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29  Table S1 Model configurations in WRFv3.8.

Parameter Configuration
Simulation Period Dec. 20, 2016-Dec. 31, 2017
Domain East Asia (West-to-East:178 x North-to-South:133)

Horizontal resolution 36 kmx36 km

Vertical resolution 23 sigma layers from surface to tropopause (100 mb)

Meteorological IC and Reanalysis data from the National Centers for Environmental Prediction

BC Final Analysis (NCEP-FNL)

Shortwave radiation New Goddard (Chou et al., 1998)
Longwave radiation RRTM (Mlawer et al., 1997)
Land surface data USGS
Surface layer Pleim-Xiu (Xiu and Pleim et al., 2001)
Planetary boundary

ACM2 (Pleim et al., 2007)
layer model
Cumulus

Kain-Fritsch (Kain et al., 2004)
Parameterization
Cloud microphysics WSM6

Temperature and water vapor mixing (above PBL);
Analysis nudging

Wind (in and above PBL)

Observational nudging ~ Temperature, water vapor mixing and wind (in and above PBL)

Soil nudging Include soil moisture and temperature
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Table S2 Model configurations in CMAQV5.2.

Parameter

Configuration

Simulation Period
Domain and spatial

resolution

Vertical resolution

IC and BC

Gas-phase mechanism

Agqueous-phase
mechanism
Aerosol module
Aerosol
thermodynamics
Wind blown dust
The lightening NOy

emissions

Biogenic emissions

Anthropogenic

emissions

Dec. 20, 2016-Dec. 31, 2017

East Asia (West-to-East:172 x North-to-South:127)

36 kmx 36 km

14 sigma levels from surface to tropopause. The values of sigma levels are
1.000, 0.995, 0.988,0.980, 0.970, 0.956, 0.938, 0.893, 0.839, 0.777, 0.702,
0.582, 0.400, 0.200 and 0.000.

GEOS-Chem simulation

CBO5 gas-phase mechanism with active chlorine chemistry and updated
toluene mechanism of

(Whitten et al., 2010)

The updated mechanism of the RADM model (Walcek and Taylor et al.,
1986; Chang et al., 1987)

AEROG6

ISORROPIA-II (Fountoukis and Nenes et al., 2007)

Not included

Not included

MEGANvV2.10 model
MEIC inventory for mainland of China emissions in 2017
MIX2010 inventory for the emissions at the region outside the China in East

Asia
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Table S3 WRF evaluation

Mean_ob Mean_si Cor RMS NMB NME
Variable S m Sample r MB ME E (%) (%)
502728 09 - 21
TEMP (°C) 15.03 14.36 8 4 0.67 8 3.07 -6.07 19.95
WSPD 485075 0.5 14
(m/s) 2.70 3.04 3 9 034 8 203 1243 55.39
501855 0.7 9.9
RH (%) 69.26 73.40 7 9 414 6 13.28 6.12 14,53
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Table S4 CMAQ evaluation of 36km spatial resolution across the mainland of China in 2017.

Statistical metrics PMas SO, NO;
Data Pairs 124476 124572 124659
R 0.59 0.39 0.57
Observed Mean (ug/m?3) 45.86 18.52 32.96
Simulated Mean (ug/md) 4212 17.69 28.39
MB (ug/md) -3.74 -0.83 -4.57
RMSE (%) 36.07 25.29 21.91
NMB (%) -8.16 -4.47 -13.87
NME (%) 50.03 77.15 51.02
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Figure S1 Scatter plot and linear relationship of stack attribution and unit capacity of power plants based on
the coal-fired power plant data in 2011 from the national emission inventory in the United States. The stack

height and stack diameter are displayed in subplots (a) and (b), respectively.
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97

98 Figure S2 Sensitivity results for two stack attributions of coal-fired power plants. Panel (a) and (b) show the
99 impacts on concentrations of stack gas exit velocity (units: K) and stack gas exit temperature (units: m s),

100  respectively.
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Figure S3 Monthly variations in PMzs, SOz ,and NOz concentrations simulated by the CMAQ model and

comparison with observations.
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Figure S4 Marginal change in population-weighted PM2s concentrations and their composition over the BTH

region modelled by the INMAP-China and WRF-CMAQ models. The population-weighted pollutant

concentration for each scenario is normalized using the largest value among all scenarios modelled by CMAQ.

Eleven dots represent the eleven scenarios, and the statistical metrics are labelled in the lower right corner for each

panel.
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Figure S5 Marginal change in population-weighted PM2s concentrations and their composition over the PRD
region modelled by the InMAP-China and WRF-CMAQ models. The population-weighted pollutant
concentration for each scenario is normalized using the largest value among all scenarios modelled by the CMAQ.
The eleven dots represent the eleven scenarios, and the statistical metrics are labelled in the lower right corner for

each panel.
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Figure S6 Marginal change in population-weighted PM:.s concentrations and their composition over the YRD
region modelled by the INMAP-China and WRF-CMAQ models. The population-weighted air pollutant
concentration for each scenario is normalized using the largest value among all scenarios modelled by

CMAQ. Eleven dots represent the eleven scenarios, and the statistical metrics are labelled in the lower

right corner for each panel.
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Figure S7 Marginal change in population-weighted PM2s concentrations and their composition over the Fen
Wei Plain region modelled by the INMAP-China and WRF-CMAQ models. The population-weighted air
pollutant concentration for each scenario is normalized using the largest value among all scenarios
modelled by CMAQ. The eleven dots represent the eleven scenarios, and the statistical metrics are

labelled in the lower right corner for each panel.
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