Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-5977-2021
https://doi.org/10.5194/gmd-14-5977-2021
Development and technical paper
 | 
06 Oct 2021
Development and technical paper |  | 06 Oct 2021

Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model

Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob

Related authors

Improved advection, resolution, performance, and community access in the new generation (version 13) of the high-performance GEOS-Chem global atmospheric chemistry model (GCHP)
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022,https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Differentiable programming for Earth system modeling
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023,https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023,https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023,https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023,https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
An improved method of the Globally Resolved Energy Balance model by the Bayesian networks
Zhenxia Liu, Zengjie Wang, Jian Wang, Zhengfang Zhang, Dongshuang Li, Zhaoyuan Yu, Linwang Yuan, and Wen Luo
Geosci. Model Dev., 16, 2939–2955, https://doi.org/10.5194/gmd-16-2939-2023,https://doi.org/10.5194/gmd-16-2939-2023, 2023
Short summary

Cited articles

Allen, D., Pickering, K., Stenchikov, G., Thompson, A., and Kondo, Y.: A three-dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical transport model, J. Geophys. Res.-Atmos., 105, 3851–3876, 2000. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. a
Boersma, K., Braak, R., and van der A, R. J.: Dutch OMI NO2 (DOMINO) data product v2. 0, Tropospheric Emissions Monitoring Internet Service on-line documentation, available at: http://www.temis.nl/docs/OMI_NO2_HE5_2.0_2011.pdf (last access: 5 July 2020), 2011. a
Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, 2018. a, b
Cooper, M. J., Martin, R. V., McLinden, C. A., and Brook, J. R.: Inferring ground-level nitrogen dioxide concentrations at fine spatial resolution applied to the TROPOMI satellite instrument, Environ. Res. Lett., 15, 104013, https://doi.org/10.1088/1748-9326/aba3a5, 2020. a
Download
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.