Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3753-2022
https://doi.org/10.5194/gmd-15-3753-2022
Methods for assessment of models
 | 
10 May 2022
Methods for assessment of models |  | 10 May 2022

A scalability study of the Ice-sheet and Sea-level System Model (ISSM, version 4.18)

Yannic Fischler, Martin Rückamp, Christian Bischof, Vadym Aizinger, Mathieu Morlighem, and Angelika Humbert

Related authors

A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023,https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary

Cited articles

Arzt, P., Fischler, Y., Lehr, J.-P., and Bischof, C.: Automatic Low-Overhead Load-Imbalance Detection in MPI Applications, in: EuroPar 2021, Springer International Publishing, Cham, 19–34, ISBN 978-3-030-85665-6, 2021. a
Aschwanden, A., Aðalgeirsdóttir, G., and Khroulev, C.: Hindcasting to measure ice sheet model sensitivity to initial states, The Cryosphere, 7, 1083–1093, https://doi.org/10.5194/tc-7-1083-2013, 2013. a
Bauer, P., Düben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nature Computat. Sci., 1, 104–113, 2021. a
Download
Short summary
Ice sheet models are used to simulate the changes of ice sheets in future but are currently often run in coarse resolution and/or with neglecting important physics to make them affordable in terms of computational costs. We conducted a study simulating the Greenland Ice Sheet in high resolution and adequate physics to test where the ISSM ice sheet code is using most time and what could be done to improve its performance for future computer architectures that allow massive parallel computing.
Share