Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7705-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7705-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Paolo Stocchi
Institute of Atmospheric Sciences and Climate, National Research Council of Italy, CNR-ISAC, Bologna, Italy
Emanuela Pichelli
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Jose Abraham Torres Alavez
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Russell Glazer
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Graziano Giuliani
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Fabio Di Sante
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Rita Nogherotto
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Filippo Giorgi
Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
Related authors
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
James M. Ciarlò, Monique Borg Inguanez, Erika Coppola, Aaron Micallef, and David Mifsud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1954, https://doi.org/10.5194/egusphere-2024-1954, 2024
Short summary
Short summary
Climate change threatens biodiversity, especially arthropods, which can significantly impact the stability of ecosystems. This study introduces an index to assess habitat suitability for Mediterranean arthropods using climate model data. The index can indicate how climate change could affect arthropod habitats, provided there is an abundant initial dataset of observations for the species of interest.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Rita Nogherotto, Adriano Fantini, Francesca Raffaele, Fabio Di Sante, Francesco Dottori, Erika Coppola, and Filippo Giorgi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-356, https://doi.org/10.5194/nhess-2019-356, 2019
Revised manuscript not accepted
Filippo Giorgi, Francesca Raffaele, and Erika Coppola
Earth Syst. Dynam., 10, 73–89, https://doi.org/10.5194/esd-10-73-2019, https://doi.org/10.5194/esd-10-73-2019, 2019
Short summary
Short summary
The paper revisits the critical issue of precipitation characteristics in response to global warming through a new analysis of global and regional climate projections and a summary of previous work. Robust responses are identified and the underlying processes investigated. Examples of applications are given, such as the evaluation of risks associated with extremes. The paper, solicited by the EGU executive office, is based on the 2018 EGU Alexander von Humboldt medal lecture by Filippo Giorgi.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Rita Nogherotto, Adrian Mark Tompkins, Graziano Giuliani, Erika Coppola, and Filippo Giorgi
Geosci. Model Dev., 9, 2533–2547, https://doi.org/10.5194/gmd-9-2533-2016, https://doi.org/10.5194/gmd-9-2533-2016, 2016
Short summary
Short summary
The paper presents a new cloud scheme for regional climate model RegCM4.5. The new scheme treats microphysical processes occurring within stratiform clouds and with respect to the pre-existing scheme is able to allow a more physically realistic representation of cloud microphysics and distribution, improving the representation of the longwave and shortwave components of the cloud radiative forcing.
M. A. H. Zaroug, F. Giorgi, E. Coppola, G. M. Abdo, and E. A. B. Eltahir
Hydrol. Earth Syst. Sci., 18, 4311–4323, https://doi.org/10.5194/hess-18-4311-2014, https://doi.org/10.5194/hess-18-4311-2014, 2014
Maria Vittoria Struglia, Alessandro Anav, Marta Antonelli, Sandro Calmanti, Franco Catalano, Alessandro Dell'Aquila, Emanuela Pichelli, and Giovanna Pisacane
EGUsphere, https://doi.org/10.5194/egusphere-2025-387, https://doi.org/10.5194/egusphere-2025-387, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We present the results of downscaling global climate projections for the Mediterranean and Italian regions aiming to produce high-resolution climate information for the assessment of climate change signals, focusing on extreme events. A general warming is foreseen by the end of century with a mean precipitation reduction accompanied, over Italian Peninsula, by a strong increase in the intensity of extreme precipitation events, particularly relevant for the high emissions scenario during autumn
Eric Martial Yao, Fabien Solmon, Marcellin Adon, Claire Delon, Corinne Galy-Lacaux, Graziano Giuliani, Bastien Sauvage, and Véronique Yoboue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3179, https://doi.org/10.5194/egusphere-2024-3179, 2025
Short summary
Short summary
As climate change and human activities intensify in Africa, understanding how air pollution, climate, and natural cycles interact is crucial. This study explores how nitrogen oxide emissions from African soils, especially in dry regions, contribute to atmospheric pollution. By using a climate-chemistry model, we show that considering these emissions improves predictions of nitrogen dioxide, nitric acid and ozone, although some discrepancies remain compared to observations.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
James M. Ciarlò, Monique Borg Inguanez, Erika Coppola, Aaron Micallef, and David Mifsud
EGUsphere, https://doi.org/10.5194/egusphere-2024-1954, https://doi.org/10.5194/egusphere-2024-1954, 2024
Short summary
Short summary
Climate change threatens biodiversity, especially arthropods, which can significantly impact the stability of ecosystems. This study introduces an index to assess habitat suitability for Mediterranean arthropods using climate model data. The index can indicate how climate change could affect arthropod habitats, provided there is an abundant initial dataset of observations for the species of interest.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Vijayakumar Sivadasan Nair, Filippo Giorgi, and Usha Keshav Hasyagar
Atmos. Chem. Phys., 20, 14457–14471, https://doi.org/10.5194/acp-20-14457-2020, https://doi.org/10.5194/acp-20-14457-2020, 2020
Short summary
Short summary
Air pollution and wintertime fog over South Asia is a major concern due to its significant implications on air quality, visibility and health. Coupled model simulations show that hygroscopic growth of aerosols contributes significantly to the aerosol-induced cooling at the surface. Our analysis demonstrates that the aerosol–moisture interaction is the most significant contributor favouring and strengthening the high-aerosol conditions (poor air quality) prevailing over South Asia during winter.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Rita Nogherotto, Adriano Fantini, Francesca Raffaele, Fabio Di Sante, Francesco Dottori, Erika Coppola, and Filippo Giorgi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-356, https://doi.org/10.5194/nhess-2019-356, 2019
Revised manuscript not accepted
Filippo Giorgi, Francesca Raffaele, and Erika Coppola
Earth Syst. Dynam., 10, 73–89, https://doi.org/10.5194/esd-10-73-2019, https://doi.org/10.5194/esd-10-73-2019, 2019
Short summary
Short summary
The paper revisits the critical issue of precipitation characteristics in response to global warming through a new analysis of global and regional climate projections and a summary of previous work. Robust responses are identified and the underlying processes investigated. Examples of applications are given, such as the evaluation of risks associated with extremes. The paper, solicited by the EGU executive office, is based on the 2018 EGU Alexander von Humboldt medal lecture by Filippo Giorgi.
Brahima Koné, Arona Diedhiou, N'datchoh Evelyne Touré, Mouhamadou Bamba Sylla, Filippo Giorgi, Sandrine Anquetin, Adama Bamba, Adama Diawara, and Arsene Toka Kobea
Earth Syst. Dynam., 9, 1261–1278, https://doi.org/10.5194/esd-9-1261-2018, https://doi.org/10.5194/esd-9-1261-2018, 2018
Short summary
Short summary
Simulations of regional climate are very sensitive to physical parameterization schemes, particularly over the tropics where convection plays a major role in monsoon dynamics. The latest version of RegCM4 was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The configuration of RegCM4 with CLM4.5 as a land surface model and the Emanuel convective scheme is recommended for the study of the West African climate.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
William J. Gutowski Jr., Filippo Giorgi, Bertrand Timbal, Anne Frigon, Daniela Jacob, Hyun-Suk Kang, Krishnan Raghavan, Boram Lee, Christopher Lennard, Grigory Nikulin, Eleanor O'Rourke, Michel Rixen, Silvina Solman, Tannecia Stephenson, and Fredolin Tangang
Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, https://doi.org/10.5194/gmd-9-4087-2016, 2016
Short summary
Short summary
The Coordinated Regional Downscaling Experiment (CORDEX) is a diagnostic MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global output to produce downscaled projected changes in regional climates, and assess sources of uncertainties in the projections.
Rita Nogherotto, Adrian Mark Tompkins, Graziano Giuliani, Erika Coppola, and Filippo Giorgi
Geosci. Model Dev., 9, 2533–2547, https://doi.org/10.5194/gmd-9-2533-2016, https://doi.org/10.5194/gmd-9-2533-2016, 2016
Short summary
Short summary
The paper presents a new cloud scheme for regional climate model RegCM4.5. The new scheme treats microphysical processes occurring within stratiform clouds and with respect to the pre-existing scheme is able to allow a more physically realistic representation of cloud microphysics and distribution, improving the representation of the longwave and shortwave components of the cloud radiative forcing.
Li Liu, Fabien Solmon, Robert Vautard, Lynda Hamaoui-Laguel, Csaba Zsolt Torma, and Filippo Giorgi
Biogeosciences, 13, 2769–2786, https://doi.org/10.5194/bg-13-2769-2016, https://doi.org/10.5194/bg-13-2769-2016, 2016
Short summary
Short summary
To study the distribution of airborne ragweed pollen in changing environments and associated health risks over Europe, we introduce an approach with explicit treatment of pollen ripening, release and dispersion due to environmental drivers in an online modelling framework where climate is integrated with dispersion and vegetation production. From a simulated pollen season and concentration pattern health risks are evaluated through calculation of exposure time above health-relevant threshold levels.
P. Stocchi and S. Davolio
Adv. Sci. Res., 13, 7–12, https://doi.org/10.5194/asr-13-7-2016, https://doi.org/10.5194/asr-13-7-2016, 2016
Short summary
Short summary
Three heavy rain events over NE Alps were simulated using a high-resolution model to evaluate the effect of the SST of the Adriatic Sea.
These preliminary results show that SST influences the surface heat fluxes over the sea, but does not necessary affect the vertical integrated water vapour flux across the coast.
The response of heavy precipitation to a SST change is complex: SST affects the PBL characteristics and thus the flow dynamics and its interaction with orography.
H.-W. Jacobi, S. Lim, M. Ménégoz, P. Ginot, P. Laj, P. Bonasoni, P. Stocchi, A. Marinoni, and Y. Arnaud
The Cryosphere, 9, 1685–1699, https://doi.org/10.5194/tc-9-1685-2015, https://doi.org/10.5194/tc-9-1685-2015, 2015
Short summary
Short summary
We detected up to 70 ppb of black carbon (BC) in surface snow in the upper Khumbu Valley, Nepal. With an upgraded snowpack model, including radiative transfer inside the snow, we studied the impact of BC on snow albedo, melting and radiative forcing for the sensitive high altitude regions of the Himalayas. We found that due to BC, the melting of the snow can be shifted by several days up to several weeks depending on meteorological conditions. The impact of BC is larger in dirty snow.
F. Salerno, N. Guyennon, S. Thakuri, G. Viviano, E. Romano, E. Vuillermoz, P. Cristofanelli, P. Stocchi, G. Agrillo, Y. Ma, and G. Tartari
The Cryosphere, 9, 1229–1247, https://doi.org/10.5194/tc-9-1229-2015, https://doi.org/10.5194/tc-9-1229-2015, 2015
Short summary
Short summary
Climate-trends data in Himalaya are completely absent at high elevation. We explore the south slopes of Mt Everest though time series reconstructed from 7 stations (2660-5600m) during 1994-2013. The main increase in temp is concentrated outside of the monsoon, minimum temp increased far more than maximum, while we note a precipitation weakening. We contribute to change the perspective on which climatic drivers (temperature vs. precipitation) led mainly the glacier responses in the last 20 yr.
G. Curci, L. Ferrero, P. Tuccella, F. Barnaba, F. Angelini, E. Bolzacchini, C. Carbone, H. A. C. Denier van der Gon, M. C. Facchini, G. P. Gobbi, J. P. P. Kuenen, T. C. Landi, C. Perrino, M. G. Perrone, G. Sangiorgi, and P. Stocchi
Atmos. Chem. Phys., 15, 2629–2649, https://doi.org/10.5194/acp-15-2629-2015, https://doi.org/10.5194/acp-15-2629-2015, 2015
Short summary
Short summary
Particulate matter (PM) at ground level is of primary concern for the quality of the air we breathe. Most direct sources of PM are near the ground, but an important fraction of PM is produced by photochemical processes happening also in the upper atmospheric layers. We investigated the contribution of those layers to the PM near the ground and found a significant impact. Nitrate is a major player in the “vertical direction”, owing to its sensitivity to ambient temperature and relative humidity.
M. A. H. Zaroug, F. Giorgi, E. Coppola, G. M. Abdo, and E. A. B. Eltahir
Hydrol. Earth Syst. Sci., 18, 4311–4323, https://doi.org/10.5194/hess-18-4311-2014, https://doi.org/10.5194/hess-18-4311-2014, 2014
R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno
Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, https://doi.org/10.5194/hess-18-1953-2014, 2014
M. A. H. Zaroug, E. A. B. Eltahir, and F. Giorgi
Hydrol. Earth Syst. Sci., 18, 1239–1249, https://doi.org/10.5194/hess-18-1239-2014, https://doi.org/10.5194/hess-18-1239-2014, 2014
E. Pichelli, R. Ferretti, M. Cacciani, A. M. Siani, V. Ciardini, and T. Di Iorio
Atmos. Meas. Tech., 7, 315–332, https://doi.org/10.5194/amt-7-315-2014, https://doi.org/10.5194/amt-7-315-2014, 2014
U. U. Turuncoglu, G. Giuliani, N. Elguindi, and F. Giorgi
Geosci. Model Dev., 6, 283–299, https://doi.org/10.5194/gmd-6-283-2013, https://doi.org/10.5194/gmd-6-283-2013, 2013
Related subject area
Climate and Earth system modeling
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Investigating Carbon and Nitrogen Conservation in Reported CMIP6 Earth System Model Data
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
PaleoSTeHM v1.0-rc: a modern, scalable spatio-temporal hierarchical modeling framework for paleo-environmental data
From Weather Data to River Runoff: Leveraging Spatiotemporal Convolutional Networks for Comprehensive Discharge Forecasting
Historical Trends and Controlling Factors of Isoprene Emissions in CMIP6 Earth System Models
Modeling Commercial-Scale CO2 Storage in the Gas Hydrate Stability Zone with PFLOTRAN v6.0
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3522, https://doi.org/10.5194/egusphere-2024-3522, 2024
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from CMIP6 Earth System Models. Our findings reveal significant discrepancies between flux and pool size data, particularly in nitrogen, where cumulative imbalances can reach hundreds of gigatons. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Ingo Richter, Ping Chang, Gokhan Danabasoglu, Dietmar Dommenget, Guillaume Gastineau, Aixue Hu, Takahito Kataoka, Noel Keenlyside, Fred Kucharski, Yuko Okumura, Wonsun Park, Malte Stuecker, Andrea Taschetto, Chunzai Wang, Stephen Yeager, and Sang-Wook Yeh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3110, https://doi.org/10.5194/egusphere-2024-3110, 2024
Short summary
Short summary
The tropical ocean basins influence each other through multiple pathways and mechanisms, here referred to as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models, but have obtained conflicting results. This may be partly due to differences in experiment protocols, and partly due to systematic model errors. TBIMIP aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-183, https://doi.org/10.5194/gmd-2024-183, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we developed and applied a weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. It also enhances the simulation of interannual precipitation and temperature variability over the southern US. This system is to support future predictability studies.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2183, https://doi.org/10.5194/egusphere-2024-2183, 2024
Short summary
Short summary
PaleoSTeHM v1.0-rc is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2685, https://doi.org/10.5194/egusphere-2024-2685, 2024
Short summary
Short summary
Forecasting river runoff, crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using Convolutional Long Short-Term Memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-162, https://doi.org/10.5194/gmd-2024-162, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most dangerous effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a sub-sea CO2 injection.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Cited articles
Anthes, R. A., Hsie, E.-Y., and Kuo, Y. -H.: Description of the Penn
State/NCAR Mesoscale Model: Version 4 (MM4),
National Center for Atmospheric Research, Boulder, CO, USA, NCAR Techn. Note, 4, 79 pp., NCAR/TN-282+STR, https://doi.org/10.5065/D64B2Z90, 1987.
Anyah, R., Semazzi, F. H. M., and Xie, L.: Simulated Physical Mechanisms
Associated with Climate Variability over Lake Victoria Basin in East Africa,
Mon. Weather Rev., 134, 3588–3609, 2006.
Anyah, R. O. and Semazzi, F.: Idealized simulation of hydrodynamic
characteristics of Lake Victoria that potentially modulate regional climate,
Int. J. Climatol., 29, 971–981, https://doi.org/10.1002/joc.1795, 2009.
Ashouri, H., Hsu, K., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily
Precipitation Climate Data Record from Multisatellite Observations for
Hydrological and Climate Studies, Bull. Am. Meteorol. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the
convection-resolving regional climate modeling approach in decade-long
simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014.
Ban, N., Schmidli, J., and Schär ,C.: Heavy precipitation
in a changing climate: does short-term summer precipitation increase
faster?, Geophys. Res.-Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015.
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Bøssing Christensen, O., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J. E., Hodnebrog, Ø., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa, M., Reca Remedio, A., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first multi-model ensemble of
regional climate simulations at kilometer-scale resolution, part I:
evaluation of precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021.
Beheng, K.: A parameterization of warm cloud microphysical conversion
processes, Atmos. Res., 33, 193–206, 1994.
Bennington, V., Notaro, M., and Holman, K. D.: Improving Climate Sensitivity
of Deep Lakes within a Regional Climate Model and Its Impact on Simulated
Climate, J. Climl., 27, 2886–2911, 2014.
Bretherton, C. S., McCaa, J. R., and Grenier, H.: A new parameterization for
shallow cumulus convection and its application to marine subtropical
cloud-topped boundary lay-ers. I. Description and 1D results, Mon. Weather
Rev., 132, 864–882, 2004.
Chen, M., Shi, W., Xie, P., Silva, V. B. S., Kousky, V. E., Higgins, R. W., and Janowiak, J. E.: Assessing objective techniques for gauge-based analyses of global daily precipitation, J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132, 2008.
Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.:
Convection-permitting models: A step-change in rainfall forecasting, Meteor.
Appl., 23, 165–181, https://doi.org/10.1002/met.1538, 2016.
Coppola, E., Giorgi, F., Mariotti, L., and Bi, X.: RegT-Band: a tropical band
version of RegCM4, Clim. Res., 52, 115–133, 2012.
Coppola, E., Sobolowski, S., Pichelli, E., Pichelli, E., Raffaele, F., Ahrens, B., Anders, I., Ban, N., Bastin, S., Belda, M., Belusic, D., Caldas-Alvarez, A., Cardoso, R. M., Davolio, S., Dobler, A., Fernandez, J., Fita, L., Fumiere, Q., Giorgi, F., Goergen, K., Güttler, I., Halenka, T., Heinzeller, D., Hodnebrog, Ø., Jacob, D., Kartsios, S., Katragkou, E., Kendon, E, Khodayar, S., Kunstmann, H., Knist, S., Lavín-Gullón, A., Lind, P., Lorenz, T., Maraun, D., Marelle, L., van Meijgaard, E., Milovac, J., Myhre, G., Panitz, H.-J., Piazza, M., Raffa, M., Raub, T., Rockel, B., Schär, C., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Stocchi, P., Tölle, M. H., Truhetz, H., Vautard, R., de Vries, H., and Warrach-Sagi, K.: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean, Clim. Dynam., 55, 3–34, https://doi.org/10.1007/s00382-018-4521-8, 2020.
Coppola, E., Stocchi, P., Pichelli, E., Torres, A., Glazer, R., Graziano, G., Di Sante, F., Nogherotto, R., and Giorgi, F.: RegCM-NH namelists for test cases presented in the paper “Non-Hydrostatic RegCM4 (RegCM4-NH): Model description and case studies over multiple domains”, Zenodo [code], https://doi.org/10.5281/zenodo.5106399, 2021.
Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A., and
Lavers, D. A.: How do atmospheric rivers form?, Bull. Amer. Meteorol. Soc.,
96, 1243–1255, https://doi.org/10.1175/BAMS-D-14-00031.1, 2015.
Dee, D. P., Källén, E., Simmons, A. J., and Haimberger, L.: Comments on “Reanalyses suitable for characterizing long-term trends”, B. Am. Meteorol. Soc., 92, 65–70, https://doi.org/10.1175/2010BAMS3070.1, 2011.
Diallo, I., Giorgi, F., and Stordal, F.: Influence of Lake Malawi on regional
climate from a double nested regional climate model experiment, Clim. Dynam., 50, 3397–3411, https://doi.org/10.1007/s00382-017-3811-x, 2018.
Dickinson, R. E., Errico, R. M., Giorgi, F., and Bates, G. T.: A regional climate model
for the western United States, Climatic Change, 15, 383–422,
https://doi.org/10.1007/BF00240465, 1989.
Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P.: Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model, TechRep, National Center for Atmospheric Research, Boulder, CO, USA, 80 pp., NCAR.TN-387+STR, 1993.
Done, J., Davis, C. A., and Weisman M. L.: The next generation of NWP:
Explicit forecasts of convection using the Weather Research and Forecasting
(WRF) model, Atmos. Sci. Lett., 5, 110–117, https://doi.org/10.1002/asl.72,
2004.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46,
3077–3107, 1989.
Durran, D. R. and Klemp, J. B.: A compressible model for the simulation of
moist mountain waves, Mon. Weather Rev., 111, 2341–2361, 1983.
Elguindi, N., Bi, X., Giorgi, F., Nagarajan, B., Pal, J., Solmon, F.,
Rauscher, S., Zakey, S., O'Brien, T., Nogherotto, R., and Giuliani, G.:
Regional Climate Model, RegCM Reference Manual Version 4.7, 49 pp., https://zenodo.org/record/4603616, 2017.
Emanuel, K. A.: A scheme for representing cumulus convection in large-scale
models, J. Atmos. Sci, 48, 2313–2335, 1991.
Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young, G. S.: The cool skin and the warm layer in bulk flux calculations, J. Geophys. Res., 101, 1295–1308, 1996a.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for TOGA COARE, J. Geophys. Res.,
101, 3747–3764, 1996b.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared
precipitation with stations–a new environmental record for monitoring
extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Gimeno, L., Nieto, R., Vaìsquez, M., and Lavers, D. A.: Atmospheric rivers: A mini-review, Front. Earth Sci., 2, 1–6, https://doi.org/10.3389/feart.2014.00002, 2014.
Giorgi, F.: Thirty years of regional climate modeling: where are we and where
are we going next?, J. Geophys. Res.-Atmos., 124, 5696–5723, 2019.
Giorgi, F. and Bates, G. T.: The Climatological Skill of a Regional Model
over Complex Terrain, Mon. Weather Rev., 117, 2325–2347,
https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2, 1989.
Giorgi, F. and Mearns, L. O.: Introduction to special section: regional
climate modeling revisited, J. Geophys. Res., 104, 6335–6352, 1999.
Giorgi, F., Marinucci, M. R., and Bates, G.: Development of a second
generation regional climate model (RegCM2). I. Boundary layer and radiative
transfer processes, Mon. Weather Rev., 121, 2794–2813, 1993a.
Giorgi, F., Marinucci, M. R., Bates, G., and De Canio, G.: Development of a
second generation regional climate model (RegCM2), part II: convective
processes and assimilation of lateral boundary conditions, Mon. Weather
Rev., 121, 2814–2832, 1993b.
Giorgi, F., Francisco, R., and Pal, J. S.: Effects of a sub-gridscale
topography and landuse scheme on surface climateand hydrology. I. Effects of
temperature and water vapor disaggregation, J. Hydrometeorol., 4, 317–333,
2003.
Giorgi, F., Jones, C., and Asrar, G.: Addressing climate information needs at
the regional level: the CORDEX framework, WMO Bull., 58, 175–183, 2009.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini, S., Güttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A., Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.: RegCM4: model description and preliminary tests over multiple CORDEX domains, Clim. Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Giorgi, F., Solmon, F., Xunjang, B., Coppola, E., Giuliani, G., Turunçoğlu, U., Güttler, I., Mariotti, L., Nogherotto, R., O'Brien, T. A., Tawfik, A., Elguindi, N., Piani, S., Pal, J., Tefera Diro, G., and Shalaby, A.: ictp-esp/RegCM: Paper Release, Zenodo [code], https://doi.org/10.5281/zenodo.4603556, 2021.
Grell, G. A.: Prognostic evaluation of assumptions used by cumulus
parameterizations, Mon. Weather Rev., 121, 764–787, 1993.
Grell, G. A., Dudhia J., and Stauffer, D. R.: A Description of the Fifth
Generation Penn State/NCAR Mesoscale Model (MM5),
National Center for Atmospheric Research, Boulder, CO, USA, NCAR Tech. Note, 122, NCAR/TN-398+STR 1994.
Gunn, K. L. S. and Marshall, J. S.: The distribution with size of
aggregate snowflakes, J. Meteor., 15, 452–461,
https://doi.org/10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2, 1958.
Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, 2016.
Hewitt, C. D. and Lowe, J. A.: Toward a European climate prediction system,
Bull. Amer. Meteor. Soc., 99, 1997–2001,
https://doi.org/10.1175/BAMS-D-18-0022.1, 2018.
Higgins, R. W., Kousky, V. E., and Xie, P.: Extreme Precipitation Events in the South-Central United States during May and June 2010: Historical Perspective, Role of ENSO, and Trends, J. Hydrometeorol., 12, 1056–1070, https://doi.org/10.1175/JHM-D-10-05039.1, 2011.
Holtslag, A., de Bruijn, E., and Pan, H. L.: A high resolution air mass
transformation model for short-range weather fore-casting, Mon. Weather Rev.,
118, 1561–1575, 1990.
Hong, S.-Y., Juang, H.-M. H., and Zhao, Q.: Implementation of prognostic
cloud scheme for a regional spectral model, Mon. Weather Rev., 126, 2621–2639,
1998.
Hong, S.-Y. and Lim, J.-O. J.: The WRF Single-Moment 6-Class Microphysics
Scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006.
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A Revised Approach to Ice
Microphysical Processes for the Bulk Parameterization of Clouds and
Precipitation, Mon. Weather Rev., 132, 103–120, 2004.
Hostetler, S. W., Bates, G. T., and Giorgi, F.: Interactive nesting of a lake
thermal model within a regional climate model for climate change studies, J.
Geophys. Res., 98, 5045–5057, 1993.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeor., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
International Federation of Red Cross and Red Crescent Societies (IFRC): World Disasters Report 2014: focus on culture and risk. Technical Report, International Federation of Red Cross and Red Crescent Societies, Geneva, Switzerland, 276 pp., 2014.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A Method
that Produces Global Precipitation Estimates from Passive Microwave and
Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeor, 5,
487–503, 2004.
Kain, J. S.: The Kain–Fritsch convective parameterization: An update, J.
Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining
plume model and its application in convective parameterization, J. Atmos.
Sci., 47, 2784–2802, 1990.
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of
rainfall in a very high-resolution regional climate model, J. Climate, 25,
5791–5806, https://doi.org/10.1175/JCLI-D-11-00562.1, 2012.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do
convection-permitting regional climate models improve projections of future
precipitation change?, Bull. Amer. Meteor. Soc., 98, 79–93,
https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Kessler, E.: On the Distribution and Continuity of Water Substance in
Atmospheric Circulations, in: Meteorological Monographs, Amer. Meteor. Soc., Boston, MA, 10, 84 pp., https://doi.org/10.1007/978-1-935704-36-2_1, 1969.
Khairoutdinov, M. and Kogan, Y.: A new cloud physics parameterization in a
large-eddy simulation model of marine stratocumulus, Bull. Amer. Meteorol.
Soc., 128, 229–243, 2000.
Kiehl, J., Hack, J., Bonan, G., Boville, B., Breigleb, B., Williamson, D.,
and Rasch, P.: Description of the NCAR Community Climate Model (CCM3),
National Center for Atmospheric Research, Boulder, CO, USA, NCAR Tech. Note, NCAR, 159 pp., NCAR/TN-420+STR, 1996.
Klemp, J. B. and Lilly, D. K.: Numerical simulation of hydrostatic mountain
waves, J. Atmos. Sci., 35, 78–107, 1978.
Klemp, J. B. and Dudhia, J.: An Upper Gravity-Wave Absorbing Layer for NWP
Applications, Mon. Weather Rev., 176, 3987–4004, 2008.
Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R.,
and Halliwell, C.: Characteristics of high-resolution versions of the Met
Office Unified Model for forecasting convection over the United Kingdom,
Mon. Weather Rev., 136, 3408–3424, https://doi.org/10.1175/2008MWR2332.1,
2008.
LeVeque, R. J.: Finite Difference Methods for Ordinary
and Partial Differential Equations, SIAM, Philadelphia, USA, https://doi.org/10.1137/1.9780898717839, 2007.
Lin, Y., Farley, R., and Orville, H.: Bulk parameterization of the snow field
in a cloud model, J. Appl. Meteor. Clim., 22, 1065–1092, 1983.
Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with
size, J. Meteor., 5, 165–166, 1948.
Matte, D., Laprise, R., Thériault, J. M., and Lucas-Picher, P.: Spatial
spin-up of fine scales in a regional climate model simulation driven by
low-resolution boundary conditions, Clim. Dynam., 49, 563–574, https://doi.org/10.1007/s00382-016-3358-2, 2017.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682,
1997.
Nogherotto, R., Tompkins, A. M., Giuliani, G., Coppola, E., and Giorgi, F.: Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects, Geosci. Model Dev., 9, 2533–2547, https://doi.org/10.5194/gmd-9-2533-2016, 2016.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Kluzek, E., Lamarque, J.-F.,
Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M.,
Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L: Technical Description of
version 4.5 of the Community Land Model (CLM), National Center for Atmospheric Research, Boulder, CO, USA, NCAR Techn. Note, 422 pp., NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M, 2013.
Pal, J. S., Small, E., and Eltahir, E.: Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM, J. Geophys. Res., 105, 29579–29594, 2000.
Pal, J. S., Giorgi, F., Bi, X., Elguindi, N., Solmon, F., Gao, X., Rauscher,
S. A., Francisco, R., Zakey, A., Winter, J., Ashfaq, M., Syed, F. S., Bell,
J. L., Diffenbaugh, N. S., Karmacharya, J., Konaré, A., Martinez, D., da
Rocha, R. P., Sloan, L. C., and Steiner, A. L.: The ICTP RegCM3 and RegCNET:
regional climate modeling for the developing world., Bull. Amer. Meteorol.
Soc., 88, 1395–1409, 2007.
Pichelli, E., Coppola, E., Sobolowski, S., Ban, N., Giorgi, F., Stocchi, P., Alias, A., Belušić, D., Berthou, S., Caillaud, C., Cardoso, R. M., Chan, S., Christensen, O. B., Dobler, A., de Vries, H., Goergen, K., Kendon, E. J., Keuler, K., Lenderink, G., Lorenz, T., Mishra, A. N., Panitz, H.-J., Schär, C, Soares, P. M. M., Truhetz, H., and Vergara-Temprado, J.: The first multi-model
ensemble of regional climate simulations at kilometer-scale resolution part
2: historical and future simulations of precipitation, Clim. Dynam., 56, 3581–3602, https://doi.org/10.1007/s00382-021-05657-4, 2021.
Prein, A. F. and Gobiet, A.: Impacts of uncertainties in European gridded
precipitation observations on regional climate analysis, Int. J. Climatol., 37, 305–327, https://doi.org/10.1002/joc.4706, 2017.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on
regional convection-permitting climate modeling: demonstrations, prospects,
and challenges, Rev. Geophys., 53, 323–361, 2015.
Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D.,
Cayan, D. R., and White, A. B.: Flooding on California's Russian River: Role
of atmospheric rivers, Geophys. Res. Lett., 33, L13801,
https://doi.org/10.1029/2006GL026689, 2006.
Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., and
Eylander, J.: Defining “atmospheric river”: How the Glossary of
Meteorology helped resolve a debate, Bull. Amer. Meteor. Soc., 99, 837–839,
https://doi.org/10.1175/BAMS-D-17-0157.1, 2018.
Rutledge, S. A. and Hobbs, P. V.: The mesoscale and microscale structure and
organization of clouds and precipitation in midlatitude cyclones. Part VIII:
A model for the “seeder-feeder” process in warm-frontal rainbands, J.
Atmos. Sci., 40, 1185–1206, 1983.
Schwartz, C. S.: Reproducing the September 2013 record-breaking rainfall
over the Colorado Front Range with high-resolution WRF forecasts, Weather
Forecast., 29, 393–402, https://doi.org/10.1175/WAF-D-13-00136.1, 2014.
Sitz, L. E., Sante, F., Farneti, R., Fuentes-Franco, R., Coppola, E., Mariotti, L., Reale, M., Sannino, G., Barreiro, M., Nogherotto, R., Giuliani, G., Graffino, G., Solidoro, C., Cossarini, G., and Giorgi, F.: Description and Evaluation of the Earth
System Regional Climate Model (RegCM–ES), J. Adv. Model. Earth Sy., 9, 1863–1886, https://doi.org/10.1002/2017MS000933, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 3,
National Center for Atmospheric Research, NCAR, Boulder, CO, USA, NCAR Techn. Note, 125 pp., NCAR/TN-475+STR, 2008.
Song, Y., Semazzi, H. M. F., Xie, L., and Ogallo, L. J.: A coupled regional
climate model for the Lake Victoria Basin of East Africa, Int. J. Climatol., 24, 57–75, 2004.
Sun, X., Xie, L., Semazzi, F., and Liu, B.: Effect of Lake Surface
Temperature on the Spatial Distribution and Intensity of the Precipitation
over the Lake Victoria Basin, Mon. Weather Rev. 143, 1179–1192, 2015.
Sundqvist, H., Berge, E., and Kristjansson, J.: Condensation and cloud
parameterization studies with a mesoscale numerical weather prediction
model, Mon. Weather Rev., 117, 1641–1657, 1989.
Talling, J. F.: The incidence of vertical mixing, and some biological and
chemical consequences, in: Tropical African lakes, Verh. Int. Ver. Limnol.,
17, 998–1012, https://doi.org/10.1080/03680770.1968.11895946, 1969.
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parametrization in
large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather Rev.,
121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Tiedtke, M.: An extension of cloud-radiation parameterization in the ECMWF
model: The representation of subgrid-scale variations of optical depth, Mon.
Weather Rev., 124, 745–750, 1996.
Tompkins, A.: Ice supersaturation in the ECMWF integrated forecast system,
Q. J. Roy. Meteor. Soc., 133, 53–63, 2007.
Tripoli, G. J. and Cotton, W. R.: A numerical investigation of several
factors contributing to the observed variable intensity of deep convection
over south Florida, J. Appl. Meteor., 19, 1037–1063, 1980.
Weisman, M. L., Davis, C., Wang, W., Manning, K. W., and Klemp, J. B.:
Experiences with 0–36-h explicit convective forecasts with the WRF-ARW
model, Weather Forecast., 23, 407–437,
https://doi.org/10.1175/2007WAF2007005.1, 2008.
Weusthoff, T., Ament, F., Arpagaus, M., and Rotach, M. W.: Assessing the
benefits of convection-permitting models by neighborhood verification:
Examples from MAP D-PHASE, Mon. Weather Rev., 138, 3418–3433, https://doi.org/10.1175/2010MWR3380.1, 2010.
Williams, P. D.: A proposed modification to the Robert–Asselin time filter,
Mon. Weather Rev., 137, 2538–2546, 2009.
Zeng, X., Zhao, M., and Dickinson, R. E.: Intercomparison of bulk aerodynamic
algorithms for the computation of sea surface fluxes using TOGA COARE and
TAO data, J. Clim., 11, 2628–2644, 1998.
Zhu, Y. and Newell, R. E.: A proposed algorithm for moisture fluxes from
atmospheric rivers, Mon. Weather Rev., 126, 725–735,
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2, 1998.
Short summary
In this work we describe the development of a non-hydrostatic version of the regional climate model RegCM4-NH, implemented to allow simulations at convection-permitting scales of <4 km for climate applications. The new core is described, and three case studies of intense convection are carried out to illustrate the model performances. Comparison with observations is much improved with respect to with coarse grid runs. RegCM4-NH offers a promising tool for climate investigations at a local scale.
In this work we describe the development of a non-hydrostatic version of the regional climate...