Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1513-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1513-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Model development in practice: a comprehensive update to the boundary layer schemes in HARMONIE-AROME cycle 40
Wim C. de Rooy
CORRESPONDING AUTHOR
Research & Development Weather and Climate models, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, Utrecht, the Netherlands
Pier Siebesma
Research & Development Weather and Climate models, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, Utrecht, the Netherlands
Department of Geoscience & Remote Sensing, Delft University of Technology, Stevinweg 1, 2628CN, Delft, the Netherlands
Peter Baas
Department of Geoscience & Remote Sensing, Delft University of Technology, Stevinweg 1, 2628CN, Delft, the Netherlands
Geert Lenderink
Research & Development Weather and Climate models, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, Utrecht, the Netherlands
Stephan R. de Roode
Department of Geoscience & Remote Sensing, Delft University of Technology, Stevinweg 1, 2628CN, Delft, the Netherlands
Hylke de Vries
Research & Development Weather and Climate models, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, Utrecht, the Netherlands
Erik van Meijgaard
Research & Development Weather and Climate models, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, Utrecht, the Netherlands
Jan Fokke Meirink
Research & Development Satellite observations, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, the Netherlands
Sander Tijm
Weather and Climate services, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, the Netherlands
Bram van 't Veen
Research & Development Observations and Data Technology, Royal Netherlands Meteorological Institute, P.O. Box 201, 3730AE, De Bilt, the Netherlands
Related authors
No articles found.
Job I. Wiltink, Hartwig Deneke, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 18, 3917–3936, https://doi.org/10.5194/amt-18-3917-2025, https://doi.org/10.5194/amt-18-3917-2025, 2025
Short summary
Short summary
Global horizontal irradiance retrievals from satellite observations are affected by spatial displacements due to parallax and cloud shadows. We assess different approaches to correct for these displacements and quantify their added value by comparison with a network of ground-based pyranometer observations. The corrections are found to become increasingly important at higher spatial resolutions and are most relevant for variable cloud types.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025, https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary
Short summary
By compositing trends in multiple climate variables, this study presents emerging regimes that are relevant for solar energy applications. It is shown that the favourable conditions for exploiting solar energy are emerging during spring and early summer. The study also underscores the increasingly important role of clouds in regulating surface solar radiation as the aerosol concentrations are decreasing over Europe and the societal value of satellite-based climate monitoring.
Victor J. H. Trees, Ping Wang, Job I. Wiltink, Piet Stammes, Daphne M. Stam, David P. Donovan, and A. Pier Siebesma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2197, https://doi.org/10.5194/egusphere-2025-2197, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present MONKI (Monte Carlo KNMI), an efficient and accurate radiative transfer code written in Fortran. MONKI computes total and polarised radiances reflected and transmitted by planetary atmospheres, accounting for polarisation in all scattering orders. MONKI handles both homogeneous atmospheres and 3D cloud structures. MONKI has been validated, and produces reliable results even for planets with optically thick, strongly polarising atmospheres.
Nikos Benas, Jan Fokke Meirink, Rob Roebeling, and Martin Stengel
Atmos. Chem. Phys., 25, 6957–6973, https://doi.org/10.5194/acp-25-6957-2025, https://doi.org/10.5194/acp-25-6957-2025, 2025
Short summary
Short summary
This study examines how ship emissions affect clouds over a shipping corridor in the southeastern Atlantic. Using satellite data from 2004 to 2023, we find that ship emissions increase the number of cloud droplets while reducing their size and slightly decrease cloud water content. Effects on seasonal and daily patterns vary based on regional factors. The impact of emissions weakened after stricter regulations were implemented in 2020.
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
Weather Clim. Dynam., 6, 413–429, https://doi.org/10.5194/wcd-6-413-2025, https://doi.org/10.5194/wcd-6-413-2025, 2025
Short summary
Short summary
Atmospheric blocking events are quasi-stationary high-pressure areas with large influences on our weather. In this study, we show the wide variety of zonal velocities possible for atmospheric blocking under the most used blocking indices. These include not only stationary blocks, but also eastward- and westward-moving blocks. These respective moving blocks are found to have different characteristics in size and location and have different impacts on our surface temperatures.
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025, https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Short summary
Future extreme rainfall events are influenced by changes in both absolute and relative humidity. The impact of increasing absolute humidity is reasonably well understood, but the role of relative humidity decreases over land remains largely unknown. Using hourly observations from France and the Netherlands, we find that lower relative humidity generally leads to more intense rainfall extremes. This relation is only captured well in recently developed convection-permitting climate models.
Jippe J. A. Hoogeveen, Jan Fokke Meirink, and Frank M. Selten
EGUsphere, https://doi.org/10.5194/egusphere-2025-418, https://doi.org/10.5194/egusphere-2025-418, 2025
Short summary
Short summary
We investigated the effect of clouds on the reflection of sunlight to space and thermal radiation from earth to space. We found a few possible inhomogeneities in the measurements. A clear decrease in reflection of sunlight was found, which we partly attributed to changes in cloud cover. Thermal radiation could be attributed relatively reliably, however we were unable to find the expected decrease due to greenhouse gasses. We do not know a conclusive cause for this.
Marjolein Ribberink, Hylke de Vries, Nadia Bloemendaal, Michiel Baatsen, and Erik van Meijgaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-218, https://doi.org/10.5194/egusphere-2025-218, 2025
Short summary
Short summary
Hurricane Ophelia of October 2017 is a rare example of a strong post-tropical cyclone impacting Europe, an event that is expected to occur more frequently as our climate warms. This study examines the changes in structure, behaviour, and extratropical transition of Hurricane Ophelia under alternate climate forcing using a regional model. We find that in warmer climates the storm becomes stronger, larger, and maintains the characteristics of a tropical cyclone for longer than in cooler climates.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025, https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we found that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024, https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Short summary
Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) global horizontal irradiance (GHI) retrievals are validated at standard and increased spatial resolution against a network of 99 pyranometers. GHI accuracy is strongly dependent on the cloud regime. Days with variable cloud conditions show significant accuracy improvements when retrieved at higher resolution. We highlight the benefits of dense network observations and a cloud-regime-resolved approach in validating GHI retrievals.
Franciscus Liqui Lung, Christian Jakob, A. Pier Siebesma, and Fredrik Jansson
Geosci. Model Dev., 17, 4053–4076, https://doi.org/10.5194/gmd-17-4053-2024, https://doi.org/10.5194/gmd-17-4053-2024, 2024
Short summary
Short summary
Traditionally, high-resolution atmospheric models employ periodic boundary conditions, which limit simulations to domains without horizontal variations. In this research open boundary conditions are developed to replace the periodic boundary conditions. The implementation is tested in a controlled setup, and the results show minimal disturbances. Using these boundary conditions, high-resolution models can be forced by a coarser model to study atmospheric phenomena in realistic background states.
Andrés Yarce Botero, Michiel van Weele, Arjo Segers, Pier Siebesma, and Henk Eskes
Geosci. Model Dev., 17, 3765–3781, https://doi.org/10.5194/gmd-17-3765-2024, https://doi.org/10.5194/gmd-17-3765-2024, 2024
Short summary
Short summary
HARMONIE WINS50 reanalysis data with 0.025° × 0.025° resolution from 2019 to 2021 were coupled with the LOTOS-EUROS Chemical Transport Model. HARMONIE and ECMWF meteorology configurations against Cabauw observations (52.0° N, 4.9° W) were evaluated as simulated NO2 concentrations with ground-level sensors. Differences in crucial meteorological input parameters (boundary layer height, vertical diffusion coefficient) between the hydrostatic and non-hydrostatic models were analysed.
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024, https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
Short summary
MSI is the imaging spectrometer on board EarthCARE and will provide across-track information on clouds and aerosol properties. The MSI solar channels exhibit a spectral misalignment effect (SMILE) in the measurements. This paper describes and evaluates how the SMILE will affect the cloud and aerosol retrievals that do not account for it.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Emma E. Aalbers, Erik van Meijgaard, Geert Lenderink, Hylke de Vries, and Bart J. J. M. van den Hurk
Nat. Hazards Earth Syst. Sci., 23, 1921–1946, https://doi.org/10.5194/nhess-23-1921-2023, https://doi.org/10.5194/nhess-23-1921-2023, 2023
Short summary
Short summary
To examine the impact of global warming on west-central European droughts, we have constructed future analogues of recent summers. Extreme droughts like 2018 further intensify, and the local temperature rise is much larger than in most summers. Years that went hardly noticed in the present-day climate may emerge as very dry and hot in a warmer world. The changes can be directly linked to real-world events, which makes the results very tangible and hence useful for climate change communication.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 15, 3121–3140, https://doi.org/10.5194/amt-15-3121-2022, https://doi.org/10.5194/amt-15-3121-2022, 2022
Short summary
Short summary
Cloud shadows are observed by the TROPOMI satellite instrument as a result of its high spatial resolution. These shadows contaminate TROPOMI's air quality measurements, because shadows are generally not taken into account in the models that are used for aerosol and trace gas retrievals. We present the Detection AlgoRithm for CLOud Shadows (DARCLOS) for TROPOMI, which is the first cloud shadow detection algorithm for a satellite spectrometer.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021, https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Short summary
The SEVIRI instrument flown on the European geostationary Meteosat satellites acquires multi-spectral images at a relatively coarse pixel resolution of 3 × 3 km2, but it also has a broadband high-resolution visible channel with 1 × 1 km2 spatial resolution. In this study, the modification of an existing cloud property and solar irradiance retrieval to use this channel to improve the spatial resolution of its output products as well as the resulting benefits for applications are described.
Cited articles
Baas, P., de Roode, S. R., and Lenderink, G.: The Scaling Behaviour of a
Turbulent Kinetic Energy Closure Model for Stably Stratified Conditions,
Bound.-Lay. Meteorol., 127, 17–36, https://doi.org/10.1007/s10546-007-9253-y, 2008. a, b, c
Baas, P., van de Wiel, B. J. H., van der Linden, S. J. A., and Bosveld, F. C.:
From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky
Nocturnal Boundary Layer at Cabauw, Bound.-Lay. Meteorol., 166, 217–238,
https://doi.org/10.1007/s10546-017-0304-8, 2017. a, b, c, d
Beare, R. J., Macvean, M., Holtslag, A., Cuxart, J., Esau, I., Golaz, J., Jimenez, M., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T., Lundquist, J., Mccabe, A., Moene, A., Noh, Y., Raasch, S., and Sullivan, P.: An Intercomparison of
Large-Eddy Simulations of the Stable Boundary Layer, Bound.-Lay.
Meteorol., 118, 247–272, https://doi.org/10.1007/S10546-004-2820-6, 2006. a, b, c, d
Bechtold, P. and Siebesma, A. P.: Organization and Representation of Boundary
Clouds, J. Atmos. Sci., 55, 888–895,
https://doi.org/10.1175/1520-0469(1998)055<0888:OAROBL>2.0.CO;2, 1998. a
Bechtold, P., Fravalo, C., and Pinty, J.: A Model of Marine Boundary-Layer
Cloudiness for Mesoscale Applications, J. Atmos. Sci., 49, 1723–1744,
https://doi.org/10.1175/1520-0469(1992)049<1723:AMOMBL>2.0.CO;2, 1992. a, b
Bechtold, P., Cuijpers, J. W. M., Mascart, P., and Trouilhet, P.: Modeling of
Trade Wind Cumuli with a Low-Order Turbulence Model: Toward a Unified
Description of Cu and Sc Clouds in Meteorological Models, J. Atmos. Sci., 52,
455–463, https://doi.org/10.1175/1520-0469(1995)052<0455:MOTWCW>2.0.CO;2, 1995. a, b
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A Mass
Flux Convection Scheme for Regional and Global Models, Q. J. Roy. Meteor.
Soc., 127, 869–886, https://doi.org/10.1002/qj.49712757309, 2001. a
Bechtold, P., Kohler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell,
M., Vitart, F., and Balsamo, G.: Advances in Simulating Atmospheric
Variability with the ECMWF Model: From Synoptic to Decadal Time-scales, Q. J.
Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Beljaars, A. and Holtslag, A.: Flux Parameterization over Land Surfaces for
Atmospheric Models, J. Appl. Meteorol. Clim., 30, 327–341,
https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991. a, b, c, d
Belušić, D., de Vries, H., Dobler, A., Landgren, O., Lind, P., Lindstedt, D., Pedersen, R. A., Sánchez-Perrino, J. C., Toivonen, E., van Ulft, B., Wang, F., Andrae, U., Batrak, Y., Kjellström, E., Lenderink, G., Nikulin, G., Pietikäinen, J.-P., Rodríguez-Camino, E., Samuelsson, P., van Meijgaard, E., and Wu, M.: HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales, Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, 2020. a, b
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I.,
Lenderink, G., Niemel a, S., Nielsen, K. P., Onvlee, J., Rontua, L.,
Samuelsson, P., Munoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and
Koltzow, M. O.: The HARMONIE–AROME Model Configuration in the
ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935,
https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a, b, c
Böing, S. J., Siebesma, A., Korpershoek, J., and Jonker, H.: Detrainment in
Deep Convection, Geophys. Res. Lett., 39, L20816, https://doi.org/10.1029/2012GL053735, 2012. a, b, c
Bosveld, F. C., Baas, P., Beljaars, A., Holtslag, A., de Arellano, J. V.-G.,
and van de Wiel, B. J. H.: Fifty Years of Atmospheric Boundary-Layer Research
at Cabauw Serving Weather, Air Quality and Climate, Bound.-Lay. Meteorol.,
177, 583–612, https://doi.org/10.1007/s10546-020-00541-w, 2020. a
Bougeault, P.: Modeling the Trade-Wind Cumulus Boundary Layer. Part I: Testing
the Ensemble Cloud Relations Against Numerical Data, J. Atmos. Sci., 38,
2414–2428, https://doi.org/10.1175/1520-0469(1981)038<2414:MTTWCB>2.0.CO;2, 1981. a, b
Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C., Khairoutdinov, M., Lewellen, D. C., Lock, A. P., MacVean, M. K., Moeng, C.-H., Neggers, R. A. J., Siebesma, A. P., and Stevens, B.: Large-Eddy
Simulation of the Diurnal Cycle of Shallow Cumulus Convection over Land, Q.
J. Roy. Meteor. Soc., 128, 1075–1094, https://doi.org/10.1256/003590002320373210,
2002. a, b, c, d, e
Cuijpers, J. and Bechtold, P.: A Simple Parameterization of Cloud Water Related
Variables for Use in Boundary Layer Models, J. Atmos. Sci., 52, 2486–2490,
https://doi.org/10.1175/1520-0469(1995)052<2486:ASPOCW>2.0.CO;2, 1995. a
Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A Turbulence Scheme
Allowing for Mesoscale and Large-Eddy Simulations, Q. J. Roy. Meteor. Soc.,
126, 1–30, https://doi.org/10.1002/qj.49712656202, 2000. a
Derbyshire, S., Maidens, A., Milton, S., Stratton, R., and Willett, M.:
Adaptive Detrainment in a Convective Parameterization, Q. J. Roy. Meteor.
Soc., 137, 1856–1871, https://doi.org/10.1002/qj.875, 2011. a
de Roode, S., Duynkerke, P., and Siebesma, A.: Analogies Between Mass-Flux and
Reynolds-Averaged Equations, J. Atmos. Sci., 57, 1585–1598,
https://doi.org/10.1175/1520-0469(2000)057<1585:ABMFAR>2.0.CO;2, 2000. a
de Roode, S., Siebesma, A., Jonker, H., and de Voogd, Y.: Parameterization of
the Vertical Velocity Equation for Shallow Cumulus Clouds, Mon. Weather Rev.,
140, 2424–2436, https://doi.org/10.1175/MWR-D-11-00277.1, 2012. a, b
de Roode, S., Sandu, I., van der Dussen, J., Ackerman, A., Blossey, P.,
Jarecka, D., Lock, A., Siebesma, A., and Stevens, B.: Large-Eddy Simulations
of EUCLIPSE–GASS Lagrangian Stratocumulus-to-Cumulus Transitions: Mean
State, Turbulence, and Decoupling, J. Atmos. Sci., 73, 2485–2508,
https://doi.org/10.1175/JAS-D-15-0215.1, 2016. a, b
de Rooy, W.: The Fog Above Sea Problem: Part 1 Analysis, ALADIN-HIRLAM
Newsletter, 2, 9–16,
http://hirlam.org/index.php/hirlam-documentation/doc_download/1490-aladin-hirlam-newsletter-no-2-april-2014
(last access: 11 January 2022), 2014. a
de Rooy, W. and Baas, P.: One year HARMONIE-AROME SCM with cy40REF and cy40NEW for optimisation Turbulence scheme, Zenodo [data set], https://doi.org/10.5281/zenodo.6053930, 2022. a
de Rooy, W. and Kok, K.: A Combined Physical–Statistical Approach for the
Downscaling of Model Wind Speed, Weather Forecast., 19, 485–495,
https://doi.org/10.1175/1520-0434(2004)019<0485:ACPAFT>2.0.CO;2, 2004. a
de Rooy, W. and Siebesma, A.: A Simple Parameterization for Detrainment in
Shallow Cumulus, Mon. Weather Rev., 136, 560–576,
https://doi.org/10.1175/2007MWR2201.1, 2008. a, b
de Rooy, W. and Siebesma, A.: Analytical Expressions for Entrainment and
Detrainment in Cumulus Convection, Q. J. Roy. Meteor. Soc., 136,
1216–1227, https://doi.org/10.1002/qj.640, 2010. a, b, c, d
de Rooy, W., de Vries, H., van Dalum, C., de Haan, S., Lenderink, G.,
van Marseille, G.-J., Meirink, J. F., and Scheele, R.: Harmonie Verification and Evaluation,
Hirlam Technical report, p. 93,
http://hirlam.org/index.php/publications-54/hirlam-technical-reports-a/doc_download/1805-hirlam-technicalreport-70
(last access: 11 January 2022), 2017. a
de Rooy, W. C.: DALES_data_ARMcu, Zenodo [data set], https://doi.org/10.5281/zenodo.6037528, 2022a. a
de Rooy, W. C.: DALES LES data for GABLS1 (only ninth hour), ASTEX, and slow and fast strato-cumulus cases, Zenodo [data set], https://doi.org/10.5281/zenodo.6043384, 2022b. a
de Rooy, W. C.: HARMONIE-AROME 1D results for intercomparison cases, Zenodo [data set], https://doi.org/10.5281/zenodo.6045761, 2022c. a
de Rooy, W. C.: HARMONIE-AROME model data (cy40REF and cy40NEW) and observations for December 2018, Zenodo [data set], https://doi.org/10.5281/zenodo.6074926, 2022d. a
Dyer, A.: A Review of Flux-Profile Relationships, Bound.-Lay. Meteorol., 7,
363–372, https://doi.org/10.1007/BF00240838, 1974. a, b, c, d
Frogner, I., Andrae, U., Bojarova, J., Callado, A., Escribà, P., Feddersen,
H., Hally, A., Kauhanen, J., Randriamampianina, R., Singleton, A., Smet, G.,
van der Veen, S., and Vignes, O.: HarmonEPS – The HARMONIE Ensemble
Prediction System, Weather Forecast., 34, 1909–1937, 2019. a
Golaz, J., Larson, V. E., and Cotton, W. R.: A PDF-Based Model for Boundary
Layer Clouds. Part I: Method and Model Description, J. Atmos. Sci., 59,
3540–3551, 2002. a
Grant, A.: Cloud-Base Fluxes in the Cumulus-Capped Boundary Layer, Q. J. Roy.
Meteor. Soc., 127, 407–422, https://doi.org/10.1002/QJ.49712757209, 2001. a, b, c, d
Helfer, K. C., Nuijens, L., and Dixit, V. V.: The Role of Shallow Convection in
the Momentum Budget of the Trades from Large-Eddy-Simulation Hindcasts, Q. J.
Roy. Meteor. Soc., 147, 2490–2505, https://doi.org/10.1002/qj.4035, 2021. a
Heus, T., Pols, C. F. J., Jonker, H. J. J., Van den Akker, H. E. A., and
Lenschow, D. H.: Observational Validation of the Compensating Mass Flux
through the Shell around Cumulus Clouds, Q. J. Roy. Meteor. Soc., 135, 101–112,
https://doi.org/10.1002/qj.358, 2009. a
Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010. a, b
HIRLAM: Homepage, http://www.hirlam.org/index.php/hirlam-programme-53, last access: 10 February 2022. a
Holland, J. and Rasmusson, E.: Measurement of Atmospheric Aass, Energy and
Momentum Budgets over a 500-Kilometer Square of Tropical Ocean, Mon. Weather
Rev., 101, 44–55, https://doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2,
1973. a
Jakob, C.: Accelerating Progress in Global Atmospheric Model Development
through Improved Parameterizations: Challenges, Opportunities, and
Strategies, B. Am. Meteorol. Soc., 91, 869–875,
https://doi.org/10.1175/2009BAMS2898.1, 2010. a, b
Jonker, H., Verzijlbergh, R., Heus, T., and Siebesma, A.: The Influence of the
Sub-Cloud Moisture Field on Cloud Size Distributions and the Consequences for
Entrainment, in: Extended abstract from the 17th Symposium on Boundary Layers
and Turbulence, San Diego, USA, Session 2 Cloudy Boundary Layers 1
Chair: Kristovich, D. A. R., ISWS, Champaign, IL, Americal Meteorological Society, 1–4,
http://ams.confex.com/ams/pdfpapers/111021.pdf (last access: 11 February 2022), 2006. a
Kähnert, M., Sodemann, H., de Rooy, W., and Valkonen, T.: On the Utility of
Individual Tendency Output: Revealing Interactions between Parameterized
Processes during a Marine Cold Air Outbreak, Weather Forecast., 36,
1985–2000, https://doi.org/10.1175/WAF-D-21-0014.1, 2021. a
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining Plume
Model and its Application in Convective Parameterization, J. Atmos. Sci., 47,
2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990. a, b
Köhler, M., Ahlgrimm, M., and Beljaars, A.: Unified Treatment of Dry
Convective and Stratocumulus-Topped Boundary Layers in the ECMWF Model, Q. J.
Roy. Meteor. Soc., 137, 43–57, https://doi.org/10.1002/qj.713, 2011. a
Lamer, K., Kollias, P., and Nuijens, L.: Observations of the Variability of
Shallow Trade Wind Cumulus Cloudiness and Mass Flux, J. Geophys. Res.-Atmos., 120, 6161–6178, https://doi.org/10.1002/2014JD022950, 2015. a
Lenderink, G. and Holtslag, A.: An Updated Length-Scale Formulation for
Turbulent Mixing in Clear and Cloudy Boundary Layers, Q. J. Roy. Meteor. Soc., 130, 3405–3427,
https://doi.org/10.1256/qj.03.117, 2004. a, b
Lenderink, G. and Siebesma, A. P.: Combining the Massflux Approach with a Statistical Cloud Scheme, Zenodo, https://doi.org/10.5281/zenodo.6044488, 2000. a
Lenderink, G., Siebesma, A., Cheinet, S., Irons, S., Jones, C., Marquet, P.,
Muller, F., Olmeda, D., Calvo, J., Sanchez, E., and Soares, P.: The Diurnal
Cycle of Shallow Cumulus Clouds over Land: A Single-Column Model
Intercomparison study, Q. J. Roy. Meteor. Soc., 130, 3339–3364, https://doi.org/10.1256/qj.03.122, 2004. a, b
Li, D. and Bou-Zeid, E.: Coherent Structures and the Dissimilarity of Turbulent
Transport of Momentum and Scalars in the Unstable Atmospheric Surface Layer,
Bound.-Lay. Meteorol., 140, 243–262, https://doi.org/10.1007/s10546-011-9613-5,
2011. a
Mellor, G.: Subgrid scale condensation in models of nonprecipitating clouds, J.
Atmos. Sci., 34, 1483–1484, 1977. a
Neggers, R., Siebesma, A., and Jonker, H.: A Multiparcel Method for Shallow
Cumulus Convection, J. Atmos. Sci., 59, 1655–1668,
https://doi.org/10.1175/1520-0469(2002)059<1655:AMMFSC>2.0.CO;2, 2002. a
Neggers, R., Köhler, M., and Beljaars, A.: A Dual Mass Flux Framework for
Boundary Layer Convection. Part I: Transport, J. Atmos. Sci., 66, 1464–1487,
https://doi.org/10.1175/2008JAS2636.1, 2009. a, b
Neggers, R., Ackerman, A. S., Angevine, W. M., Bazile, E., Beau, I., Blossey,
P. N., Boutle, I. A., de Bruijn, C., Cheng, A., van der Dussen, J., Fletcher,
J., Gesso, S. D., Jam, A., Kawai, H., Kumar, S., Larson, V. E., Lefebvre,
M.-P., Lock, A. P., Meyer, N. R., de Roode, S. R., de Rooy, W., Sandu, I.,
Xiao, H., and Xu, K.-M.: Single-Column Model Simulations of Subtropical
Marine Boundary-Layer Cloud Transitions under Weakening Inversions, J. Adv. Model. Earth Sy.,
9, 2385–2412, https://doi.org/10.1002/2017MS001064, 2017. a, b
Quaas, J.: Evaluating the “Critical Relative Humidity” as a Measure of
Subgrid-Scale Variability of Humidity in General Circulation Model Cloud
Cover Parametrizations using Satellite Data, J. Geophys. Res.-Atmos., 117,
D09208, https://doi.org/10.1029/2012JD017495, 2012. a, b
Redelsperger, J. L. and Sommeria, G.: Methode de Representation de la
Turbulence d'Echelle Inferieure a la Maille pour un Modele Tri-Dimensionnel
de Convection Nuageuse, Bound.-Lay. Meteorol., 21, 509–530,
https://doi.org/10.1007/BF02033598, 1981. a, b, c
Rio, C. and Hourdin, F.: A Thermal Plume Model for the Convective Boundary
Layer: Representation of Cumulus Clouds, J. Atmos. Sci., 65, 407–424,
https://doi.org/10.1175/2007JAS2256.1, 2008. a
Rio, C., Hourdin, F., Couvreux, F., and Jam, A.: Resolved Versus Parameterized
Boundary-Layer Plumes. Part II: Continuous Formulations of Mixing Rates for
Mass-Flux Schemes, Bound.-Lay. Meteorol., 135, 469–483, https://doi.org/10.1007/s10546-010-9478-z, 2010. a
Saggiorato, B., Nuijens, L., Siebesma, A. P., de Roode, S., Sandu, I., and
Papritz, L.: The Influence of Convective Momentum Transport and Vertical Wind
Shear on the Evolution of a Cold Air Outbreak, J. Adv. Model. Earth Syst.,
12, e2019MS00199, https://doi.org/10.1029/2019MS001991, 2020. a
Schlemmer, L., Bechtold, P., Sandu, I., and Ahlgrimm, M.: Uncertainties Related
to the Representation of Momentum Transport in Shallow Convection, J. Adv.
Model. Earth Syst., 9, 1269–1291, https://doi.org/10.1002/2017MS000915, 2017. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F.,
Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational Model,
Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011. a
Siebesma, A. P. and Teixeira, J.: An Advection-Diffusion scheme for the convective boundary layer: description and 1d-results, Zenodo, https://doi.org/10.5281/zenodo.6045362, 2000. a
Siebesma, A., Bretherton, C., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P.,
Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H., Sanchez, E.,
Stevens, B., and Stevens, D. E.: A Large Eddy Simulation Intercomparison
Study of Shallow Cumulus Convection, J. Atmos. Sci., 60, 1201–1219,
https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003. a, b, c
Sommeria, G. and Deardorff, J.: Subgrid-Scale Condensation in Models of
Non-Precipitating Clouds, J. Atmos. Sci., 34, 344–355,
https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2, 1977. a
Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X.,
Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C.,
Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N.,
Shibuya, R., Vanniere, B., Vidale, P. L., Wedi, N., and Zhou, L.: DYAMOND:
the DYnamics of the Atmospheric General Circulation Modeled On
Non-Hydrostatic Domains, Prog. Earth Planet. Sci., 6, 61,
https://doi.org/10.1186/s40645-019-0304-z, 2019. a
Stull, R.: An Introduction to Boundary Layer Meteorology, Kluwer Academic
Publishers, London & High Wycombe, ISBN 90-277-2769-4, 1988. a
Sušelj, K., Teixeira, J., and Chung, D.: A Unified Model for Moist
Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux
Parameterization, J. Atmos. Sci., 70, 1929–1953,
https://doi.org/10.1175/JAS-D-12-0106.1, 2013. a
van Meijgaard, E., van Ulft, B., van de Berg, W., Bosveld, F. C., van den Hurk,
B., Lenderink, G., and Siebesma, A.: The KNMI Regional Atmospheric Climate
Model RACMO version 2.1., Tech. Rep., KNMI, Technical Report 302, De Bilt,
the Netherlands, 43 pp.,
https://www.knmi.nl/kennis-en-datacentrum/publicatie/the-knmi-regional-atmospheric-climate-model-racmo-version-2-1
(last access: 11 January 2022), 2008. a
van Meijgaard, E., van Ulft, L., Lenderink, G., de Roode, S., Wipfler, L.,
Boers, R., and Timmermans, R.: Refinement and Application of a Regional
Atmospheric Model for Climates Scenario Calculations of Western Europe, Tech.
Rep., Wageningen University, KVR Research Rep. 054/12, 44 pp.,
https://library.wur.nl/WebQuery/wurpubs/fulltext/312258
(last access: 11 January 2022), 2012. a
Wyngaard, J., Cote, O. R., and Izum, Y.: Local Free Convection, Similarity, and
the Budgets of Shear Stress and Heat Flux, J. Atmos. Sci., 28, 1171–1182,
https://doi.org/10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2, 1971. a
Short summary
This paper describes a comprehensive model update to the boundary layer schemes. Because the involved parameterisations are all built on widely applied frameworks, the here-described modifications are applicable to many NWP and climate models. The model update contains substantial modifications to the cloud, turbulence, and convection schemes and leads to a substantial improvement of several aspects of the model, especially low cloud forecasts.
This paper describes a comprehensive model update to the boundary layer schemes. Because the...