Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7621-2021
https://doi.org/10.5194/gmd-14-7621-2021
Model description paper
 | 
16 Dec 2021
Model description paper |  | 16 Dec 2021

Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2

Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang

Related authors

Direct measurements of black carbon fluxes in central Beijing using the eddy covariance method
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021,https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Decadal changes in anthropogenic source contribution of PM2.5 pollution and related health impacts in China, 1990–2015
Jun Liu, Yixuan Zheng, Guannan Geng, Chaopeng Hong, Meng Li, Xin Li, Fei Liu, Dan Tong, Ruili Wu, Bo Zheng, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 20, 7783–7799, https://doi.org/10.5194/acp-20-7783-2020,https://doi.org/10.5194/acp-20-7783-2020, 2020
Short summary
Street-scale air quality modelling for Beijing during a winter 2016 measurement campaign
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, Michael Hollaway, David Carruthers, Jie Li, Qiang Zhang, Ruili Wu, Simone Kotthaus, Sue Grimmond, Freya A. Squires, James Lee, and Zongbo Shi
Atmos. Chem. Phys., 20, 2755–2780, https://doi.org/10.5194/acp-20-2755-2020,https://doi.org/10.5194/acp-20-2755-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, Enrico Pisoni, and Bertrand Bessagnet
Geosci. Model Dev., 17, 587–606, https://doi.org/10.5194/gmd-17-587-2024,https://doi.org/10.5194/gmd-17-587-2024, 2024
Short summary
A simple and realistic aerosol emission approach for use in the Thompson–Eidhammer microphysics scheme in the NOAA UFS Weather Model (version GSL global-24Feb2022)
Haiqin Li, Georg A. Grell, Ravan Ahmadov, Li Zhang, Shan Sun, Jordan Schnell, and Ning Wang
Geosci. Model Dev., 17, 607–619, https://doi.org/10.5194/gmd-17-607-2024,https://doi.org/10.5194/gmd-17-607-2024, 2024
Short summary
On the formation of biogenic secondary organic aerosol in chemical transport models: an evaluation of the WRF-CHIMERE (v2020r2) model with a focus over the Finnish boreal forest
Giancarlo Ciarelli, Sara Tahvonen, Arineh Cholakian, Manuel Bettineschi, Bruno Vitali, Tuukka Petäjä, and Federico Bianchi
Geosci. Model Dev., 17, 545–565, https://doi.org/10.5194/gmd-17-545-2024,https://doi.org/10.5194/gmd-17-545-2024, 2024
Short summary
The first application of a numerically exact, higher-order sensitivity analysis approach for atmospheric modelling: implementation of the hyperdual-step method in the Community Multiscale Air Quality Model (CMAQ) version 5.3.2
Jiachen Liu, Eric Chen, and Shannon L. Capps
Geosci. Model Dev., 17, 567–585, https://doi.org/10.5194/gmd-17-567-2024,https://doi.org/10.5194/gmd-17-567-2024, 2024
Short summary
GAN-argcPredNet v2.0: a radar echo extrapolation model based on spatiotemporal process enhancement
Kun Zheng, Qiya Tan, Huihua Ruan, Jinbiao Zhang, Cong Luo, Siyu Tang, Yunlei Yi, Yugang Tian, and Jianmei Cheng
Geosci. Model Dev., 17, 399–413, https://doi.org/10.5194/gmd-17-399-2024,https://doi.org/10.5194/gmd-17-399-2024, 2024
Short summary

Cited articles

Appel, K. W., Napelenok, S. L., Hogrefe, C., Foley, K. M., Pouliot, G. A., Murphy, B., Heath, N., Roselle, S., Pleim, J., Bash, J. O., Pye, H. O. T., and Mathur, R.: Overview and evaluation of the Community Multiscale Air Quality (CMAQ) modelling system version 5.2, Air Pollution Modeling and its Application XXV, ITM 2016, Springer Proceedings in Complexity, edited by: Mensink, C. and Kallos, G., Springer, Cham, 69–73, https://doi.org/10.1007/978-3-319-57645-9_11, 2018. 
Baker, K. R., Amend, M., Penn, S., Bankert, J., Simon, H., Chan, E., Fann, N., Zawacki, M., Davidson, K., and Roman, H.: A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-quality modelling tools, Data in Brief, 28, 104886, https://doi.org/10.1016/j.dib.2019.104886, 2020. 
Chang, X., Wang, S., Zhao, B., Xing, J., Liu, X., Wei, L., Song, Y., Wu, W., Cai, S., Zheng, H., Ding, D., and Zheng, M.: Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control, Sci. Total Environ., 660, 1191–1200, https://doi.org/10.1016/j.scitotenv.2018.12.474, 2019. 
Download
Short summary
Reduced-complexity air quality models are less computationally intensive and easier to use. We developed a reduced-complexity air quality Intervention Model for Air Pollution over China (InMAP-China) to rapidly predict the air quality and estimate the health impacts of emission sources in China. We believe that this work will be of great interest to a broad audience, including environmentalists in China and scientists in relevant fields at both national and local institutes.