Articles | Volume 15, issue 1
https://doi.org/10.5194/gmd-15-199-2022
https://doi.org/10.5194/gmd-15-199-2022
Model evaluation paper
 | 
12 Jan 2022
Model evaluation paper |  | 12 Jan 2022

The sensitivity of simulated aerosol climatic impact to domain size using regional model (WRF-Chem v3.6)

Xiaodong Wang, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo

Related authors

Toward a learnable Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI) based on the Multi-Head Self-Attention algorithm
Zihan Xia, Chun Zhao, Zining Yang, Qiuyan Du, Jiawang Feng, Chen Jin, Jun Shi, and Hong An
Atmos. Chem. Phys., 25, 6197–6218, https://doi.org/10.5194/acp-25-6197-2025,https://doi.org/10.5194/acp-25-6197-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025,https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Aerosol impacts on regional climate: chaotic or physical effect?
Jiawang Feng, Chun Zhao, Jun Gu, Gudongze Li, Mingyue Xu, Shengfu Lin, and Jie Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-4037,https://doi.org/10.5194/egusphere-2024-4037, 2025
Short summary
Comprehensive evaluation of iAMAS (v1.0) in simulating Antarctic meteorological fields with observations and reanalysis
Qike Yang, Chun Zhao, Jiawang Feng, Gudongze Li, Jun Gu, Zihan Xia, Mingyue Xu, and Zining Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-229,https://doi.org/10.5194/gmd-2024-229, 2025
Revised manuscript accepted for GMD
Short summary

Related subject area

Atmospheric sciences
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary

Cited articles

Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.: Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042, 2018. 
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
An, Z. S., Wu, G. X., Li, J. P., Sun, Y. B., Liu, Y. M., Zhou, W. J., Cai, Y., Duan, A., Li, L., Mao, J., Cheng, H., Shi, Z., Tan, L, Yan, H., Ao, H., Chang, H., and Feng, J.: Global Monsoon Dynamics and Climate Change, Annu. Rev. Earth Pl. Sc., 43, 29–77, https://doi.org/10.1146/annurev-earth-060313-054623, 2015. 
An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., and Gu, Z.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019. 
Bhaskaran, B., Ramachandran, A., Jones, R., and Moufouma-Okia, W.: Regional climate model applications on sub-regional scales over the Indian monsoon region: The role of domain size on downscaling uncertainty, J. Geophys. Res.-Atmos., 117, D10113, https://doi.org/10.1029/2012jd017956, 2012. 
Download
Short summary
Regional models are widely used to investigate aerosol climatic impacts. However, there are few studies examining the sensitivities of modeling results to regional domain size. In this study, the regional model is used to study the aerosol impacts on the East Asian summer monsoon system and focus on the modeling sensitivities to domain size. This study highlights the important impacts of domain size on regional modeling results of aerosol climatic impacts, which may not be limited to East Asia.
Share