Articles | Volume 15, issue 1
https://doi.org/10.5194/gmd-15-199-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-199-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The sensitivity of simulated aerosol climatic impact to domain size using regional model (WRF-Chem v3.6)
Xiaodong Wang
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei,
China
Chun Zhao
CORRESPONDING AUTHOR
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei,
China
CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China
Frontiers Science Center for Planetary Exploration and Emerging
Technologies, University of Science and Technology of China, Hefei, China
Mingyue Xu
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei,
China
Qiuyan Du
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei,
China
Jianqiu Zheng
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei,
China
Yun Bi
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei,
China
Shengfu Lin
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei,
China
Yali Luo
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing, China
Related authors
No articles found.
Qike Yang, Chun Zhao, Jiawang Feng, Gudongze Li, Jun Gu, Zihan Xia, Mingyue Xu, and Zining Yang
Geosci. Model Dev., 18, 5373–5396, https://doi.org/10.5194/gmd-18-5373-2025, https://doi.org/10.5194/gmd-18-5373-2025, 2025
Short summary
Short summary
This study provides a comprehensive evaluation of unstructured meshes using the integrated Atmospheric Model Across Scales (iAMAS) over Antarctica, encompassing both surface and upper-level meteorological fields. Comparisons with the fifth-generation reanalysis (ERA5) from the European Centre for Medium-Range Weather Forecasts and observational data indicate that iAMAS performs well in simulating the Antarctic atmosphere.
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
Atmos. Chem. Phys., 25, 8831–8857, https://doi.org/10.5194/acp-25-8831-2025, https://doi.org/10.5194/acp-25-8831-2025, 2025
Short summary
Short summary
This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas simulated at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase the BC lifetime and column concentrations. Land use and terrain variations across multiple resolutions affect turbulent mixing.
Zihan Xia, Chun Zhao, Zining Yang, Qiuyan Du, Jiawang Feng, Chen Jin, Jun Shi, and Hong An
Atmos. Chem. Phys., 25, 6197–6218, https://doi.org/10.5194/acp-25-6197-2025, https://doi.org/10.5194/acp-25-6197-2025, 2025
Short summary
Short summary
Traditional numerical schemes of aerosol chemistry and interactions (ACI) in atmospheric models are computationally costly and are often simplified or omitted, introducing uncertainties. We use an AI scheme to achieve fast, accurate, and stable end-to-end simulation for full ACI within an atmospheric model, replacing numerical schemes. This innovation is expected to enhance the accuracy and efficiency of ACI simulations in climate models that would otherwise neglect or simplify ACI processes.
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025, https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Short summary
We employed the WRF-Chem model to parameterize atmospheric nitrate deposition in snow and evaluate its performance in simulating snow cover, snow depth, and concentrations of dust and nitrate using new observations from northern China. The results generally exhibit reasonable agreement with field observations in northern China, demonstrating the model's capability to simulate snow properties, including concentrations of reservoir species.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Jiawang Feng, Chun Zhao, Jun Gu, Gudongze Li, Mingyue Xu, Shengfu Lin, and Jie Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-4037, https://doi.org/10.5194/egusphere-2024-4037, 2025
Short summary
Short summary
Climate models help study aerosol impacts on regional climate. However, the atmosphere's chaotic nature makes it hard to separate true aerosol impacts from chaotic effects. Our ensemble experiments show that while large-scale aerosol effects are consistent, regional aerosol impacts vary significantly among experiments. We give a formula showing the relationship between chaotic effects and ensemble sizes, emphasizing the necessity of adequate ensemble members to capture reliable aerosol impacts.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Haoran Li, Dmitri Moisseev, Yali Luo, Liping Liu, Zheng Ruan, Liman Cui, and Xinghua Bao
Hydrol. Earth Syst. Sci., 27, 1033–1046, https://doi.org/10.5194/hess-27-1033-2023, https://doi.org/10.5194/hess-27-1033-2023, 2023
Short summary
Short summary
A rainfall event that occurred at Zhengzhou on 20 July 2021 caused tremendous loss of life and property. This study compares different KDP estimation methods as well as the resulting QPE outcomes. The results show that the selection of the KDP estimation method has minimal impact on QPE, whereas the inadequate assumption of rain microphysics and unquantified vertical air motion may explain the underestimated 201.9 mm h−1 record.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Mingshuai Zhang, Chun Zhao, Yuhan Yang, Qiuyan Du, Yonglin Shen, Shengfu Lin, Dasa Gu, Wenjing Su, and Cheng Liu
Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, https://doi.org/10.5194/gmd-14-6155-2021, 2021
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) can influence atmospheric chemistry and secondary pollutant formation. This study examines the performance of different versions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) in modeling BVOCs and ozone and their sensitivities to vegetation distributions over eastern China. The results suggest more accurate vegetation distribution and measurements of BVOC emission fluxes are needed to reduce the uncertainties.
Zhuang Wang, Cheng Liu, Zhouqing Xie, Qihou Hu, Meinrat O. Andreae, Yunsheng Dong, Chun Zhao, Ting Liu, Yizhi Zhu, Haoran Liu, Chengzhi Xing, Wei Tan, Xiangguang Ji, Jinan Lin, and Jianguo Liu
Atmos. Chem. Phys., 20, 14917–14932, https://doi.org/10.5194/acp-20-14917-2020, https://doi.org/10.5194/acp-20-14917-2020, 2020
Short summary
Short summary
Significant stratification of aerosols was observed in North China. Polluted dust dominated above the PBL, and anthropogenic aerosols prevailed within the PBL, which is mainly driven by meteorological conditions. The key role of the elevated dust is to alter atmospheric thermodynamics and stability, causing the suppression of turbulence exchange and a decrease in PBL height, especially during the dissipation stage, thereby inhibiting dissipation of persistent heavy surface haze pollution.
Stefan Rahimi, Xiaohong Liu, Chun Zhao, Zheng Lu, and Zachary J. Lebo
Atmos. Chem. Phys., 20, 10911–10935, https://doi.org/10.5194/acp-20-10911-2020, https://doi.org/10.5194/acp-20-10911-2020, 2020
Short summary
Short summary
Dark particles emitted to the atmosphere can absorb sunlight and heat the air. As these particles settle, they may darken the surface, especially over snow-covered regions like the Rocky Mountains. This darkening of the surface may lead to changes in snowpack, affecting the local meteorology and hydrology. We seek to evaluate whether these light-absorbing particles more prominently affect this region through their atmospheric presence or their on-snow presence.
Cited articles
Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan,
V., and Welton, E. J.: Reduction of tropical cloudiness by soot, Science,
288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042, 2018.
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230,
https://doi.org/10.1126/science.245.4923.1227, 1989.
An, Z. S., Wu, G. X., Li, J. P., Sun, Y. B., Liu, Y. M., Zhou, W. J., Cai, Y., Duan, A., Li, L., Mao, J., Cheng, H., Shi, Z., Tan, L, Yan, H., Ao, H., Chang, H., and Feng, J.: Global Monsoon Dynamics and Climate Change, Annu. Rev. Earth Pl. Sc., 43, 29–77, https://doi.org/10.1146/annurev-earth-060313-054623, 2015.
An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi,
Z., Han, Y., and Gu, Z.: Severe haze in northern China: A synergy of
anthropogenic emissions and atmospheric processes, P.
Natl. Acad. Sci. USA, 116, 8657–8666,
https://doi.org/10.1073/pnas.1900125116, 2019.
Bhaskaran, B., Ramachandran, A., Jones, R., and Moufouma-Okia, W.: Regional
climate model applications on sub-regional scales over the Indian monsoon
region: The role of domain size on downscaling uncertainty, J.
Geophys. Res.-Atmos., 117, D10113, https://doi.org/10.1029/2012jd017956,
2012.
Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model
.1. Model description and preliminary results, J. Geophys. Res.-Atmos., 100, 26191–26209,
https://doi.org/10.1029/95jd02093, 1995.
Cha, D. H. and Lee, D. K.: Reduction of systematic errors in regional
climate simulations of the summer monsoon over East Asia and the western
North Pacific by applying the spectral nudging technique, J. Geophys. Res.-Atmos., 114, 14108, https://doi.org/10.1029/2008jd011176,
2009.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China,
Atmos. Environ., 42, 1–42,
https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945–964, https://doi.org/10.5194/acp-9-945-2009, 2009.
Chen, J. P., Chen, I. J., and Tsai, I. C.: Dynamic Feedback of Aerosol
Effects on the East Asian Summer Monsoon, J. Climate, 29,
6137-6149, https://doi.org/10.1175/Jcli-D-15-0758.1, 2016.
Chen, S., Zhao, C., Qian, Y., Leung, L. R., Huang, J., Huang, Z., Bi, J.,
Zhang, W., Shi, J., and Yang, L.: Regional modeling of dust mass balance and
radiative forcing over East Asia using WRF-Chem, Aeolian Res., 15,
15–30, https://doi.org/10.1016/j.aeolia.2014.02.001, 2014.
Cowan, T. and Cai, W.: The impact of Asian and non-Asian anthropogenic
aerosols on 20th century Asian summer monsoon, Geophys. Res. Lett.,
38, L11703, https://doi.org/10.1029/2011gl047268, 2011.
Crippa, P., Sullivan, R. C., Thota, A., and Pryor, S. C.: The impact of resolution on meteorological, chemical and aerosol properties in regional simulations with WRF-Chem, Atmos. Chem. Phys., 17, 1511–1528, https://doi.org/10.5194/acp-17-1511-2017, 2017.
Crippa, P., Sullivan, R. C., Thota, A., and Pryor, S. C.: Sensitivity of
simulated aerosol properties over eastern North America to WRF-Chem
parameterizations, J. Geophys. Res.-Atmos., 124,
3365–3383, https://doi.org/10.1029/2018JD029900, 2019.
Davies, T.: Lateral boundary conditions for limited area models,
Q. J. Roy. Meteor. Soc., 140, 185–196,
https://doi.org/10.1002/qj.2127, 2014.
Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, https://doi.org/10.5194/acp-6-4321-2006, 2006.
Diaconescu, E. and Laprise, R.: Can added value be expected in RCM-simulated
large scales?, Clim. Dynam., 41, 1769–1800,
https://doi.org/10.1007/s00382-012-1649-9, 2013.
Di Luca, A., de Elía, R., and Laprise, R.: Challenges in the Quest for
Added Value of Regional Climate Dynamical Downscaling, Curr. Clim. Change
Rep., 1, 10–21, https://doi.org/10.1007/s40641-015-0003-9, 2015.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., and Gerstl, S.
A.: Multi-angle Imaging SpectroRadiometer (MISR) instrument description and
experiment overview, IEEE T. Geosci. Remote S., 36,
1072–1087, https://doi.org/10.1109/36.700992, 1998.
Diner, D., Abdou, W., Bruegge, C., Conel, J., Crean, K., Gaitley, B.,
Helmlinger, M., Kahn, R., Martonchik, J., and Pilorz, S.: MISR aerosol
optical depth retrievals over southern Africa during the SAFARI-2000 dry
season campaign, Geophys. Res. Lett., 28, 3127–3130,
https://doi.org/10.1029/2001gl013188, 2001.
Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Petäjä, T., Kerminen, V.-M., Wang, T., Xie, Y., Herrmann, E., Zheng, L. F., Nie, W., Liu, Q., Wei, X. L., and Kulmala, M.: Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China, Atmos. Chem. Phys., 13, 10545–10554, https://doi.org/10.5194/acp-13-10545-2013, 2013.
Ding, Y., Sun, Y., Liu, Y., Si, D., Wang, Z., Zhu, Y., Liu, Y., Song, Y.,
and Zhang, J.: Interdecadal and Interannual Variabilities of the Asian
Summer Monsoon and Its Projection of Future Change, Chinese J.
Atmos. Sci., 37, 253–280,
https://doi.org/10.1080/16742834.2019.1648168, 2013.
Ding, Y. H.: The variability of the Asian summer monsoon, J.
Meteorol. Soc. Jpn, 85b, 21–54,
https://doi.org/10.2151/jmsj.85B.21, 2007.
Ding, Y. and Chan, J. C. L.: The East Asian summer monsoon: an overview, Meteorol. Atmos. Phys., 89, 117–142, https://doi.org/10.1007/s00703-005-0125-z, 2005.
Ding, Y. H., Wang, Z. Y., and Sun, Y.: Inter-decadal variation of the
summer precipitation in East China and its association with decreasing Asian
summer monsoon, Part I: Observed evidences, Int. J.
Climatol., 28, 1139–1161, https://doi.org/10.1002/joc.1615, 2008a.
Ding, Y. H., Sun, Y., Wang, Z. Y., Zhu, Y. X., and Song, Y. F.:
Inter-decadal variation of the summer precipitation in China and its
association with decreasing Asian summer monsoon Part II: Possible causes,
Int. J. Climatol., 29, 1926–1944,
https://doi.org/10.1002/joc.1759, 2008b.
Dong, B. W., Wilcox, L. J., Highwood, E. J., and Sutton, R. T.: Impacts of
recent decadal changes in Asian aerosols on the East Asian summer monsoon:
roles of aerosol-radiation and aerosol-cloud interactions, Clim. Dynam.,
53, 3235–3256, https://doi.org/10.1007/s00382-019-04698-0, 2019.
Du, Q., Zhao, C., Zhang, M., Dong, X., Chen, Y., Liu, Z., Hu, Z., Zhang, Q., Li, Y., Yuan, R., and Miao, S.: Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission, Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, 2020.
Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G.,
Laulainen, N. S., Abdul-Razzak, H., Leung, L. R., Bian, X., and Zaveri, R.
A.: MIRAGE: Model description and evaluation of aerosols and trace gases,
J. Geophys. Res.-Atmos., 109, D20210,
https://doi.org/10.1029/2004JD004571, 2004.
Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L.
A., Martin, S. T., Yang, Y., Wang, J., and Artaxo, P.: Substantial
convection and precipitation enhancements by ultrafine aerosol particles,
Science, 359, 411–418, https://doi.org/10.1126/science.aan846, 2018.
Fan, J. W., Rosenfeld, D., Ding, Y. N., Leung, L. R., and Li, Z. Q.:
Potential aerosol indirect effects on atmospheric circulation and radiative
forcing through deep convection, Geophys. Res. Lett., 39, L09806,
https://doi.org/10.1029/2012gl051851, 2012.
Fan, J. W., Leung, L. R., Rosenfeld, D., Chen, Q., Li, Z. Q., Zhang, J. Q.,
and Yan, H. R.: Microphysical effects determine macrophysical response for
aerosol impacts on deep convective clouds,
P. Natl. Acad. Sci. USA, 110, E4581–E4590,
https://doi.org/10.1073/pnas.1316830110, 2013.
Fan, J. W., Rosenfeld, D., Yang, Y., Zhao, C., Leung, L. R., and Li, Z. Q.:
Substantial contribution of anthropogenic air pollution to catastrophic
floods in Southwest China, Geophys. Res. Lett., 42, 6066–6075,
https://doi.org/10.1002/2015gl064479, 2015.
Fan, J. W., Wang, Y., Rosenfeld, D., and Liu, X. H.: Review of
Aerosol-Cloud Interactions: Mechanisms, Significance, and Challenges,
J. Atmos. Sci., 73, 4221–4252,
https://doi.org/10.1175/Jas-D-16-0037.1, 2016.
Fast, J. D., Gustafson Jr, W. I., Easter, R. C., Zaveri, R. A., Barnard, J.
C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res.-Atmos., 111, D21305,
https://doi.org/10.1029/2005JD006721, 2006.
Gao, Y., Zhao, C., Liu, X. H., Zhang, M. G., and Leung, L. R.: WRF-Chem
simulations of aerosols and anthropogenic aerosol radiative forcing in East
Asia, Atmos. Environ., 92, 250–266,
https://doi.org/10.1016/j.atmosenv.2014.04.038, 2014.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S. J.: Sources and distributions of dust aerosols simulated with
the GOCART model, J. Geophys. Res.-Atmos., 106,
20255–20273, https://doi.org/10.1029/2000jd000053, 2001.
Giorgi, F.: Thirty Years of Regional Climate Modeling: Where Are We and
Where Are We Going next?, J. Geophys. Res.-Atmos.,
124, 5696–5723, https://doi.org/10.1029/2018jd030094, 2019.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the
WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Guo, L., Highwood, E. J., Shaffrey, L. C., and Turner, A. G.: The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon, Atmos. Chem. Phys., 13, 1521–1534, https://doi.org/10.5194/acp-13-1521-2013, 2013.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. : ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hu, Z., Zhao, C., Huang, J., Leung, L. R., Qian, Y., Yu, H., Huang, L., and Kalashnikova, O. V.: Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations, Geosci. Model Dev., 9, 1725–1746, https://doi.org/10.5194/gmd-9-1725-2016, 2016.
Hu, Z., Huang, J., Zhao, C., Bi, J., Jin, Q., Qian, Y., Leung, L. R., Feng,
T., Chen, S., and Ma, J.: Modeling the contributions of Northern Hemisphere
dust sources to dust outflow from East Asia, Atmos. Environ., 202,
234–243, https://doi.org/10.1016/j.atmosenv.2019.01.022, 2019.
Huang, D. L. and Gao, S. B.: Impact of different reanalysis data on WRF
dynamical downscaling over China, Atmos. Res., 200, 25–35,
https://doi.org/10.1016/j.atmosres.2017.09.017, 2018.
Huang, X., Ding, A., Liu, L., Liu, Q., Ding, K., Niu, X., Nie, W., Xu, Z., Chi, X., Wang, M., Sun, J., Guo, W., and Fu, C.: Effects of aerosol–radiation interaction on precipitation during biomass-burning season in East China, Atmos. Chem. Phys., 16, 10063–10082, https://doi.org/10.5194/acp-16-10063-2016, 2016.
Iacono, M. J., Mlawer, E. J., Clough, S. A., and Morcrette, J. J.: Impact
of an improved longwave radiation model, RRTM, on the energy budget and
thermodynamic properties of the NCAR community climate model, CCM3, J. Geophys.
Res.-Atmos., 105, 14873–14890,
https://doi.org/10.1029/2000jd900091, 2000.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008jd009944, 2008.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
1535 pp., 2013.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Jiang, Y. Q., Liu, X. H., Yang, X. Q., and Wang, M. H.: A numerical study
of the effect of different aerosol types on East Asian summer clouds and
precipitation, Atmos. Environ., 70, 51–63,
https://doi.org/10.1016/j.atmosenv.2012.12.039, 2013.
Jiang, Z. H., Huo, F., Ma, H. Y., Song, J., and Dai, A. G.: Impact of
Chinese Urbanization and Aerosol Emissions on the East Asian Summer Monsoon,
J. Climate, 30, 1019–1039,
https://doi.org/10.1175/Jcli-D-15-0593.1, 2017.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. P.: CMORPH: A
method that produces global precipitation estimates from passive microwave
and infrared data at high spatial and temporal resolution, J.
Hydrometeorol., 5, 487-503,
https://doi.org/10.1175/1525-7541(2004)005<0487:Camtpg>2.0.Co;2, 2004.
Kain, J. S.: The Kain-Fritsch convective parameterization: An update,
J. Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2, 2004.
Kim, M. J., Yeh, S. W., and Park, R. J.: Effects of sulfate aerosol forcing
on East Asian summer monsoon for 1985-2010, Geophys. Res. Lett.,
43, 1364–1372, https://doi.org/10.1002/2015gl067124, 2016.
Kim, M. K., Lau, W. K. M., Kim, K. M., and Lee, W. S.: A GCM study of
effects of radiative forcing of sulfate aerosol on large scale circulation
and rainfall in East Asia during boreal spring, Geophys. Res. Lett., 34, 2007GL031683, https://doi.org/10.1029/2007gl031683, 2007.
Kok, J. F.: A scaling theory for the size distribution of emitted dust
aerosols suggests climate models underestimate the size of the global dust
cycle, P. Natl. Acad. Sci. USA, 108, 1016–1021, https://doi.org/10.1073/pnas.1014798108,
2011.
Kuniyal, J. C. and Guleria, R. P.: The current state of aerosol-radiation
interactions: A mini review, J. Aerosol Sci., 130, 45–54,
https://doi.org/10.1016/j.jaerosci.2018.12.010, 2019.
Leduc, M. and Laprise, R.: Regional climate model sensitivity to domain
size, Clim. Dynam., 32, 833–854,
https://doi.org/10.1007/s00382-008-0400-z, 2009.
Leduc, M., Laprise, R., Moretti-Poisson, M., and Morin, J. P.: Sensitivity
to domain size of mid-latitude summer simulations with a regional climate
model, Clim. Dynam., 37, 343–356,
https://doi.org/10.1007/s00382-011-1008-2, 2011.
Lee, D. K. and Cha, D. H.: Regional climate modeling for Asia, Geosci.
Lett., 7, https://doi.org/10.1186/s40562-020-00162-8, 2020.
Li, H. M., Dai, A. G., Zhou, T. J., and Lu, J.: Responses of East Asian
summer monsoon to historical SST and atmospheric forcing during 1950-2000,
Clim. Dynam., 34, 501–514, https://doi.org/10.1007/s00382-008-0482-7,
2010.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B.,
Cui, H., and Man, H.: Anthropogenic emission inventories in China: a review,
National Sci. Rev., 4, 834–866, https://doi.org/10.1093/nsr/nwx150,
2017.
Li, X. Q., Ting, M. F., Li, C. H., and Henderson, N.: Mechanisms of Asian
Summer Monsoon Changes in Response to Anthropogenic Forcing in CMIP5 Models,
J. Climate, 28, 4107–4125,
https://doi.org/10.1175/Jcli-D-14-00559.1, 2015.
Li, X. Q., Ting, M. F., and Lee, D. E.: Fast Adjustments of the Asian
Summer Monsoon to Anthropogenic Aerosols, Geophys. Res. Lett.,
45, 1001–1010, https://doi.org/10.1002/2017gl076667, 2018.
Li, Z., Lau, W. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M., Liu, J.,
Qian, Y., Li, J., and Zhou, T.: Aerosol and monsoon climate interactions
over Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015RG000500, 2016.
Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong,
D., Huang, J., and Jiang, M.: East Asian study of tropospheric aerosols and
their impact on regional clouds, precipitation, and climate (EAST-AIRCPC),
J. Geophys. Res.-Atmos., 124, 13026–13054,
https://doi.org/10.1029/2019JD030758, 2019.
Li, Z. Q., Lee, K. H., Wang, Y. S., Xin, J. Y., and Hao, W. M.: First
observation-based estimates of cloud-free aerosol radiative forcing across
China, J. Geophys. Res.-Atmos., 115, D00K18,
https://doi.org/10.1029/2009jd013306, 2010.
Liu, J. Z., Li, J., and Li, W. F.: Temporal Patterns in Fine Particulate
Matter Time Series in Beijing: A Calendar View, Sci. Rep., 6, 32221,
https://doi.org/10.1038/srep32221, 2016.
Luo, Y. X., Zheng, X. B., Zhao, T. L., and Chen, J.: A climatology of
aerosol optical depth over China from recent 10 years of MODIS remote
sensing data, Int. J. Climatol., 34, 863–870,
https://doi.org/10.1002/joc.3728, 2014.
Martonchik, J. V., Diner, D. J., Kahn, R., Gaitley, B., and Holben, B. N.: Comparison of MISR and AERONET aerosol optical depths over desert sites, Geophys. Res. Lett., 31, L16102, https://doi.org/10.1029/2004GL019807, 2004.
Morrison, H., Thompson, G., and Tatarskii, V., Impact of Cloud Microphysics
on the Development of Trailing Stratiform Precipitation in a Simulated
Squall Line: Comparison of One- and Two-Moment Schemes, Mon. Weather
Rev., 137, 991–1007, https://doi.org/10.1175/2008mwr2556.1, 2009.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A., Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682,
https://doi.org/10.1029/97jd00237, 1997.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A.,
Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural
Radiative Forcing. In: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2013.
Nakanishi, M. and Niino, H.: An improved mellor-yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006.
Nakanishi, M. and Niino, H.: Development of an Improved Turbulence Closure
Model for the Atmospheric Boundary Layer, J. Meteorol.
Soc. Jpn., 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009.
National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce: NCEP FNL Operational Model Global
Tropospheric Analyses, continuing from July 1999, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory [data set], https://doi.org/10.5065/D6M043C6, 2000.
Petäjä, T., Järvi, L., Kerminen, V.-M., Ding, A., Sun, J., Nie,
W., Kujansuu, J., Virkkula, A., Yang, X., and Fu, C.: Enhanced air pollution
via aerosol-boundary layer feedback in China, Sci. Rep., 6, 1–6,
https://doi.org/10.1038/srep18998, 2016.
Qi, Y. L., Ge, J. M., and Huang, J. P.: Spatial and temporal distribution
of MODIS and MISR aerosol optical depth over northern China and comparison
with AERONET, Chinese Sci. Bull., 58, 2497–2506, https://doi.org/10.1007/s11434-013-5678-5, 2013.
Rinke, A., Dethloff, K., and Fortmann, M.: Regional climate effects of
Arctic Haze, Geophys. Res. Lett., 31,
https://doi.org/10.1029/2004gl020318, 2004.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or drought: How do aerosols
affect precipitation?, Science, 321, 1309–1313,
https://doi.org/10.1126/science.1160606, 2008.
Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P.,
Kahn, R., Kinne, S., Kivekäs, N., and Kulmala, M.: Global observations of
aerosol-cloud-precipitation-climate interactions, Rev. Geophys.,
52, 750–808, https://doi.org/10.1002/2013rg000441, 2014.
Schwartz, S. E.: The Whitehouse effect – Shortwave radiative forcing of
climate by anthropogenic aerosols: An overview, J. Aerosol Sci.,
27, 359–382, https://doi.org/10.1016/0021-8502(95)00533-1, 1996.
Seth, A. and Giorgi, F.: The effects of domain choice on summer
precipitation simulation and sensitivity in a regional climate model,
J. Climate, 11, 2698–2712,
https://doi.org/10.1175/1520-0442(1998)011<2698:Teodco>2.0.Co;2, 1998.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda,
M. G., and Powers, J. G.: A Description of the Advanced Research
WRF Version 3 (No. NCAR/TN-475+STR), University Corporation for
Atmospheric Research [data set], https://https://doi.org/10.5065/D68S4MVH, 2008.
Song, F. F. and Zhou, T. J.: The Climatology and Interannual Variability
of East Asian Summer Monsoon in CMIP5 Coupled Models: Does Air-Sea Coupling
Improve the Simulations?, J. Climate, 27, 8761–8777,
https://doi.org/10.1175/Jcli-D-14-00396.1, 2014.
Song, F. F., Zhou, T. J., and Qian, Y.: Responses of East Asian summer
monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models,
Geophys. Res. Lett., 41, 596–603,
https://doi.org/10.1002/2013gl058705, 2014.
Stanelle, T., Vogel, B., Vogel, H., Bäumer, D., and Kottmeier, C.: Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007, Atmos. Chem. Phys., 10, 10771–10788, https://doi.org/10.5194/acp-10-10771-2010, 2010.
Tao, W. K., Chen, J. P., Li, Z. Q., Wang, C., and Zhang, C. D.: Impact of
Aerosols on Convective Clouds and Precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011rg000369, 2012.
Twomey, S.: The influence of pollution on the shortwave albedo of
clouds, J. Atmos.
Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Wang, B. and Yang, H. W.: Hydrological issues in lateral boundary
conditions for regional climate modeling: simulation of east asian summer
monsoon in 1998, Clim. Dynam., 31, 477–490,
https://doi.org/10.1007/s00382-008-0385-7, 2008.
Wang, Q. Y., Wang, Z. L., and Zhang, H.: Impact of anthropogenic aerosols
from global, East Asian, and non-East Asian sources on East Asian summer
monsoon system, Atmos. Res., 183, 224–236,
https://doi.org/10.1016/j.atmosres.2016.08.023, 2017.
Wang, T., Wang, H. J., Otterå, O. H., Gao, Y. Q., Suo, L. L., Furevik, T., and Yu, L.: Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s, Atmos. Chem. Phys., 13, 12433–12450, https://doi.org/10.5194/acp-13-12433-2013, 2013.
Wang, T., Zhuang, B., Li, S., Liu, J., Xie, M., Yin, C., Zhang, Y., Yuan, C.,
Zhu, J., and Ji, L.: The interactions between anthropogenic aerosols and the East
Asian summer monsoon using RegCCMS, J. Geophys. Res.-Atmos., 120, 5602–5621,
https://doi.org/10.1002/2014jd022877, 2015.
Warner, T. T., Peterson, R. A., and Treadon, R. E.: A tutorial on lateral
boundary conditions as a basic and potentially serious limitation to
regional numerical weather prediction, B. Am.
Meteorol. Soc., 78, 2599–2617,
https://doi.org/10.1175/1520-0477(1997)078<2599:Atolbc>2.0.Co;2, 1997.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Wu, G., Z. Li, C. Fu, X. Zhang, R. Zhang, R. Zhang, T. Zhou, J. Li, J. Li
and D. Zhou: Advances in studying interactions between aerosols and monsoon
in China, Science China-Earth Sci., 59, 1–16,
https://doi.org/10.1007/s11430-015-5198-z, 2016.
Wu, L. T., Su, H., and Jiang, J. H.: Regional simulation of aerosol impacts
on precipitation during the East Asian summer monsoon, J. Geophys. Res.-Atmos., 118, 6454–6467,
https://doi.org/10.1002/jgrd.50527, 2013.
Xiao, Z. X., and Duan, A. M.: Impacts of Tibetan Plateau Snow Cover on the
Interannual Variability of the East Asian Summer Monsoon, J. Climate, 29, 8495–8514, https://doi.org/10.1175/Jcli-D-16-0029.1, 2016.
Xie, X., Wang, H., Liu, X., Li, J., Wang, Z., and Liu, Y.: Distinct effects
of anthropogenic aerosols on the East Asian summermonsoon between
multidecadal strong and weakmonsoon stages, J. Geophys. Res.-Atmos., 121, 7026–7040,
https://doi.org/10.1002/2015jd024228, 2016.
Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., and Lin, R.: NOAA CDR Program (2019): NOAA Climate Data Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation Estimates, Version 1 [0.25deg-DLY_00Z], NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/w9va-q159, 2019.
Xue, Y. K., Janjic, Z., Dudhia, J., Vasic, R., and De Sales, F.: A review
on regional dynamical downscaling in intraseasonal to seasonal
simulation/prediction and major factors that affect downscaling ability,
Atmos. Res., 147, 68–85,
https://doi.org/10.1016/j.atmosres.2014.05.001, 2014.
Yan, H., Qian, Y., Zhao, C., Wang, H., Wang, M., Yang, B., Liu, X., and Fu, Q.: A
new approach to modeling aerosol effects on East Asian climate: Parametric
uncertainties associated with emissions, cloud microphysics, and their
interactions, J. Geophys. Res.-Atmos., 120,
8905–8924, https://doi.org/10.1002/2015jd023442, 2015.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical
mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415,
https://doi.org/10.1029/1999jd900876, 1999.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113,
https://doi.org/10.1029/2007jd008782, 2008.
Zhang, D. F., Zakey, A. S., Gao, X. J., Giorgi, F., and Solmon, F.: Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model, Atmos. Chem. Phys., 9, 1095–1110, https://doi.org/10.5194/acp-9-1095-2009, 2009.
Zhang, H., Wang, Z., Wang, Z., Liu, Q., Gong, S., Zhang, X., Shen, Z., Lu, P.,
Wei, X., and Che, H.: Simulation of direct radiative forcing of aerosols and their
effects on East Asian climate using an interactive AGCM-aerosol coupled
system, Clim. Dynam., 38, 1675–1693,
https://doi.org/10.1007/s00382-011-1131-0, 2012.
Zhang, M., Zhao, C., Cong, Z., Du, Q., Xu, M., Chen, Y., Chen, M., Li, R., Fu, Y., Zhong, L., Kang, S., Zhao, D., and Yang, Y.: Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication, Atmos. Chem. Phys., 20, 5923–5943, https://doi.org/10.5194/acp-20-5923-2020, 2020.
Zhang, R. H.: Changes in East Asian summer monsoon and summer rainfall over
eastern China during recent decades, Sci. Bull., 60, 1222–1224,
https://doi.org/10.1007/s11434-015-0824-x, 2015.
Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.: Corrigendum to “Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols” published in Atmos. Chem. Phys., 12, 779–799, 2012, Atmos. Chem. Phys., 12, 6273–6273, https://doi.org/10.5194/acp-12-6273-2012, 2012.
Zhao, B., K.-N. Liou, Y. Gu, Q. Li, J. H. Jiang, H. Su, C. He, H.-L. R.
Tseng, S. Wang and R. Liu: Enhanced PM2.5 pollution in China due to
aerosol-cloud interactions, Sci. Rep., 7, 4453,
https://doi.org/10.1038/s41598-017-04096-8, 2017.
Zhao, C. and Zhang, M. S.: mszhang96/wrfchem_ustc: WRF-Chem_MEGANv3.0 (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4663508, 2021.
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010.
Zhao, C., Liu, X., Ruby Leung, L., and Hagos, S.: Radiative impact of mineral dust on monsoon precipitation variability over West Africa, Atmos. Chem. Phys., 11, 1879–1893, https://doi.org/10.5194/acp-11-1879-2011, 2011.
Zhao, C., Liu, X., and Leung, L. R.: Impact of the Desert dust on the summer monsoon system over Southwestern North America, Atmos. Chem. Phys., 12, 3717–3731, https://doi.org/10.5194/acp-12-3717-2012, 2012.
Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J. F., Zaveri, R. A., and Huang, J.: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization, Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, 2013a.
Zhao, C., Leung, L. R., Easter, R., Hand, J., and Avise, J.:
Characterization of speciated aerosol direct radiative forcing over
California, J. Geophys. Res.-Atmos., 118, 2372–2388,
https://doi.org/10.1029/2012jd018364, 2013b.
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, 2014.
Zhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., Gu, D., Shrivastava, M., Liu, Y., Walters, S., Pfister, G., Jin, J., Shilling, J. E., and Warneke, C.: Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California, Geosci. Model Dev., 9, 1959–1976, https://doi.org/10.5194/gmd-9-1959-2016, 2016.
Zhang, M., Zhao, C., Yang, Y., Du, Q., Shen, Y., Lin, S., Gu, D., Su, W., and Liu, C.: Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China, Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, 2021.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zhou, T. J., Gong, D. Y., Li, J., and Li, B.: Detecting and understanding
the multi-decadal variability of the East Asian Summer Monsoon – Recent
progress and state of affairs, Meteorol. Z., 18, 455–467,
https://doi.org/10.1127/0941-2948/2009/0396, 2009.
Zhu, Y. L., Wang, H. J., Zhou, W., and Ma, J. H.: Recent changes in the
summer precipitation pattern in East China and the background circulation,
Clim. Dynam., 36, 1463–1473,
https://doi.org/10.1007/s00382-010-0852-9, 2011.
Zhuang, B. L., Li, S., Wang, T. J., Liu, J., Chen, H. M., Chen, P. L., Li,
M. M., and Xie, M.: Interaction between the Black Carbon Aerosol Warming
Effect and East Asian Monsoon Using RegCM4, J. Climate, 31,
9367–9388, https://doi.org/10.1175/Jcli-D-17-0767.1, 2018.
Short summary
Regional models are widely used to investigate aerosol climatic impacts. However, there are few studies examining the sensitivities of modeling results to regional domain size. In this study, the regional model is used to study the aerosol impacts on the East Asian summer monsoon system and focus on the modeling sensitivities to domain size. This study highlights the important impacts of domain size on regional modeling results of aerosol climatic impacts, which may not be limited to East Asia.
Regional models are widely used to investigate aerosol climatic impacts. However, there are few...