Battarbee, R. W., Gasse, F., and Stickley, C. E., Springer, Dordrecht, 495–514, https://doi.org/10.1007/978-1-4020-2121-3_23, 2004.
Renssen, H., Seppä, H., Crosta, X., Goosse, H., Roche, D. M.: Global
characterization of the Holocene thermal maximum, Quaternary Sci. Rev., 48,
7–19, https://doi.org/10.1016/j.quascirev.2012.05.022, 2012.
Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M.
O., Langenfelds, R. L., Steele, L. P., Curran, M., Bender, M., White, J. W.
C., Jenk, T. M., Blunier, T., and Francey, R. J.: A revised 1000 year
atmospheric δ13C-CO2 record from Law Dome and South Pole,
Antarctica, J. Geophys. Res.-Atmos., 118, 8482–8499,
https://doi.org/10.1002/jgrd.50668, 2013.
Schilt, A., Baumgartner, M., Schwander, J., Buiron, D., Capron, E.,
Chappellaz, J., Loulergue, L., Schüpbach, S., Spahni, R., Fischer, H.,
and Stocker, T. F.: Atmospheric nitrous oxide during the last 140 000 years,
Earth Planet. Sci. Lett., 300, 33–43, https://doi.org/10.1016/j.epsl.2010.09.027, 2010.
Seltzer, G., Rodbell, D., and Burns, S.: Isotopic evidence for late
Quaternary climatic change in tropical South America, Geology, 28, 35–38,
https://doi.org/10.1130/0091-7613(2000)28<35:IEFLQC>2.0.CO;2, 2000.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–54, https://doi.org/10.1038/nature10915, 2012.
Shevenell, A. E., Ingalls, A. E., Domack, E. W., and Kelly, C.: Holocene
Southern Ocean surface temperature variability west of the Antarctic
Peninsula, Nature, 470, 250–254, https://doi.org/10.1038/nature09751, 2011.
Shi, X., Werner, M., Krug, C., Brierley, C. M., Zhao, A., Igbinosa, E., Braconnot, P., Brady, E., Cao, J., D'Agostino, R., Jungclaus, J., Liu, X., Otto-Bliesner, B., Sidorenko, D., Tomas, R., Volodin, E. M., Yang, H., Zhang, Q., Zheng, W., and Lohmann, G.: Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY, Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, 2022.
Shi, Y., Kong, Z., Wang, S., Tang, L., Wang, F., Yao, T., Zhao, X., Zhang,
P., and Shi, S.: Mid-Holocene climates and environments in China, Global Planet. Change, 7, 219–233, https://doi.org/10.1016/0921-8181(93)90052-P, 1993.
Sidorenko, D., Goessling, H. F., Koldunov, N. V., Scholz, P., Danilov, S.,
Barbi, D., Cabos, W., Gurses, O., Harig, S., Hinrichs, C., Juricke, S.,
Lohmann, G., Losch, M., Mu, L., Rackow, T., Rakowsky, N., Sein, D., Semmler,
T., Shi, X., Stepanek, C., Streffing, J., Wang, Q., Wekerle, C., Yang, H.,
and Jung, T.: Evaluation of FESOM2.0 coupled to ECHAM6.3: preindustrial and
HighResMIP simulations, J. Adv. Model. Earth Syst., 11, 3794–3815,
https://doi.org/10.1029/2019MS001696, 2019.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) reference
manual, ocean component of the Community Climate System Model (CCSM) and
Community Earth System Model (CESM), Los Alamos National Laboratory, Tech.
Rep. LAUR-10-01853, 141 pp., https://www.cesm.ucar.edu/models/cesm1.2/pop2/doc/sci/POPRefManual.pdf (last access: 5 June 2022), 2010.
Smith, R. S. and Gregory, J.: The last glacial cycle: transient simulations
with an AOGCM, Clim. Dyn., 38, 1545–1559, https://doi.org/10.1007/s00382-011-1283-y,
2012.
Smith, R. S., Gregory, J. M., and Osprey, A.: A description of the FAMOUS (version XDBUA) climate model and control run, Geosci. Model Dev., 1, 53–68, https://doi.org/10.5194/gmd-1-53-2008, 2008.
Solomina, O. N., Bradley, R. S., Hodgson, D. A., Ivy-Ochs, S., Jomelli, V.,
Mackintosh, A. N., Nesje, A., Owen, L. A., Wanner, H., Wiles, G. C., and
Young, N. E.: Holocene glacier fluctuation, Quaternary Sci. Rev., 111,
9–34, https://doi.org/10.1016/j.quascirev.2014.11.018, 2015.
Song, X. and Zhang, G. J.: The roles of convection parameterization in the
formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric
processes, J. Adv. Model. Earth Sy., 10, 842–866, https://doi.org/10.1002/2017MS001191,
2018.
Song, X. and Zhang, G. J.: Culprit of the eastern Pacific double ITCZ bias
in the NCAR CESM1.2, J. Clim., 32, 6349–6364, https://doi.org/10.1175/JCLI-D-18-0580.1,
2019.
Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G.,
Kawamura, K., Flückiger, J., Schwander, J., Raynaud, D.,
Masson-Delmotte, V., and Jouzel, J.: Atmospheric methane and nitrous oxide
of the late Pleistocene from Antarctic ice cores, Science, 310, 1317–1321,
https://doi.org/10.1126/science.1120132, 2005.
Staubwasser, M.: An overview of Holocene South Asian monsoon records-monsoon
domains and regional contrasts, J. Geolog. Soc. India, 68, 433–446, 2006.
Sun, W., Liu, J., Wan, L., Ning, L., and Yan, M.: Simulation of Northern
Hemisphere mid-latitude precipitation response to different external
forcings during the Holocene (in Chinese), Quaternary Sci., 40, 1588–1596,
https://doi.org/10.11928/j.issn.1001-7410.2020.06.18, 2020.
Taylor, K. E., Stouffer, R. J., and Meehl G. A.: An overview of CMIP5 and
the experiment design, Bull. Amer. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tian, Z., Jiang, D., Zhang, R., and Su, B.: HT-11.5 ka transient simulation data of GMST, Zenodo [data set], https://doi.org/10.5281/zenodo.6269566, 2022.
Timm, O. and Timmermann, A.: Simulation of the last 21 000 years using
accelerated transient boundary conditions, J. Clim., 20, 4377–4401,
https://doi.org/10.1175/JCLI4237.1, 2007.
Timmermann, A., Friedrich, T., Timm, O. E., Chikamoto, M. O., Abe-Ouchi, A.,
and Ganopolski, A.: Modeling obliquity and CO2 effects on Southern
Hemisphere climate during the past 408 ka, J. Clim., 27, 1863–1875,
https://doi.org/10.1175/JCLI-D-13-00311.1, 2014.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vinther, B. M., Clausen, H. B., Fisher, D. A., Koerner, R. M., Johnsen, S.
J., Andersen, K. K., Dahl-Jensen, D., Rasmussen, S. O., Steffensen, J. P.,
and Svensson, A. M.: Synchronizing ice cores from the Renland and Agassiz
ice caps to the Greenland Ice Core Chronology, J. Geophys. Res., 113,
D08115, https://doi.org/10.1029/2007jd009143, 2008.
Walker, M. J. C., Berkelhammer, M., Björck, S., Cwynar, L. C., Fisher,
D. A., Long, A. J., Lowe, J. J., Newnham, R. M., Rasmussen, S. O., and
Weiss, H.: Formal subdivision of the Holocene Series/Epoch: a Discussion
Paper by a Working Group of INTIMATE (Integration of ice-core, marine and
terrestrial records) and the Subcommission on Quaternary Stratigraphy
(International Commission on Stratigraphy), J. Quaternary Sci., 27,
649–659, https://doi.org/10.1002/jqs.2565, 2012.
Wan, L., Liu, J., Gao, C., Sun, W., Ning, L., and Yan, M.: Study about
influence of the Holocene volcanic eruptions on temperature variation trend
by simulation (in Chinese), Quaternary Sci., 40, 1597–1610,
https://doi.org/10.11928/j.issn.1001-7410.2020.06.19, 2020.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J.,
Kelly, M. J., Dykoski, C., and Li, X.: The Holocene Asian monsoon: links to
solar changes and North Atlantic climate, Science, 308, 854–857,
https://doi.org/10.1126/science.1106296, 2005.
Wanner, H.: Late-Holocene: Cooler or warmer?, Holocene, 31, 1501–1506,
https://doi.org/10.1177/09596836211019106, 2021.
Wanner, H. and Ritz, S.: A web-based Holocene Climate Atlas (HOCLAT),
https://www.oeschger.unibe.ch/research/projects_and_databases/web_based_holocene_climate_atlas_hoclat
(last access: 31 December 2021), 2011.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U.,
Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O.,
Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker,
T. F., Tarasov, P., Wagner, M., and Widmann, M.: Mid- to Late Holocene
climate change: an overview, Quaternary Sci. Rev., 27, 1791–1828,
https://doi.org/10.1016/j.quascirev.2008.06.013, 2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.:
Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30,
3109–3123, https://doi.org/10.1016/j.quascirev.2011.07.010, 2011.
Wu, B., Lang, X., and Jiang, D.: Migration of the northern boundary of the
East Asian summer monsoon over the last 21 000 years, J. Geophys.
Res.-Atmos., 126, e2021JD035078, https://doi.org/10.1029/2021JD035078, 2021.
Yuan, D., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang,
M., Qing, J., Lin, Y., Wang, Y., Wu, J., Dorale, J. A., An, Z., and Cai, Y.:
Timing, duration, and transitions of the last interglacial Asian monsoon,
Science, 304, 575–578, https://doi.org/10.1126/science.1091220, 2004.
Zhang, J., Chen, F., Holmes, J. A., Li, H., Guo, X., Wang, J., Li, S.,
Lü, Y., Zhao, Y., and Qiang, M.: Holocene monsoon climate documented by
oxygen and carbon isotopes from lake sediments and peat bogs in China: a
review and synthesis, Quaternary Sci. Rev., 30, 1973–1987,
https://doi.org/10.1016/j.quascirev.2011.04.023, 2011.
Zhang, W., Wu, H., Geng, J., and Cheng, J.: Model-data divergence in global
seasonal temperature response to astronomical insolation during the
Holocene, Sci. Bull., 67, 25–28, https://doi.org/10.1016/j.scib.2021.09.004, 2022.
Zhang, Y., Renssen, H., and Seppä, H.: Effects of melting ice sheets and orbital forcing on the early Holocene warming in the extratropical Northern Hemisphere, Clim. Past, 12, 1119–1135, https://doi.org/10.5194/cp-12-1119-2016, 2016.
Zhang, Y., Renssen, H., Seppä, H., and Valdes, P. J.: Holocene
temperature trends in the extratropical Northern Hemisphere based on
inter-model comparisons, J. Quaternary Sci., 33, 464–476,
https://doi.org/10.1002/jqs.3027, 2018.
Zhang, Y., Renssen, H., Seppä, H., Valdes, P. J., and Li, J.: Spatial
contrasts of the Holocene hydroclimate trend between North and East Asia,
Quaternary Sci. Rev., 227, 106036, https://doi.org/10.1016/j.quascirev.2019.106036,
2020.
Short summary
We present an experimental design for a new set of transient experiments for the Holocene from 11.5 ka to the preindustrial period (1850) with a relatively high-resolution Earth system model. Model boundary conditions include time-varying full and single forcing of orbital parameters, greenhouse gases, and ice sheets. The simulations will help to study the mean climate trend and abrupt climate changes through the Holocene in response to both full and single external forcings.
We present an experimental design for a new set of transient experiments for the Holocene from...