Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3587-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3587-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Earth system modeling of mercury using CESM2 – Part 1: Atmospheric model CAM6-Chem/Hg v1.0
Peng Zhang
School of Atmospheric Science, Nanjing University, Nanjing, China
School of Atmospheric Science, Nanjing University, Nanjing, China
Related authors
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024, https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
Short summary
In this study, we incorporate sea surfactants and wave-breaking processes into MITgcm-ECCOv4-Hg. The updated model shows increased fluxes in high-wind-speed and high-wave regions and vice versa, enhancing spatial heterogeneity. It shows that elemental mercury (Hg0) transfer velocity is more sensitive to wind speed. These findings may elucidate the discrepancies in previous estimations and offer insights into global Hg cycling.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Mao Mao, Yujuan Wang, Peipei Wu, Shaojian Huang, Zhengcheng Song, and Yanxu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3307, https://doi.org/10.5194/egusphere-2025-3307, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study examines how radionuclides released from nuclear power plants are transported and transformed in the global ocean over time. Using an advanced ocean simulation model, it focuses on radionuclides released during the Fukushima accident and from planned wastewater discharges. The findings show that some radionuclides can travel across the Pacific within a few years and gradually spread to other ocean basins by mid-century, emphasizing potential long-term environmental impacts.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024, https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
Short summary
In this study, we incorporate sea surfactants and wave-breaking processes into MITgcm-ECCOv4-Hg. The updated model shows increased fluxes in high-wind-speed and high-wave regions and vice versa, enhancing spatial heterogeneity. It shows that elemental mercury (Hg0) transfer velocity is more sensitive to wind speed. These findings may elucidate the discrepancies in previous estimations and offer insights into global Hg cycling.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Xiaotian Xu, Xu Feng, Haipeng Lin, Peng Zhang, Shaojian Huang, Zhengcheng Song, Yiming Peng, Tzung-May Fu, and Yanxu Zhang
Geosci. Model Dev., 15, 3845–3859, https://doi.org/10.5194/gmd-15-3845-2022, https://doi.org/10.5194/gmd-15-3845-2022, 2022
Short summary
Short summary
Mercury is one of the most toxic pollutants in the environment, and wet deposition is a major process for atmospheric mercury to enter, causing ecological and human health risks. High-mercury wet deposition in the southeastern US has been a problem for many years. Here we employed a newly developed high-resolution WRF-GC model with the capability to simulate mercury to study this problem. We conclude that deep convection caused enhanced mercury wet deposition in the southeastern US.
Ruochong Xu, Joel A. Thornton, Ben H. Lee, Yanxu Zhang, Lyatt Jaeglé, Felipe D. Lopez-Hilfiker, Pekka Rantala, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 5477–5494, https://doi.org/10.5194/acp-22-5477-2022, https://doi.org/10.5194/acp-22-5477-2022, 2022
Short summary
Short summary
Monoterpenes are emitted into the atmosphere by vegetation and by the use of certain consumer products. Reactions of monoterpenes in the atmosphere lead to low-volatility products that condense to grow particulate matter or participate in new particle formation and, thus, affect air quality and climate. We use a model of atmospheric chemistry and transport to evaluate the global-scale importance of recent updates to our understanding of monoterpene chemistry in particle formation and growth.
Shibao Wang, Yun Ma, Zhongrui Wang, Lei Wang, Xuguang Chi, Aijun Ding, Mingzhi Yao, Yunpeng Li, Qilin Li, Mengxian Wu, Ling Zhang, Yongle Xiao, and Yanxu Zhang
Atmos. Chem. Phys., 21, 7199–7215, https://doi.org/10.5194/acp-21-7199-2021, https://doi.org/10.5194/acp-21-7199-2021, 2021
Short summary
Short summary
Mobile monitoring with low-cost sensors is a promising approach to garner high-spatial-resolution observations representative of the community scale. We develop a grid analysis method to obtain 50 m resolution maps of major air pollutants (CO, NO2, and O3) based on GIS technology. Our results demonstrate the sensing power of mobile monitoring for urban air pollution, which provides detailed information for source attribution and accurate traceability at the urban micro-scale.
Yanxu Zhang, Xingpei Ye, Shibao Wang, Xiaojing He, Lingyao Dong, Ning Zhang, Haikun Wang, Zhongrui Wang, Yun Ma, Lei Wang, Xuguang Chi, Aijun Ding, Mingzhi Yao, Yunpeng Li, Qilin Li, Ling Zhang, and Yongle Xiao
Atmos. Chem. Phys., 21, 2917–2929, https://doi.org/10.5194/acp-21-2917-2021, https://doi.org/10.5194/acp-21-2917-2021, 2021
Short summary
Short summary
Urban air quality varies drastically at street scale, but traditional methods are too coarse to resolve it. We develop a 10 m resolution air quality model and apply it for traffic-related carbon monoxide air quality in Nanjing megacity. The model reveals a detailed geographical dispersion pattern of air pollution in and out of the road network and agrees well with a validation dataset. The model can be a vigorous part of the smart city system and inform urban planning and air quality management.
Cited articles
Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012.
AuYang, D., Chen, J., Zheng, W., Zhang, Y., Shi, G., Sonke, J. E.,
Cartigny, P., Cai, H., Yuan, W., Liu, L., Gai, P., and Liu, C.:
South-hemispheric marine aerosol Hg and S isotope compositions reveal
different oxidation pathways, National Science Open, 1, 20220014, https://doi.org/10.1360/nso/20220014,
2022.
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.
Ballabio, C., Jiskra, M., Osterwalder, S., Borrelli, P., Montanarella, L.,
and Panagos, P.: A spatial assessment of mercury content in the European
Union topsoil, Sci. Total Environ., 769, 144755,
https://doi.org/10.1016/j.scitotenv.2020.144755, 2021.
Bieser, J., Slemr, F., Ambrose, J., Brenninkmeijer, C., Brooks, S., Dastoor, A., DeSimone, F., Ebinghaus, R., Gencarelli, C. N., Geyer, B., Gratz, L. E., Hedgecock, I. M., Jaffe, D., Kelley, P., Lin, C.-J., Jaegle, L., Matthias, V., Ryjkov, A., Selin, N. E., Song, S., Travnikov, O., Weigelt, A., Luke, W., Ren, X., Zahn, A., Yang, X., Zhu, Y., and Pirrone, N.: Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species, Atmos. Chem. Phys., 17, 6925–6955, https://doi.org/10.5194/acp-17-6925-2017, 2017.
Calvert, J. G. and Lindberg, S. E.: Mechanisms of mercury removal by O3 and
OH in the atmosphere, Atmos. Environ., 39, 3355–3367,
https://doi.org/10.1016/j.atmosenv.2005.01.055, 2005.
Crutzen, P. J. and Zimmermann, P. H.: The changing photochemistry of the
troposphere, Tellus A, 43,
136–151, https://doi.org/10.1034/j.1600-0870.1991.00012.x, 1991.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S.,
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C.,
Fischer, C., Fox Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J.,
Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E.,
Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System
Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916,
2020.
De Simone, F., Gencarelli, C. N., Hedgecock, I. M., and Pirrone, N.: Global
atmospheric cycle of mercury: a model study on the impact of oxidation
mechanisms, Environ. Sci. Pollut. R., 21, 4110–4123,
https://doi.org/10.1007/s11356-013-2451-x, 2014.
Dibble, T. S., Tetu, H. L., Jiao, Y., Thackray, C. P., and Jacob, D. J.:
Modeling the OH-Initiated Oxidation of Mercury in the Global Atmosphere
without Violating Physical Laws, J. Phys. Chem. A, 124,
444–453, https://doi.org/10.1021/acs.jpca.9b10121, 2020.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.:
Mercury as a Global Pollutant: Sources, Pathways, and Effects, Environ. Sci.
Technol., 47, 4967–4983, https://doi.org/10.1021/es305071v, 2013.
Durnford, D., Dastoor, A., Ryzhkov, A., Poissant, L., Pilote, M., and Figueras-Nieto, D.: How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study, Atmos. Chem. Phys., 12, 9251–9274, https://doi.org/10.5194/acp-12-9251-2012, 2012.
Ebinghaus, R., Jennings, S. G., Kock, H. H., Derwent, R. G., Manning, A. J.,
and Spain, T. G.: Decreasing trends in total gaseous mercury observations in
baseline air at Mace Head, Ireland from 1996 to 2009, Atmos. Environ., 45,
3475–3480, https://doi.org/10.1016/j.atmosenv.2011.01.033, 2011.
El-Harbawi, M.: Air quality modelling, simulation, and computational
methods: a review, Environ. Rev., 21, 149–179, https://doi.org/10.1139/er-2012-0056, 2013.
Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D.,
Lamarque, J. F., Marsh, D., Mills, M. J., Tilmes, S., Bardeen, C., Buchholz,
R. R., Conley, A., Gettelman, A., Garcia, R., Simpson, I., Blake, D. R.,
Meinardi, S., and Pétron, G.: The Chemistry Mechanism in the Community
Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001882,
https://doi.org/10.1029/2019MS001882, 2020.
Fernandez, R. P., Carmona Balea, A., Cuevas, C. A., Barrera, J. A.,
Kinnison, D. E., Lamarque, J. F., Blaszczak Boxe, C., Kim, K., Choi, W.,
Hay, T., Blechschmidt, A. M., Schönhardt, A., Burrows, J. P., and Saiz
Lopez, A.: Modeling the Sources and Chemistry of Polar Tropospheric Halogens
(Cl, Br, and I) Using the CAM-Chem Global Chemistry-Climate Model, J. Adv.
Model. Earth Sy., 11, 2259–2289, https://doi.org/10.1029/2019MS001655, 2019.
Fu, X., Yang, X., Lang, X., Zhou, J., Zhang, H., Yu, B., Yan, H., Lin, C.-J., and Feng, X.: Atmospheric wet and litterfall mercury deposition at urban and rural sites in China, Atmos. Chem. Phys., 16, 11547–11562, https://doi.org/10.5194/acp-16-11547-2016, 2016.
Fu, X., Liu, C., Zhang, H., Xu, Y., Zhang, H., Li, J., Lyu, X., Zhang, G., Guo, H., Wang, X., Zhang, L., and Feng, X.: Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions, Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, 2021.
Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C.-J., and Feng, X. B.: Observations of atmospheric mercury in China: a critical review, Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, 2015.
Gencarelli, C. N., Bieser, J., Carbone, F., De Simone, F., Hedgecock, I. M., Matthias, V., Travnikov, O., Yang, X., and Pirrone, N.: Sensitivity model study of regional mercury dispersion in the atmosphere, Atmos. Chem. Phys., 17, 627–643, https://doi.org/10.5194/acp-17-627-2017, 2017.
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K.,
Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.
L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J. F., Richter,
J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B.,
Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole
Atmosphere Community Climate Model Version 6 (WACCM6), J.
Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943,
2019.
Goodsite, M. E., Plane, J. M., and Skov, H.: A theoretical study of the
oxidation of Hg0 to HgBr2 in the troposphere, Environ. Sci. Technol., 38,
1772–1776, https://doi.org/10.1021/es034680s, 2004.
Grell, G. and Baklanov, A.: Integrated modeling for forecasting weather and
air quality: A call for fully coupled approaches, Atmos. Environ., 45,
6845–6851, https://doi.org/10.1016/j.atmosenv.2011.01.017, 2011.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Holmes, C. D., Jacob, D. J., Mason, R. P., and Jaffe, D. A.: Sources and
deposition of reactive gaseous mercury in the marine atmosphere, Atmos.
Environ., 43, 2278–2285, https://doi.org/10.1016/j.atmosenv.2009.01.051, 2009.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12037–12057, https://doi.org/10.5194/acp-10-12037-2010, 2010.
Horowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., and Sunderland, E. M.: A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, 2017.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.
L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D.,
Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and
Dommergue, A.: A vegetation control on seasonal variations in global
atmospheric mercury concentrations, Nat. Geosci., 11, 244–250,
https://doi.org/10.1038/s41561-018-0078-8, 2018.
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.
Lamborg, C. H., Fitzgerald, W. F., O'Donnell, J., and Torgersen, T.: A
non-steady-state compartmental model of global-scale mercury biogeochemistry
with interhemispheric atmospheric gradients, Geochim. Cosmochim. Ac., 66,
1105–1118, https://doi.org/10.1016/S0016-7037(01)00841-9, 2002.
Lei, H., Liang, X.-Z., Wuebbles, D. J., and Tao, Z.: Model analyses of atmospheric mercury: present air quality and effects of transpacific transport on the United States, Atmos. Chem. Phys., 13, 10807–10825, https://doi.org/10.5194/acp-13-10807-2013, 2013.
Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 2016.
Lin, S. J., and Rood, R. B.: An explicit flux-form semi-Lagrangian
shallow-water model on the sphere, Q. J. Roy. Meteor. Soc., 123, 2477–2498,
https://doi.org/10.1256/smsqj.54415, 1997.
Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., and Rasch, P. J.: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model, Geosci. Model Dev., 9, 505–522, https://doi.org/10.5194/gmd-9-505-2016, 2016.
Lyman, S. N. and Jaffe, D. A.: Formation and fate of oxidized mercury in
the upper troposphere and lower stratosphere, Nat. Geosci., 5, 114–117,
https://doi.org/10.1038/ngeo1353, 2012.
Lyman, S. N., Cheng, I., Gratz, L. E., Weiss-Penzias, P., and Zhang, L.: An
updated review of atmospheric mercury, Sci. Total Environ., 707, 135575,
https://doi.org/10.1016/j.scitotenv.2019.135575, 2020.
Mahaffey, K. R., Sunderland, E. M., Chan, H. M., Choi, A. L., Grandjean, P.,
Mariën, K., Oken, E., Sakamoto, M., Schoeny, R., Weihe, P., Yan, C., and
Yasutake, A.: Balancing the benefits of n-3 polyunsaturated fatty acids and
the risks of methylmercury exposure from fish consumption, Nutr. Rev., 69,
493–508, https://doi.org/10.1111/j.1753-4887.2011.00415.x, 2011.
Malcolm, E. G., Ford, A. C., Redding, T. A., Richardson, M. C., Strain, B.
M., and Tetzner, S. W.: Experimental investigation of the scavenging of
gaseous mercury by sea salt aerosol, J. Atmos. Chem., 63, 221–234,
https://doi.org/10.1007/s10874-010-9165-y, 2009.
Neu, J. L. and Prather, M. J.: Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone, Atmos. Chem. Phys., 12, 3289–3310, https://doi.org/10.5194/acp-12-3289-2012, 2012.
Obrist, D., Roy, E. M., Harrison, J. L., Kwong, C. F., Munger, J. W.,
Moosmüller, H., Romero, C. D., Sun, S., Zhou, J., and Commane, R.:
Previously unaccounted atmospheric mercury deposition in a midlatitude
deciduous forest, P. Natl. Acad. Sci. USA, 118,
e2105477118, https://doi.org/10.1073/pnas.2105477118, 2021.
Pacyna, E. G., Pacyna, J. M., and Pirrone, N.: European emissions of
atmospheric mercury from anthropogenic sources in 1995, Atmos.
Environ., 35, 2987–2996, https://doi.org/10.1016/S1352-2310(01)00102-9, 2001.
Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E.,
Hlawiczka, S., and Panasiuk, D.: Mercury emissions to the atmosphere from
anthropogenic sources in Europe in 2000 and their scenarios until 2020, Sci.
Total Environ., 370, 147–156, https://doi.org/10.1016/j.scitotenv.2006.06.023, 2006.
Pacyna, J. M., Travnikov, O., De Simone, F., Hedgecock, I. M., Sundseth, K., Pacyna, E. G., Steenhuisen, F., Pirrone, N., Munthe, J., and Kindbom, K.: Current and future levels of mercury atmospheric pollution on a global scale, Atmos. Chem. Phys., 16, 12495–12511, https://doi.org/10.5194/acp-16-12495-2016, 2016.
Schmidt, J. A., Jacob, D. J., Horowitz, H. M., Hu, L., Sherwen, T., Evans,
M. J., Liang, Q., Suleiman, R. M., Oram, D. E., Le Breton, M., Percival, C.
J., Wang, S., Dix, B., and Volkamer, R.: Modeling the observed tropospheric
BrO background: Importance of multiphase chemistry and implications for
ozone, OH, and mercury, J. Geophys. Res.-Atmos., 121,
811–819, https://doi.org/10.1002/2015JD024229, 2016.
Seigneur, C., Karamchandani, P., Lohman, K., Vijayaraghavan, K., and Shia,
R. L.: Multiscale modeling of the atmospheric fate and transport of mercury,
J. Geophys. Res.-Atmos., 106, 27795–27809,
https://doi.org/10.1029/2000JD000273, 2001.
Selin, N. E.: Global Biogeochemical Cycling of Mercury: A Review, Annu. Rev.
Env. Resour., 34, 43–63, https://doi.org/10.1146/annurev.environ.051308.084314, 2009.
Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Strode, S.,
Jaeglé, L., and Jaffe, D.: Chemical cycling and deposition of
atmospheric mercury: Global constraints from observations, J.
Geophys. Res., 112, D02308, https://doi.org/10.1029/2006JD007450, 2007.
Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaeglé, L., and
Sunderland, E. M.: Global 3-D land-ocean-atmosphere model for mercury:
Present-day versus preindustrial cycles and anthropogenic enrichment factors
for deposition, Global Biogeochem. Cy., 22, GB2011, https://doi.org/10.1029/2007GB003040,
2008.
Shah, V., Jacob, D. J., Thackray, C. P., Wang, X., Sunderland, E. M.,
Dibble, T. S., Saiz-Lopez, A., Černušák, I., Kellö, V.,
Castro, P. J., Wu, R., and Wang, C.: Improved Mechanistic Model of the
Atmospheric Redox Chemistry of Mercury, Environ. Sci. Technol., 55, 14445–14456,
https://doi.org/10.1021/acs.est.1c03160, 2021.
Si, L. and Ariya, P.: Recent Advances in Atmospheric Chemistry of Mercury,
Atmosphere, 9, 76, https://doi.org/10.3390/atmos9020076, 2018.
Slemr, F., Weigelt, A., Ebinghaus, R., Bieser, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Hermann, M., Martinsson, B. G., van Velthoven, P., Bönisch, H., Neumaier, M., Zahn, A., and Ziereis, H.: Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016, Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, 2018.
Soerensen, A. L., Skov, H., Jacob, D. J., Soerensen, B. T., and Johnson, M.
S.: Global Concentrations of Gaseous Elemental Mercury and Reactive Gaseous
Mercury in the Marine Boundary Layer, Environ. Sci. Technol., 44, 7425–7430,
https://doi.org/10.1021/es903839n, 2010a.
Soerensen, A. L., Sunderland, E. M., Holmes, C. D., Jacob, D. J., Yantosca,
R. M., Skov, H., Christensen, J. H., Strode, S. A., and Mason, R. P.: An
Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations
over the North Atlantic, Environ. Sci. Technol., 44, 8574–8580,
https://doi.org/10.1021/es102032g, 2010b.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman
Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer,
C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999JD901006, 2000.
Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A.: A review of worldwide atmospheric mercury measurements, Atmos. Chem. Phys., 10, 8245–8265, https://doi.org/10.5194/acp-10-8245-2010, 2010.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H. D. M. J., Brito, J., Cairns, W., Barbante, C., Diéguez, M. D. C., Garcia, P. E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K. A., Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X. B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., and Norstrom, C.: Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, 2016.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Angot, H., Barbante, C., Brunke, E.-G., Arcega-Cabrera, F., Cairns, W., Comero, S., Diéguez, M. D. C., Dommergue, A., Ebinghaus, R., Feng, X. B., Fu, X., Garcia, P. E., Gawlik, B. M., Hageström, U., Hansson, K., Horvat, M., Kotnik, J., Labuschagne, C., Magand, O., Martin, L., Mashyanov, N., Mkololo, T., Munthe, J., Obolkin, V., Ramirez Islas, M., Sena, F., Somerset, V., Spandow, P., Vardè, M., Walters, C., Wängberg, I., Weigelt, A., Yang, X., and Zhang, H.: Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres, Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, 2017.
Talbot, R., Mao, H., Scheuer, E., Dibb, J., Avery, M., Browell, E., Sachse, G., Vay, S., Blake, D., Huey, G., and Fuelberg, H.: Factors influencing the large-scale distribution of Hg0 in the Mexico City area and over the North Pacific, Atmos. Chem. Phys., 8, 2103–2114, https://doi.org/10.5194/acp-8-2103-2008, 2008.
Temme, C., Blanchard, P., Steffen, A., Banic, C., Beauchamp, S., Poissant,
L., Tordon, R., and Wiens, B.: Trend, seasonal and multivariate analysis
study of total gaseous mercury data from the Canadian atmospheric mercury
measurement network (CAMNet), Atmos. Environ., 41, 5423–5441,
https://doi.org/10.1016/j.atmosenv.2007.02.021, 2007.
Tilmes, S., Hodzic, A., Emmons, L. K., Mills, M. J., Gettelman, A.,
Kinnison, D. E., Park, M., Lamarque, J. F., Vitt, F., Shrivastava, M.,
Campuzano Jost, P., Jimenez, J. L., and Liu, X.: Climate Forcing and Trends
of Organic Aerosols in the Community Earth System Model (CESM2), J. Adv.
Model. Earth Sy., 11, 4323–4351, https://doi.org/10.1029/2019MS001827, 2019.
Travnikov, O. and Ilyin, I.: The EMEP/MSC-E mercury modeling system, in:
Mercury Fate and Transport in the Global Atmosphere: Emissions,
Measurements, and Models, edited by: Pirrone, N. and Mason, R. P., Springer,
US, 571–587, 2009.
Travnikov, O., Angot, H., Artaxo, P., Bencardino, M., Bieser, J., D'Amore, F., Dastoor, A., De Simone, F., Diéguez, M. D. C., Dommergue, A., Ebinghaus, R., Feng, X. B., Gencarelli, C. N., Hedgecock, I. M., Magand, O., Martin, L., Matthias, V., Mashyanov, N., Pirrone, N., Ramachandran, R., Read, K. A., Ryjkov, A., Selin, N. E., Sena, F., Song, S., Sprovieri, F., Wip, D., Wängberg, I., and Yang, X.: Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation, Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, 2017.
van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.
Wang, F., Saiz-Lopez, A., Mahajan, A. S., Gómez Martín, J. C., Armstrong, D., Lemes, M., Hay, T., and Prados-Roman, C.: Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway, Atmos. Chem. Phys., 14, 1323–1335, https://doi.org/10.5194/acp-14-1323-2014, 2014.
Wang, S., Apel, E. C., Schwantes, R. H., Bates, K. H., Jacob, D. J.,
Fischer, E. V., Hornbrook, R. S., Hills, A. J., Emmons, L. K., Pan, L. L.,
Honomichl, S., Tilmes, S., Lamarque, J. F., Yang, M., Marandino, C. A.,
Saltzman, E. S., Bruyn, W., Kameyama, S., Tanimoto, H., Omori, Y., Hall, S.
R., Ullmann, K., Ryerson, T. B., Thompson, C. R., Peischl, J., Daube, B. C.,
Commane, R., McKain, K., Sweeney, C., Thames, A. B., Miller, D. O., Brune,
W. H., Diskin, G. S., DiGangi, J. P., and Wofsy, S. C.: Global Atmospheric
Budget of Acetone: Air-Sea Exchange and the Contribution to Hydroxyl
Radicals, J. Geophys. Res.-Atmos., 125, e2020JD032553,
https://doi.org/10.1029/2020JD032553, 2020.
Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Holmes, C. D., Sherwen, T., Alexander, B., Evans, M. J., Eastham, S. D., Neuman, J. A., Veres, P. R., Koenig, T. K., Volkamer, R., Huey, L. G., Bannan, T. J., Percival, C. J., Lee, B. H., and Thornton, J. A.: Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants, Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, 2021.
Weigelt, A., Ebinghaus, R., Manning, A. J., Derwent, R. G., Simmonds, P. G.,
Spain, T. G., Jennings, S. G., and Slemr, F.: Analysis and interpretation of
18 years of mercury observations since 1996 at Mace Head, Ireland, Atmos.
Environ., 100, 85–93, https://doi.org/10.1016/j.atmosenv.2014.10.050, 2015.
Weiss-Penzias, P., Amos, H. M., Selin, N. E., Gustin, M. S., Jaffe, D. A., Obrist, D., Sheu, G.-R., and Giang, A.: Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites, Atmos. Chem. Phys., 15, 1161–1173, https://doi.org/10.5194/acp-15-1161-2015, 2015.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 41, 52–63,
https://doi.org/10.1016/j.atmosenv.2007.10.058, 1989.
Wright, L. P., Zhang, L., and Marsik, F. J.: Overview of mercury dry deposition, litterfall, and throughfall studies, Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, 2016.
Xu, H., Sonke, J. E., Guinot, B., Fu, X., Sun, R., Lanzanova, A., Candaudap,
F., Shen, Z., and Cao, J.: Seasonal and Annual Variations in Atmospheric Hg
and Pb Isotopes in Xi'an, China, Environ. Sci. Technol., 51, 3759–3766,
https://doi.org/10.1021/acs.est.6b06145, 2017.
Ye, Z., Mao, H., Lin, C.-J., and Kim, S. Y.: Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites, Atmos. Chem. Phys., 16, 8461–8478, https://doi.org/10.5194/acp-16-8461-2016, 2016.
Zhang, H., Feng, X., Larssen, T., Qiu, G., and Vogt, R. D.: In Inland China,
Rice, Rather than Fish, Is the Major Pathway for Methylmercury Exposure,
Environ. Health Persp., 118, 1183–1188, https://doi.org/10.1289/ehp.1001915, 2010.
Zhang, P. and Zhang, Y.: Jampo26/CAM6-CHEM-Hg: v1.0 (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5877214, 2022.
Zhang, Y., Jaeglé, L., van Donkelaar, A., Martin, R. V., Holmes, C. D., Amos, H. M., Wang, Q., Talbot, R., Artz, R., Brooks, S., Luke, W., Holsen, T. M., Felton, D., Miller, E. K., Perry, K. D., Schmeltz, D., Steffen, A., Tordon, R., Weiss-Penzias, P., and Zsolway, R.: Nested-grid simulation of mercury over North America, Atmos. Chem. Phys., 12, 6095–6111, https://doi.org/10.5194/acp-12-6095-2012, 2012.
Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M.,
Krabbenhoft, D. P., Slemr, F., St. Louis, V. L., and Sunderland, E. M.:
Observed decrease in atmospheric mercury explained by global decline in
anthropogenic emissions, P. Natl. Acad. Sci. USA,
113, 526–531, https://doi.org/10.1073/pnas.1516312113, 2016.
Zhang, Y., Horowitz, H., Wang, J., Xie, Z., Kuss, J., and Soerensen, A. L.:
A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury:
Insights into Wet Deposition and Atmospheric Redox Chemistry, Environ. Sci.
Technol., 53, 5052–5061, https://doi.org/10.1021/acs.est.8b06205, 2019.
Zhang, Y., Song, Z., Huang, S., Zhang, P., Peng, Y., Wu, P., Gu, J.,
Dutkiewicz, S., Zhang, H., Wu, S., Wang, F., Chen, L., Wang, S., and Li, P.:
Global health effects of future atmospheric mercury emissions, Nat. Commun.,
12, 3035, https://doi.org/10.1038/s41467-021-23391-7, 2021.
Short summary
Mercury is a global pollutant that can be transported over long distance through the atmosphere. We develop a new online global model for atmospheric mercury. The model reproduces the observed global atmospheric mercury concentrations and deposition distributions by simulating the emissions, transport, and physicochemical processes of atmospheric mercury. And we find that the seasonal variations of atmospheric Hg are the result of multiple processes and have obvious regional characteristics.
Mercury is a global pollutant that can be transported over long distance through the atmosphere....