Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-6765-2021
https://doi.org/10.5194/gmd-14-6765-2021
Methods for assessment of models
 | 
05 Nov 2021
Methods for assessment of models |  | 05 Nov 2021

Verification of boundary layer wind patterns in COSMO-REA2 using clear-air radar echoes

Sebastian Buschow and Petra Friederichs

Related authors

Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020,https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary
Assessment of wavelet-based spatial verification by means of a stochastic precipitation model (wv_verif v0.1.0)
Sebastian Buschow, Jakiw Pidstrigach, and Petra Friederichs
Geosci. Model Dev., 12, 3401–3418, https://doi.org/10.5194/gmd-12-3401-2019,https://doi.org/10.5194/gmd-12-3401-2019, 2019
Short summary

Related subject area

Atmospheric sciences
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024,https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024,https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024,https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024,https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024,https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary

Cited articles

Atkinson, B. W. and Wu Zhang, J.: Mesoscale shallow convection in the atmosphere, Rev. Geophys., 34, 403–431, https://doi.org/10.1029/96RG02623, 1996. a, b
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Banghoff, J. R., Stensrud, D. J., and Kumjian, M. R.: Convective Boundary Layer Depth Estimation from S-Band Dual-Polarization Radar, J. Atmos. Ocean. Tech., 35, 1723–1733, https://doi.org/10.1175/JTECH-D-17-0210.1, 2018. a
Banghoff, J. R., Sorber, J. D., Stensrud, D. J., Young, G. S., and Kumjian, M. R.: A 10-Year Warm-Season Climatology of Horizontal Convective Rolls and Cellular Convection in Central Oklahoma, Mon. Weather Rev., 148, 21–42, https://doi.org/10.1175/MWR-D-19-0136.1, 2020. a, b, c, d, e, f
Bauer, H.-S., Muppa, S. K., Wulfmeyer, V., Behrendt, A., Warrach-Sagi, K., and Späth, F.: Multi-nested WRF simulations for studying planetary boundary layer processes on the turbulence-permitting scale in a realistic mesoscale environment, Tellus A, 72, 1–28, https://doi.org/10.1080/16000870.2020.1761740, 2020. a
Download
Short summary
When insects fill the lower kilometers of the atmosphere, they get caught in the convergent parts of the wind field. Their concentration visualizes the otherwise invisible circulation on radar images. This study shows how clear-air radar data can be compared to simulated wind fields in terms of scale, anisotropy, and direction. Despite known difficulties with simulating these near-surface wind systems, we find decent agreement between a long-term simulation and the German radar mosaic.