Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7621-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7621-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2
Ruili Wu
CORRESPONDING AUTHOR
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084, China
State Environmental Protection Key Laboratory of Quality Control in
Environmental Monitoring, China National Environmental Monitoring Centre,
Beijing 100012, China
Christopher W. Tessum
Department of Civil and Environmental Engineering, the University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Yang Zhang
Department of Civil and Environmental Engineering, Northeastern
University, Boston, Massachusetts 02115, USA
Chaopeng Hong
Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
Yixuan Zheng
Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing 100012, China
Xinyin Qin
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084, China
Shigan Liu
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084, China
Qiang Zhang
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084, China
Related authors
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Ruochong Xu, Hanchen Ma, Jingxian Li, Dan Tong, Liu Yan, Lanyuan Wang, Xinying Qin, Qingyang Xiao, Xizhe Yan, Hanwen Hu, Yujia Fu, Nana Wu, Huaxuan Wang, Yuexuanzi Wang, Xiaodong Liu, Guannan Geng, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 25, 12675–12700, https://doi.org/10.5194/acp-25-12675-2025, https://doi.org/10.5194/acp-25-12675-2025, 2025
Short summary
Short summary
In this study, we developed a new global emission inventory for non-methane volatile organic compounds (NMVOC) for the period of 1970–2020, with a focus on improving the representation of NMVOC-emission-related technologies. Our analysis revealed that activity growth, technology advancements, and policy-driven emission controls were key driving forces of NMVOC emission changes, but their roles were different across sectors and regions.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022, https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Short summary
We provided complete coverage PM2.5 concentrations at a 1-km resolution from 2000 to the present, carefully considering the significant changes in land use characteristics in China. This high-resolution PM2.5 data successfully revealed the local-scale PM2.5 variations. We noticed changes in PM2.5 spatial patterns in association with the clean air policies, with the pollution hotspots having transferred from urban centers to rural regions with limited air quality monitoring.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022, https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Short summary
This paper presents the latest version of the street-network model MUNICH, v2.0. The description of MUNICH v1.0, which models gas-phase pollutants in a street network, was published in GMD in 2018. Since then, major modifications have been made to MUNICH. The comprehensive aerosol model SSH-aerosol is now coupled to MUNICH to simulate primary and secondary aerosol concentrations. New parameterisations have also been introduced. Test cases are defined to illustrate the new model functionalities.
Yawen Kong, Bo Zheng, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 22, 10769–10788, https://doi.org/10.5194/acp-22-10769-2022, https://doi.org/10.5194/acp-22-10769-2022, 2022
Short summary
Short summary
We developed a Bayesian atmospheric inversion system based on the 4D local ensemble transform Kalman filter (4D-LETKF) algorithm coupled with GEOS-Chem from the latest Orbiting Carbon Observatory-2 (OCO-2) V10r XCO2 retrievals. This is the first adaptation of 4D-LETKF to an OCO-2-based global carbon inversion system. We inferred global gridded carbon fluxes and investigated their magnitudes, variations, and partitioning schemes to understand the global and regional carbon budgets for 2015–2020.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Kai Wang, Yang Zhang, Shaocai Yu, David C. Wong, Jonathan Pleim, Rohit Mathur, James T. Kelly, and Michelle Bell
Geosci. Model Dev., 14, 7189–7221, https://doi.org/10.5194/gmd-14-7189-2021, https://doi.org/10.5194/gmd-14-7189-2021, 2021
Short summary
Short summary
The two-way coupled WRF-CMAQ model accounting for complex chemistry–meteorology feedbacks has been applied to the long-term predictions of regional meteorology and air quality over the US. The model results show superior performance and importance of chemistry–meteorology feedbacks when compared to the offline coupled WRF and CMAQ simulations, which suggests that feedbacks should be considered along with other factors in developing future model applications to inform policy making.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Geosci. Model Dev., 14, 5751–5768, https://doi.org/10.5194/gmd-14-5751-2021, https://doi.org/10.5194/gmd-14-5751-2021, 2021
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) modeling system extended for hemispheric-scale applications (H-CMAQ) incorporated the satellite-constrained degassing SO2 emissions from 50 volcanos across the Northern Hemisphere. The impact on tropospheric sulfate aerosol (SO42−) is assessed for 2010. Although the considered volcanic emissions occurred at or below the middle of free troposphere (500 hPa), SO42− enhancements of more than 10 % were detected up to the top of free troposphere (250 hPa).
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021, https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Short summary
The MUNICH model was used to calculate pollutant concentrations inside the streets of São Paulo. The VEIN emission model provided the vehicular emissions and the coordinates of the streets. We used information from an air quality station to account for pollutant concentrations over the street rooftops. Results showed that when emissions are calibrated, MUNICH satisfied the performance criteria. MUNICH can be used to evaluate the impact of traffic-related air pollution on public health.
Jun Liu, Dan Tong, Yixuan Zheng, Jing Cheng, Xinying Qin, Qinren Shi, Liu Yan, Yu Lei, and Qiang Zhang
Atmos. Chem. Phys., 21, 1627–1647, https://doi.org/10.5194/acp-21-1627-2021, https://doi.org/10.5194/acp-21-1627-2021, 2021
Short summary
Short summary
In this study, we investigated the decadal changes in carbon dioxide and air pollutant emissions in China's cement industry for the period 1990–2015 based on intensive unit-based information. We found that from 1990 to 2015, accompanied by a 10.3-fold increase in cement production, CO2, SO2, and NOx emissions from China's cement industry increased by 627 %, 56 %, and 659 %, whereas CO, PM2.5, and PM10 emissions decreased by 9 %, 63 %, and 59 %, respectively.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Cited articles
Appel, K. W., Napelenok, S. L., Hogrefe, C., Foley, K. M., Pouliot, G. A., Murphy, B., Heath, N., Roselle, S., Pleim, J., Bash, J. O., Pye, H. O. T., and Mathur, R.: Overview and evaluation of the Community Multiscale Air Quality (CMAQ) modelling system version 5.2, Air Pollution Modeling and its Application XXV, ITM 2016, Springer Proceedings in Complexity, edited by: Mensink, C. and Kallos, G., Springer, Cham, 69–73, https://doi.org/10.1007/978-3-319-57645-9_11, 2018.
Baker, K. R., Amend, M., Penn, S., Bankert, J., Simon, H., Chan, E., Fann,
N., Zawacki, M., Davidson, K., and Roman, H.: A database for evaluating the
InMAP, APEEP, and EASIUR reduced complexity air-quality modelling tools,
Data in Brief, 28, 104886, https://doi.org/10.1016/j.dib.2019.104886, 2020.
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H. D., Walker, K. D.,
Thurston, G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M.,
Krewski, D., Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse,
D. L., Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., Donkelaar, A.,
Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M. G., Wang, L. J.,
Janssen, N. A. H., Marra, M., Atkinson, R. W., Tsang, H., Thach, Q., Cannon,
J. B., Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F.,
Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global
estimates of mortality associated with long-term exposure to outdoor fine
particulate matter, P. Natl. Acad. Sci. USA, 115, 9592–9597, https://doi.org/10.1073/pnas.1803222115, 2018.
Chang, X., Wang, S., Zhao, B., Xing, J., Liu, X., Wei, L., Song, Y., Wu, W.,
Cai, S., Zheng, H., Ding, D., and Zheng, M.: Contributions of inter-city and
regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei
region and its implications on regional joint air pollution control, Sci. Total Environ., 660, 1191–1200, https://doi.org/10.1016/j.scitotenv.2018.12.474, 2019.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y.,
Martin, R., Morawska, L., Pope III, C. A., Shin, H., Straif, K., Shaddick,
G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J.
L., and Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918, https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Dimanchevi, E. G., Paltsev, S., Yuan, M., Rothenberg, D., Tessum, C. W.,
Marshall, J. D., and Selin, N. E.: Health co-benefits of sub-national renewable energy policy in the US, Environ. Res. Lett., 14, 085012, https://doi.org/10.1088/1748-9326/ab31d9, 2019.
Doxsey-Whitfield, E., MacManus, K., Adamo, S. B., Susana, B., Pistolesi, L., Squires, J., Borkovska,O., and Baptista, S. R.: Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4, Papers in Applied Geography, 1, 226–34, https://doi.org/10.1080/23754931.2015.1014272, 2015.
Gilmore, E. A., Heo, J., Muller, N. Z., Tessum, C. W., Hill, J. D.,
Marshall, J. D., and Adams, P. J.: An inter-comparison of the social costs of
air quality from reduced-complexity models, Environ. Res. Lett.,
14, 074016, https://doi.org/10.1088/1748-9326/ab1ab5, 2019.
Global Burden of Disease Collaborative Network: Global Burden of Disease
Study 2017 (GBD 2017) Population Estimates 1950–2017, Institute for Health Metrics and Evaluation (IHME), Seattle, USA, 2018a.
Global Burden of Disease Collaborative Network: Global Burden of Disease
Study 2017 (GBD 2017) Cause-Specific Mortality 1980–2017, Institute for Health Metrics and Evaluation (IHME), Seattle, USA, 2018b.
Goodkind, A. L., Tessum, C. W., Coggins, J. S., Hill, J. D., and Marshall, J. D.: Fine-scale damage
estimates of particulate matter air pollution reveal opportunities for
location-specific mitigation of emissions, P. Natl. Acad. Sci. USA, 116, 8775–8780, https://doi.org/10.1073/pnas.1816102116, 2019.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Heo, J., Adams, P. J., and Gao, H. O.: Reduced-form modelling of public health impacts of inorganic PM2.5 and precursor emissions, Atmos.
Environ., 137, 80–89, https://doi.org/10.1016/j.atmosenv.2016.04.026, 2016.
Heo, J., Adams, P. J., and Gao, H. O.: Public health costs accounting of
inorganic PM2.5 pollution in metropolitan areas of the United States
using a risk-based source-receptor model, Environ. Int., 106,
119–126, https://doi.org/10.1016/j.envint.2017.06.006, 2017.
Hong, C., Zhang, Q., Zhang, Y., Tang, Y., Tong, D., and He, K.: Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects, Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, 2017.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Li, X., Zhang, Q., Zhang, Y., Zheng, B., Wang, K., Chen, Y., Wallington, T.
J., Han, W., Shen, W., Zhang, X., and He, K.: Source contributions of urban
PM2.5 in the Beijing-Tianjin-Hebei region: Changes between 2006 and
2013 and relative impacts of emissions and meteorology, Atmos.
Environ., 123, 229–239, https://doi.org/10.1016/j.atmosenv.2015.10.048, 2015.
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015.
Muller, N. Z. and Mendelsohn, R.: Measuring the damages of air pollution in the United States, J. Environ. Econ. Manage., 54,
1–14, https://doi.org/10.1016/j.jeem.2006.12.002, 2007.
Muller, N. Z., Mendelsohn, R., and Nordhaus, W.: Environmental accounting
for pollution in the United States economy, Am. Econ. Rev.,
101, 1649–1675, https://doi.org/10.1257/aer.101.5.1649, 2011.
National Centers for Environmental Prediction/National Weather
Service/NOAA/US Department of Commerce: NCEP FNL Operational Model Global
Tropospheric Analyses, continuing from July 1999 Dataset [data set], https://doi.org/10.5065/D6M043C6, 2000.
Reddington, C. L., Conibear, L., Knote, C., Silver, B. J., Li, Y. J., Chan, C. K., Arnold, S. R., and Spracklen, D. V.: Exploring the impacts of anthropogenic emission sectors on PM2.5 and human health in South and East Asia, Atmos. Chem. Phys., 19, 11887–11910, https://doi.org/10.5194/acp-19-11887-2019, 2019.
Sergi, B. J., Adams, P. J., Muller, N. Z., Robinson, A. L., Davis, S. J.,
Marshall, J. D., and Azevedo, I. L.: Optimizing Emissions Reductions from the
U.S. Power Sector for Climate and Health Benefits, Environ. Sci. Technol., 54, 7513–7523, https://doi.org/10.1021/acs.est.9b06936, 2020.
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang, X., Wang, W., and Powers, J.: A description of the Advanced Research WRF Version 3 NCAR technical note, National Center for Atmospheric Research, Boulder, CO, USA, 2008.
Tessum, C. W., Hill, J. D., and Marshall, J. D.: InMAP: A model for air
pollution interventions, PLoS One, 12, e0176131, https://doi.org/10.1371/journal.pone.0176131, 2017.
Thakrar, S., Tessum, C., Apte, J., Balasubramanian, S., Millet, D. B., Pandis, S., Marshall, J. D., and Hill, J.: Global, High-Resolution, Reduced-Complexity Air Quality Modeling Using InMAP (Intervention Model for Air Pollution), ChemRxiv, https://doi.org/10.33774/chemrxiv-2021-wn21q-v2, 2021.
Thind, M. P. S., Tessum, C. W., Azevedo, I. L., and Marshall, J. D.: Fine
Particulate Air Pollution from Electricity Generation in the US: Health
Impacts by Race, Income, and Geography, Environ. Sci.
Technol., 53, 14010–14019, https://doi.org/10.1021/acs.est.9b02527, 2019.
United States Environmental Protection Agency: National Emission Inventory
data, available at:
https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data (last access: 9 December 2021), 2011.
Wu, R.: A localized version of reduced-complexity air quality intervention model over China (InMAPv1.6.1-China), Zenodo [code], https://doi.org/10.5281/zenodo.5111961, 2021.
Wu, R., Liu, F., Tong, D., Zheng, Y., Lei, Y., Hong, C., Li, M., Liu, J.,
Zheng, B., Bo, Y., Chen, X., Li, X., and Zhang, Q.: Air quality and health
benefits of China's emission control policies on coal-fired power plants
during 2005–2020, Environ. Res. Lett., 14, 094016, https://doi.org/10.1088/1748-9326/ab3bae, 2019.
Xiao, Q. Y., Geng, G. N., Liang, F. C., Wang, X., Lv, Z., Lei, Y., Huang, X.
M., Zhang, Q., Liu, Y., and He, K.: Changes in spatial patterns of PM2.5
pollution in China 2000–2018: Impact of clean air policies, Environ.
Int., 141, 105776, https://doi.org/10.1016/j.envint.2020.105776, 2020.
Zhang, L., Liu, L. C., Zhao, Y. H., Gong, S. L., Zhang, X. Y., Henze, D. K.,
Capps, S. L., Fu, T. M., Zhang, Q., and Wang, Y. X.: Source attribution of
particulate matter pollution over North China with the adjoint method.
Environ. Res. Lett., 10, 084011, https://doi.org/10.1088/1748-9326/10/8/084011, 2015.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang,
Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu,
F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu,
Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhao, H., Chen, K., Liu, Z., Zhang, Y., and Zhang, H.: Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the “Air Pollution Prevention and Control Action Plan”, Chemosphere, 270, 129441, https://doi.org/10.1016/j.chemosphere.2020.129441, 2021.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Short summary
Reduced-complexity air quality models are less computationally intensive and easier to use. We developed a reduced-complexity air quality Intervention Model for Air Pollution over China (InMAP-China) to rapidly predict the air quality and estimate the health impacts of emission sources in China. We believe that this work will be of great interest to a broad audience, including environmentalists in China and scientists in relevant fields at both national and local institutes.
Reduced-complexity air quality models are less computationally intensive and easier to use. We...